
Tracing MPI binaries for knowledge discovery

Eduardo Grosclaude, Claudio Zanellato, Rafael Zurita, Rodolfo del Castillo

Facultad de Informática, Universidad Nacional del Comahue
{oso,czanella,rzurita,rolo}@uncoma.edu.ar

Abstract Our research project intends to build knowledge about HPC problems
to be able to help local researchers. In the general case, researchers who consult
us do not own the sources to the parallel programs they run. In order to advise
users in choosing parallel machines to run their applications, we are developing a
simple methodology to extract knowledge related to performance and scalability,
from runs of pure MPI applications on multicore clusters. For the applications
under study, our methodology allows us to obtain a reduced description of the
program which gives an idea of the original source code.

1 Introduction

Our research group at Universidad Nacional del Comahue aims to build knowledge
about HPC resources, and help local researchers from other scientific and engineering
fields to better understand them and use them. Users are typically running third-party,
pure MPI applications; only very rarely they develop their own applications. Most often,
then, source code is unavailable. Users ask how these applications will perform on other,
prospective hardware.

Performance and scalability analysis is best accomplished by developers by study-
ing the source code. When the source code is not known, the analyst falls back to pur-
suing black-box, analytical models of behaviour built up from execution data. While
the pure black-box approach does indeed yield useful information, we were intrigued
whether some further knowledge about how an application has been built, could be
obtained just from binary-only programs.

We have been exposed to multicore components for clustered environments only
since a short time ago. We desired a methodology to identify better configurations for
these newer technologies, and to quantify the expected gains. In our previous work[7]
we have described some simple experiments about core density, to confirm the intuition
that more advanced hardware architecture is not identically beneficial for every appli-
cation. We ran a well-known benchmark, NAS NPB 3.3.1 [4] over a unicore cluster and
then over a multicore cluster. We found that for every application (EP, LU, BT...) and
every data size tested (A, B, C), the applications were ranked by speedup in the same
way as by bandwidth consumption (Figure 1). As predicted by Amdahl’s Law, lower
speedups were very close to 1 for those programs with lower network traffic. This im-
plies that the user of the embarrassingly-parallel kind of applications should bear this
in mind when selecting cluster hardware, as more advanced, denser-core hardware (i.e.
machines with a higher number of cores) will not suit them better than other choices.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 374

Figure 1. Bandwidth and speedups for higher core density (from unicore cluster sce-
nario to multicore cluster).

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 375

The question was raised of how to characterize an opaque application in order to
propose an adequate platform. As our main work hypothesis is that the algorithm is
unknown or the source code is unaccesible, we investigated how to analyze an appli-
cation’s behaviour by instrumenting the application at run time. This had to be done
without the need for recompiling the application. In a later work [8] we showed a sim-
ple run-time instrumentation methodology for pure MPI programs with low impact on
execution time, allowing to collect useful observations in absence of source code, with-
out recompiling and with minimal disruption to the user’s environment.

In our present work, we intend to build upon our instrumentation methodology to
discover as much as possible about the algorithmical nature of the application and its
influence on performance. We want to configure a simple methodology to automatically
obtain a high-level, descriptive model, which lends itself to interpretation, allowing to
reason and learn about the causes of performance, or lack thereof.

In summary, our goals are to automatically obtain a model of the task executed by
the application,

– Without any source code or prior knowledge about the application;
– Offering enough information about the application behaviour to predict perfor-

mance in other setups;
– As cheaply as possible, i.e. in as few runs as possible and without interfering the

user’s work;
– Universally enough to be useful, i.e. applicable to a broad class of programs, com-

pilers, middleware or operating systems.

With these models, we expect to be able to:

– Identify communication patterns. Shed light upon the particular approach to ’parti-
tion’ and ’communication’ design phases of a program.

– Draw classes of equivalence among sets of programs. For instance, it is conceivable
that many programs built on some given theory for a domain will be implementing
some variation of the same algorithm. If a methodology can identify similar patterns
among the programs, the question about the best platform for an application may
be answered for the whole class of programs.

– Identify load balance problems and suggest efficient process placement across tar-
get processors. Study symmetry in application components. Extreme asymmetry
can be a source of load unbalance. The stream of communication events can reveal
either pure SPMD structure or asymmetric roles in programs which can be used to
induce placement hints.

– Finally, select appropriate hardware for running users’ applications. Help tailor in-
vestments according to expected gains in speedup.

In this work we present the current state of this research. In the next section we examine
related work from other researchers. Next, we describe our instrumentation framework
and present some use cases. Later we mention some future directions, and we finally
offer our conclusions.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 376

2 Previous work

Modeling for performance prediction is a complex subject which has received much at-
tention from researchers. Techniques for performance modeling and prediction exhibit
difficult tradeoffs. Some issues are cost-effectiveness of modeling (low-cost analyti-
cal modeling vs. high-overhead empirical modeling), speed of execution, measurement
techniques involved, and above all, prediction accuracy and robustness.

A very mature tool for performance analysis is DIMEMAS [13], a run-time instru-
mentation and simulation environment for application performance analysis and tuning.
DIMEMAS holds the notion of an abstract machine architecture and abstract network.
In DIMEMAS, a database of machine models and networks models specializing this
abstract architectures is maintained. DIMEMAS is able to simulate execution of a mes-
sage passing application on a network of SMPs with those defined features. Collective
MPI primitives in DIMEMAS are modeled using the basic communication model and a
model factor (null, constant, linear or logarithmic) to reflect different implementations
or choices for what-if analysis. The idea of replaying traces by simulation under some
communication model has been fruitful for many researchers. Other papers like [5] have
been very inspirational for our work. However, DIMEMAS is a simulation-oriented en-
vironment, while our approach is driven by the desire to obtain symbolic, high-level
models. A complete survey on performance modeling techniques is found in [9], which
is a byproduct of Ph.D. research by D. Grove, along with PEVPM, a comprehensive
framework with symbolic model capability, resting over MPIBench, a benchmarking
tool also by Grove.

The idea of compactly representing parallel traces of execution has been followed
by several researchers like Göel [6]. Post-mortem execution analysis has been done to
find structure in traces as in Knüpfer [10] and Preissl [12]. The interesting idea of con-
necting traces from several related processes into discernible communication patterns
is a future case in point for our methodology. The ability to detect callsites in executing
programs has been utilised by developers of mpiP tools [3].

3 An instrumentation framework

Message-passing middleware is normally implemented as shared object, dynamic link-
ing libraries. Modern operating systems provide a mechanism to define the order in
which dynamic libraries are scanned during the linking process. As pending calls in the
program binaries are resolved at first match, this order determines which shared object
will provide an implementation for a given call.

For instrumenting purposes, we wrote a shared object to provide wrapper imple-
mentations to MPI functions. This kind of transparent interception layer is often called
a shim. The shim publishes these implementations as resolving symbols for the dy-
namic linking process to consume. By inserting the shim into the linking chain at run-
time, without any modification to the application binary, we can transparently trace the
execution without precluding the run to be further instrumented by other devices (pro-
filing, debugging or otherwise oriented), in particular those using the PMPI-prefixed
MPI profiling interface[2].

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 377

Using the framework The shim’s wrapper functions call other, user defined, callback
functions before and after delegating to the library MPI function proper. The names
of these callback functions include PRE and POS prefixes to signal their situation
relative to the actual MPI call. The interface to the callback functions is well de-
fined, and the instrumentation, wrapping and linking issues are separated and con-
fined to the shim. The user is only responsible to write the callback functions and
emitting traces or profiles as desired. By writing her own callback functions, the
framework user can select what data will be collected in the trace.

Tracing data The information accessible for tracing purposes includes data related to
MPI communications activity, plus any sort of data or statistics obtainable by a
program. Data points emitted by user functions may carry not only MPI event at-
tributes, but also any interesting information computable from system functions,
such as a timestamp, the amount of resources (such as free memory), etc. The user
can do whatever work is desired while into these callback functions; although, log-
ically, this work should be kept to a minimum in the interest of performance and
clean data collecting. Other interesting data for performance investigation are the
number of MPI data elements sent in an operation, and the size of each data ele-
ment, as they can be related to latency and bandwidth of a link under a communi-
cations model. Data elements typically available for a trace event are described in
Table 1.

Name Value
id Sequence number of event in the trace

call MPI primitive name
cs Callsite number

key PRE or POS
dest Destination for point-to-point primitives

count Number of MPI data elements transferred
size Size in bytes of each data element transferred
time Elapsed time since last event

Table 1. Data elements typically present in a trace event

PRE and POS callbacks PRE callback functions are called before entry to the actual
MPI functions; they are the place to collect CPU or other statistics about the just-
finished CPU burst. POS callback functions are called after exit from the actual MPI
functions and will be used to capture behaviour exhibited during an MPI library
function call.

Time elapsed A simple utility function, get_elapsed(), returns the system clock time
elapsed between calls. This function uses regular POSIX library calls to get the
system time, to microseconds accuracy. Get_elapsed() is called at every PRE and
POS function. A call to get_elapsed() from a POS function retrieves the amount
of time since the last call. Thus, a POS function can tell (among other relevant

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 378

data) the duration of MPI communication operations. A PRE function can tell the
duration of a CPU burst (as any other relevant data).

Callsites To discover structure, such as a repetitive sequence of events in an application
trace, and identify it as a program loop, the framework depends on special data. The
shared object program can locate the point in the application (or callsite) it is being
called from, by inspection of the process stack. This is achieved by means of an
auxiliary library [1] which provides a view of the live application stack along with
a mechanism to travel "in time" over it, retrieving deeper stack frames backwards
in the execution timeline. Thus, the shim can determine at run time the MPI call
return address present on the stack and let it be known to the callback functions.
The callsite address is later hashed to be kept in the trace database.

Analysis At post-mortem, traces are stored into a database and later exploited to build
a compressed view of the sequence of CPU bursts and communication events. This
compressed view will resemble as much as possible the source code structures in
the program; for instance, loops in the original source code are easily identified by
iteration coefficients. The compression performed over a trace can be thought of as
recognizing a regular expression that describes a string from a language, while the
traces can be viewed as strings, or sequences of symbols. Each language symbol
is constructed as an affix or representation of a communication event, where some
attributes of only local significance (e.g., the time for completion of each event) are
abstracted.

Algorithm The compression algorithm operates in two editing phases. The first one
performs a search of runs (two or more adjacent, identical symbols) and replaces
every search hit A, found n adjacent times, by a new symbol A [n]. The second phase
finds the maximally occurring digram (the most frequent pair of adjacent symbols)
and then replaces every hit digram (A,B) in the trace by a new, artificial symbol
labeled A+B. These two phases are iterated until no possible editions are left. Our
approach is inspired in existing formal approaches, implying automata or grammar
inference, such as the SEQUITUR algorithm [11,14].

Output Although the complete information contents of the trace are preserved with-
out loss in the final compressed representation, it can be visualized in a number of
ways with varying detail. For a certain text view implemented by us, the attributes
abstracted for an observed CPU burst or communication event are either preserved
or summarized. This depends on a callsite being repeatedly or singly visited during
the execution. For typical usage, execution time for a CPU burst or a communica-
tion primitive, during an iteration of a loop, is shown as an average over the number
of iterations. Total time for the loop is summarized as well.

4 Examples

The analysis program directly emits text or Latex output. Examples of output for some
programs in the NPB suite are shown in Figures 2, 3 and 4. The first two samples are
detailed code profiles; the third one shows a terser format for cursory inspection of a
much more complex application. We show only the code profiles obtained for process
0 from a run over 4 processes.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 379

We will comment on the output in Figure 2 to explain the format used. The line
numbers at the left are there just to guide the explanation.

1. CPU0 : 720
2. Bcast0 : 487
3. CPU1 : 900
4. Barrier1 : 864
5. (CPU2 : 1308792.75+Allreduce2 : 128.75)[4] : 5235686

Figure 2. Compressed output for EP program, detailed.

1. CPU0 : 358
2. Bcast0 : 429
3. ((((CPU1 : 41631.00+Allreduce1 : 52763.54)+CPU2 : 10.63)+(Alltoall2 : 266.09+CPU3 :
5.54))+Alltoallv3 : 156060.63)[11] : 2758112
4. CPU4 : 4173
5. Reduce4 : 37
6. CPU5 : 15793
7. Send5 : 37
8. CPU6 : 2160
9. Reduce6 : 162

Figure 3. Compressed output for IS program, detailed.

– The notation used takes subscripts to indicate the callsite. For instance, in Figure 2,
the first two lines are attached to callsite 0, lines 3 and 4 to callsite 1, and line 5 to
callsite 2. There are no other callsites exercised in this run.

– Numbers appended after semicolons mean elapsed time in μs.
– The output in Figure 2 at line 1 comes from a PRE callback for the first MPI event in

the trace, hence it is signaled with a ’CPU’ label. This line means that 720 μs have
elapsed since the exit from MPI_Init call (the very first MPI event in the process)
until the event in callsite 0. There is no other information about the CPU burst.

– At the same callsite a broadcast (MPI_Bcast) operation has been called. The line 2
shows the time elapsed, 487 μs, for completion of the call.

– Lines 3 and 4 have a similar interpretation. Line 3 shows that the time elapsed since
return from broadcast in callsite 0 was 900 microseconds. The barrier synchroniza-
tion had a cost of 864 μs.

– Line 5 is interpreted as follows. The trace analysis program found that two coupled
events (a CPU burst plus an MPI_Allreduce operation) were repeated a number of
times. This probably indicates a loop, with four iterations, around callsite 2.

– The ’time elapsed’ shown for components of the loop are the averages over the
whole loop. This shows the ratio of individual contributions to each iteration.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 380

1. (CPU0 +Bcast0)[10] : 10055
2. ((CPU1 +Send1)+((CPU2 +(Irecv2 +CPU3))+Wait3))[4] : 83343
3. (((CPU4 +Allreduce4)+CPU5)+Barrier5) : 11556
4. (((CPU1 + Send1)[124] + (CPU6 + Recv6)[124]) + ((CPU1 + Send1) + ((CPU2 + (Irecv2 +
CPU3))+Wait3))[2]) : 63727
5. ((CPU4 +Allreduce4)+((CPU1 +Send1)+((CPU2 +(Irecv2 +CPU3))+Wait3))[2]) : 51968
6. (((CPU4 +Allreduce4)+CPU5)+Barrier5) : 11270
7. (((CPU1 + Send1)[124] + (CPU6 + Recv6)[124]) + ((CPU1 + Send1) + ((CPU2 + (Irecv2 +
CPU3))+Wait3))[2])[249] : 18062611
8. ((CPU1 +Send1)[124]+ (CPU6 +Recv6)[124]) : 58126
9. ((CPU4 +Allreduce4)+((CPU1 +Send1)+((CPU2 +(Irecv2 +CPU3))+Wait3))[2]) : 15032
10. (CPU4 +Allreduce4)[3] : 15793
11. ((CPU2 +(Irecv2 +CPU3))+Wait3)[2] : 272
12. (CPU4 +Allreduce4) : 21
13. (((CPU2 +(Irecv2 +CPU3))+Wait3)+(CPU4 +Allreduce4))[2] : 535

Figure 4. Compressed output for LU program, low detail.

– Several data present in the trace are not used or not shown for clarity, e.g. destina-
tion processes or data sizes are pruned from the data exposed to the compression
algorithm and from the output as well.

As can be seen, the output format roughly reflects the program structure, well enough
to give at a glance an algorithmic idea of the sequence of computation bursts and com-
munication events for a typical input.

Interpreting results

EP, an embarrassingly-parallel program, is the simplest in the suite. Its only loop is
probably in the order of P, the number of processes. Granularity, or ratio from compu-
tation to communications time, is high. On the other end of the suite lies IS, an integer
sort program. Most of IS execution time is spent iterating 11 times over a complex loop
line consisting of three MPI calls (at callsites 1, 2 and 3). IS is a notoriously higher
consumer of network bandwidth, and its granularity is much lower than EP’s, i.e. com-
munication times are much higher when related to CPU bursts. This helps explain our
Figure 1 where EP and IS appear at opposite ends of the speedup spectrum for higher
core density. Because of granularity, EP will not profit from faster links; however, faster
CPUs will possibly help. The situation is the opposite with IS. With this tool, we are
closer to extracting this kind of knowledge for arbitrary applications.

Several other pieces of knowledge can be extracted from these high level descrip-
tions, possibly provoking further exploratory questions:

– Reasoning on output from different workloads can show scalability trends.
– Loop bounds in programs are frequently related to the dimension of input or of

number or processes. Can we identify such a case?
– Completion time for collective primitives may be sensitive to implementation, yield-

ing from linear to log performance on the input. How do different MPI middleware
behave?

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 381

– How do transfer sizes vary for different number of processors? Does the program
apply some adaptive data partitioning strategy?

5 Future work

Although some of the original plan for the parallel application can be known from the
stream of communication events, there is an obvious lack of information about com-
putation in the trace. We plan to further develop our analysis of message-passing ap-
plications behaviour by looking for detail in CPU bursts. As of now, the only attribute
observed in the framework for CPU bursts is execution time. This allows for compar-
ing CPU time to communications time in execution phases and so to make inferences
about granularity or scalability. However, several event counters and other measure-
ment devices are built into modern processors, and they can be exploited by adequately
querying them at the end of a CPU burst. This can be done from inside the correspond-
ing PRE callback function, at the entry of a communication event, and would add detail
to the execution model. Having detail about how data is used by the program may give
insight as to whether the program is, for instance, compute-bound or memory-bound,
and this knowledge may assist in selecting target hardware or process placement.

Another research task ahead is communications modeling. We plan to continue
evolving this simple framework in order to investigate its capacity for automated per-
formance prediction in other scenarios. The simple parallel machine model we consider
is an abstract model of processors related by communication links. Building a cluster
of multicore machines with a certain (possibly heterogeneous) number of cores per ma-
chine determines a tree where links are communication links and nodes are processors.
Ideally, modeling these links would allow for simple value replacement in the code
profiles obtained. However, much work is still to be done, as we need detailed models
for all MPI primitives, taking into account the impact from asynchronous operations
(where computation and communications overlap), different implementation of collec-
tive operations (e.g. iterative or scalable broadcast), etc.

6 Conclusions

We have shown a simple framework to investigate and analyze the behaviour of message-
passing applications in absence of any prior knowledge about algorithm or program
structure. For the applications under study, our methodology allows us to obtain a re-
duced description of the program which gives an idea of the original source code. This
description is annotated with detail to infer what regions in the execution sequence are
most time consuming, what is the particular communication pattern between processes,
and elaborate about percentage of enhancement that can be expected from a particular
target machine.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 382

References

1. The libunwind project. http://www.nongnu.org/libunwind/.
2. MPI documents. http://www.mpi-forum.org/docs/docs.html.
3. mpiP: lightweight, scalable MPI profiling. http://mpip.sourceforge.net/.
4. NASA advanced supercomputing (NAS) division home page. http://www.nas.nasa.gov/.
5. Rosa M. Badia, Germán Rodríguez, and Jesús Labarta. Deriving analytical models from a

limited number of runs. In PARCO, pages 769–776, 2003.
6. A. Goel, A. Roychoudhury, and T. Mitra. Compactly representing parallel program execu-

tions. ACM SIGPLAN Notices, 38(10):202, 2003.
7. E. Grosclaude, C. Zanellato, J. Balladini, R. del Castillo, and S. Castro. Considering core

density in hybrid clusters. 2010.
8. E. Grosclaude, C. Zanellato, J. Balladini, R. del Castillo, and S. Castro. Profiling MPI appli-

cations with mixed instrumentation. 2010.
9. D Grove. Performance modelling techniques for parallel supercomputing applications. Nova

Science Publishers, New York, 2010.
10. A. Knuepfer, D. Kranzlmueller, and W. E Nagel. Detection of collective MPI operation

patterns. Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages
259–267, 2004.

11. C. G Nevill-Manning and I. H Witten. Identifying hierarchical structure in sequences: A
linear-time algorithm. Arxiv preprint cs/9709102, 1997.

12. R. Preissl, T. Kockerbauer, M. Schulz, D. Kranzlmuller, B. Supinski, and D. J Quinlan. De-
tecting patterns in MPI communication traces. In 37th International Conference on Parallel
Processing, 2008. ICPP08, pages 230–237, 2008.

13. G. Rodriguez, R. M Badia, and J. Labarta. Generation of simple analytical models for mes-
sage passing applications. In Euro-Par 2004 Parallel Processing, pages 183–188, 2004.

14. David Salomon. Data Compression, The Complete Reference. Springer, 4th edition, 2007.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 383

