Error-Bounded Terrain Rendering Approach based on
Geometry Clipmaps

Lucas Enrique Guaycochea and Horacio Antonio Abbate

Facultad de Ingenieria, Universidad de Buenos Aires
{lguaycochea,habbate}@fi.uba.ar

Abstract. This paper introduces a terrain rendering techmidpased on
Geometry Clipmaps. This technique includes screecesgrror analysis from
application’s view parameters in order to provideebounded visualization.
This is accomplished dividing each nested patclo itiies to analyze the
projected error into screen, as tiled-block terreémdering techniques do.
Finally, the implementation takes advantage of mod&PU processing power
using DirectX 10 graphics library. The results doi¢a allow real-time
navigation over large terrain extensions, consurtiitig CPU processing time.

1 Introduction

Applications, in which real-time rendering of vielu3D environments is needed,
always demand more realistic experience for itsraisémong this sort of
applications, we will consider those where the aigation of large terrain extensions
is involved. From flight simulators to GIS appliats, passing through any kind of
outdoor game, techniques to process elevation aatagenerate real-time terrain
rendering are needed to fulfill the requiremenespnted in those applications.

Terrains are modeled using a mesh of points toesgmt their surface. A naive
approach is to send the whole mesh to the graghpedine in order to render the
terrain. Despite graphics pipelines’ throughput Ragponentially increased over
recent years thanks to modern GPUs, the brute-fappeoach has strong limitations
in the size of the terrains supported in order thieve real-time rendering.
Consequently, several techniques have been dewvklapesupport larger terrains
where the mesh is assembled using regions witlerdift levels of detail (LOD) in
order to reduce the geometry introduced into tpelpie in each frame.

Approaches using LOD are possible since the fatttie perception of details of
an object (e.g. a particular region of a terraiepréases as the distance from the
viewer to the object increases. The size of th¢eptimn of these details into the final
image on screen, as a consequence of the viewqmingp projection transformation,
may be less than the pixel resolution of the outgigplay. The election of the
appropriate level-of-detail for each region in therain is taken from different
motivations, as can be seen along the bibliographthe theme.

This work is based on a technique called Geomelipm@ps. It was introduced by
Lossaso & Hoppe [1] and then extended to a GPUebas®lementation by
Asirvatham & Hoppe [2]. The authors’ proposal is¢present the terrain using a set

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 404

of nested regular grids of different LOD centerbdwt the viewer. The nested grids
have successive power-of-two resolutions and areslkated as the viewer moves. The
translation of the grids involves an incrementaflate of the elevation data of each
nested grid.

Geometry Clipmaps decides the LOD over the temaing only the 2D distance to
the viewer. This strategy allows the technique ¢oifdependent from terrain local
roughness and, therefore, to maintain the CPU wathe minimum and to guarantee
constant throughputs (frame rate). Nevertheless,ahproach has some limitations,
as it is mentioned by its authors, to prevent tae@ption of changes in the surface of
particular rough terrains as the viewer moves.

The technique proposed in this work is targetedetmolve the terrain rendering
problem for applications where an immersive virtugdlity on a well-known real-
world environment must be provided to the userhsag flight simulators. In other
words, the users must have an accurate real-wemdin perception without noticing
any artifacts. In order to achieve this requiremeartor-less or, at least, error-
bounded surface terrain representation must beagtesd by the solution.

The approach presented adds, to the state-of-thgeeametry clipmaps technique,
the ability to analyze the error incurred in the o$ a particular LOD in a region. The
error is calculated projecting into screen-spaeewbrid-space error between the full-
resolution region and the same region representtdlower detail. This projected
error is calculated from the distance to the vieamd, also, from view parameters,
such as the size of the window and the field-ofwief the camera. Then, the
resulting screen-space error is compared with @l pikreshold defined by the
application. This is done dividing each nested gmto tiles and then deciding if any
of them needs to be refined to guarantee the &oonded terrain representation. This
strategy is taken from well-known tiled-blocks &rr rendering techniques [3, 4, 5,
6].

The error analysis discussed before, compared thighpure Geometry Clipmaps
technique, involves more CPU process to compute piggected error and, if
refinement of tiles is necessary, some CPU to GRldsfer of elevation data and
more geometry to render. Even though, this obvioostans a lower throughput rate
from our technique, in modern hardware it perfomith more than acceptable rates
(see Section 3).

2 Theterrain rendering technique

2.1 Terrain Representation

As it was introduced, the solution presented isedasn the Geometry Clipmaps
technique [1]. Then, the terrain is representedguai set of nested grids, that we call
patches, around the viewer’'s position. Each patch reprissanregion of the terrain
with different resolution or level of detail. Theost detailed level is zero (L = 0),
where the spacing between the points of elevatata ¢ at the highest resolution.
Each following level covers four times more surfahan the previous one, which

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 405

means that the former resolution doubles the lager a patch resolution (gis 2-
times the finest dataset surface resolution, feelleL = 0, 1, 2....

Moreover, all patches have the same amount of ssmml verticesn x n.In
contrast with Lossaso and Hoppe [1], we use?2* +1(wherek = 1, 2, 3...) that is
needed to divide each patch in tiles. The eleatibthis value fom makes us handle
nine cases of relative positions between succegstehes. A patch center position
must lie in a vertex that belongs to next coarseell patch. In this way, patches edges
can share vertices available in both, so as nptdsent discontinuities in the terrain.

In order to optimize the performance, we add telpad’ render siza, some extra
elevation data that is loaded to use as a borddrecaVe choose to have a power-of-
two border size in each direction (top, bottomt &fd right). This can be also useful
if the elevation data is obtained from compressedources that apply block-
compression schemes.

m x m tile

n ¥ n patch

7~ -
border cache border cache
-

lexture array layers size

Fig. 1 Sizes of the different grids used for patchesstidmd layers of the texture array.
Example: m=3,n=17.

Elevation data will be loaded to the GPU into teatarrays (available in GPUs
that support Shader Model 4.0 [7] or later). Eaatthp has its elevation data loaded in
a different layer of the texture array. Then, usiwertex buffers describing 2D

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 406

“footprints” [2], the vertex’ z-value is sampled ithe vertex shader from the
corresponding layer in the texture array.

Recalling a key-point from geometry clipmaps [1, #je elevation data is
incrementally updated using a toroidal access @idhwraparound addressing. With
this strategy, GPU-CPU bandwidth utilization is iopzed as only new regions of
elevation data is updated as the viewer moves. Mere the use of a border cache
avoids frame-to-frame updates of few, or singlesys or columns to the texture
layers.

Up to this point, the base of the surface repredimmt approach has been
described, but it lacks of view-dependent and ebmrnded screen-space error
properties. In order to add these properties, weddd to divide each terrain patch
into tiles. These tiles allow the error analysiggsi/iew-dependent based metrics (see
section 2.2).

Square tiles of sizen x mare used, wherem=2/ +1(with j = 1, 2, 3...) The solution
needs to have the patch divided in, at least, &ibe® This means that- j > 3. This

iS necessary to manage the center position of path, that must lie in a corner of
an own tile. On other hand, a layer in the texamay used to render each patch must
have an integer count of tiles, so the border cacemust beijm-1) (withi=1, 2,

3...).
Finally, Figure 1 shows relationships between timess of the different grids
discussed in this section.

2.2 Screen-spaceerror analysis

When the available terrain surface is approximatsithg a lower resolution mesh,
some approximation errors will occur. The approxioma error is defined as the
vertical distance of a vertex present in the fallalution mesh with respect to its
interpolated position when it is removed in a matar level of detail with lower
resolution. This approximation error that appearemvthe terrain is not represented
using a full-resolution mesh is called the worlé&sp error, as it is calculated from
world-space coordinates.

World-space error can be measured in, both, relagivd absolute terms. Some
works, like Lindstrom et al. [8], measure it relaly between successive levels of
detail. In order to satisfy accurately error-bouwhdgeoperty this measure must be
correctly saturated [9]. Nevertheless, it is mareusate to calculate the absolute error
against the full-resolution terrain, as it is doamé&OAM [10].

In this solution, the world-space error is computed pre-process and saved into
a small file. That file is loaded in the loadinggsk into CPU memory so as to avoid
disk-access latencies. Our technique calculate®latls world-space error. The
approach consists in dividing the terrain imox mtiles at the different levels of
detail and then saving the maximum world-spacerdoond in each tile. Finally, as
the viewer moves and the patches are incrementgitiated, those pre-calculated
maximized errors are queried.

The maximum world-space error for each tile, inaatipular level of detall, is a
necessary input to analyze if the approximatioorsrare perceptible to the viewer.
Then, maximum screen-space error is conservativalyulated. From the distance

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 407

from the viewer to the closest point in the tildd®unding volume, and view
parameters, as the viewport size and the fieldi@fryworld-space error is projected
(using a perspective projection) onto the screeatepriewing plane to obtain the
screen-space error measured in pixels.

Finally, the application chooses a value for aradde screen-space error. This is
used as a threshold value to compare with. If tlegeption of the tile’'s maximum
world-space error onto screen-space exceeds tieishibld, then that region of terrain
needs to be represented with a higher resolutishr(feigure 2).

(a)

Iﬂl:v:r:-#ﬂ:

(b)

Fig. 2. World-space error§: and 2, originated from two different LOD representatipase
projected into the projection pladé . (a) Level 2 representation: maximum screen-space
A. exceeds threshold . (b) Level 1 representation: maximum screen-sgaic® 2> is smaller
than threshold .

2.3 Rendering Strategy

In this section we will describe the high-level @ighm used to generate each frame
in runtime. Some useful details on implementatial ve given to provide a higher
performance.

First, given the viewer’s position, we calculatelegatch center position and its
elevation data is updated if necessary. Then,ilggthat cover the render surfacex(

n) of each patch are tested against the view frusAinteast, a coarse view-frustum
culling is absolutely necessary, since it decreamssly to a quarter the geometric
rendering load to the graphics pipeline (calculdtada field-of-view of 90 degrees).

The test is done using an axis-align bounding looxéch tile.

Then, the screen-space error analysis is perforonethose tiles which were not
discarded in the view frustum culling test. As eipéd, the maximum world-space
error present in a tile, at a particular level efall, is projected into screen space and
compared with the threshold value. If the projettexceeds the threshold, that tile

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 408

needs to be represented with a higher resolutibe. tife will be represented using a
level of detail which maximum world-space error jpation will result smaller than
the threshold. That tile, that we caltefined tile, will be rendered using a two, four,
height, etc. times higher resolution mesh as neéfileth experience it rarely needs
more than two levels of refinement). Refined titewe a size ofr +1) * (m-1) +1 X

(r +1) * (m—-1) +1, wherer is the refinement levet € 1, 2, 3...)

The elevation data needed for the refined tildsasled into GPU memory. There
is a texture array for each refinement level. Hievadata is loaded into the different
layers which are managed using the least-recestigtmemory management policy.

Fig. 3. Frames rendered by our solution in wire-frame mfde 129, m = 17). (a) Nested
patches divided in tiles and different successia&lpes’ relative position can be seen. (b)
Refined tiles are drawn in green and marked in red.

Rendering is done taking advantage of the instant¢athnique available in
modern GPUs [7]. Instancing is used with a dynaweidex buffer filled with data to

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 409

instantiate each tile. It allows rendering severalances of a tile using a singdeaw
call, linking two vertex buffers to the pipelinepuit stage: the first containing the 2D
footprint for each tile, and the second filled wilie instances’ data.

Finally, we render the tiles which do not needmeifnent first, then the refined
tiles, grouped by refinement level. Figure 3 shaw® frames rendered by our
solution: in (a) the nested patches divided inkestcan be seen, and in (b) refined
tiles are drawn in green and marked in red.

e

{n)
Fig. 4. (a) Gaps that may appear at the edge of tilesesepted with different LOD. (b)
Vertical skirts that are added around each tile.

2.4 Level-of-detail approaches problems

Some artifacts may be perceptible in terrain reinderwhen level-of-detail
approaches are used.

First, cracks in the terrain surface may appeathat edges of two regions
represented using different resolutions. This pEobls originated in non-continuous
LOD approaches as the one described in this papetinuous LOD approaches as
[8] and [10] do not present this problem.

Tiled-blocks techniques, and also Geometry Clipmbpse to solve this problem.
Tiles at different resolution which share an edgendt have the same quantity of
vertex at the edges. This can lead to gaps in dge ef two neighboring tiles (see
Figure 4 (a)). Some approaches [3, 5, 6] solveatlifying the connections of the
vertices in one of the tiles (usually the one witgher resolution). We will not use
this approach since it requires for each tile thevdedge of the resolution of its
neighbors, adding complexity and the need to massageral cases. On other hand,
Ulrich [4] describes some techniques to solve theblem adding geometry. The
options are to add around each tifeanges”, “ribbons” or “skirts”. Geometry
Clipmaps [1, 2] uses zero-area triangles to covwer perimeter of each patch.
However, this requires disabling back-face cullfog terrain rendering. Finally, as
proposed by Ulrich [4], we decided to use vertigldtts around each tile to prevent
gaps (see Figure 4 (b)).

Another artifact that may occur in level-of-det&itrain representation is known as
“popping”. It refers to the perception of‘pop” in the terrain surface, a change in
the terrain geometry that suddenly happens. It scadnen there is a change in the
level of detail used to represent a particularaiarregion while the viewer is moving.
To prevent this artifact from being noticeable, soapproaches manage stowly
change the resolution. This means that the stragegy interpolate the vertex height

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 410

between successive levels of detail when a chamdbei representation will occur.
So, terrain geometry will slowly morph to (or fromg higher resolution
representation, and for that reason, this is kn@asmgeomorphing,introduced by

Hoppe [11] and used by many others.

As our technique has the error-bounded propentgesive do not want to notice
differences from the highest resolution terrainpaing a low value for the screen-
space error threshold will also guarantee thatompmg will be noticeable. Pops can
not exceed in screen the threshold chosen by thieation.

Fig.5: Rendering result on a fly through Puget Sound 16K dataset.

3 Reaults

Implementation was done using DirectX 10 graphibgaty [12] in order to access

functionalities of GPU’s Shader Model 4.0 [7]. Exipgentation was performed using
the well-known dataset of Puget Sound area. A B386,385 grid with 10 meters

spacing covers a 163.85km x 163.85km terrain arbichwis suitable enough to

applications, such as a flight-simulator. Heightuea have a 16-bit representation
with 0.1m vertical resolution.

Table 1. Results from the five experiments are collectethis table.

Run 1 Run 2 Run 3 Run 4 Run 5
Flying Time 132 sec 189 sec. 180 sec. 166 sec. 140 sec.
Frames Total Count 10960 15545 13564 13118 12575
Max. Frame Time 49,5 msec. 44.1 msec. 40.7 msec. 41.5msec. 3@€ ms

Frame Timein 5-10 ms 49.91% 43.94% 37.14% 41.31% 49.46%
FrameTimein 10-15ms 24.80% 14.91% 31.21% 27.19% 29.11%

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 411

Frame Time Distribution

178 5470 |@2718 [@1108 |D970 @259 85 140 31 o1

1652 6830 @2318 @2047 @1355 |@W873 [(E318 @139 13 mO

g 33 50fg 04234 |N2448 |O724 0620 |0 ggg D113 O 3 0o

03567 [@2687 |O0756 359 [m] 63 [m] 0o

30 E 19 m3661 @2121 |m365 m171 |7 L mo =0
0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

Intervals [ms]
‘El Runl @Run2 ORun3 O Run4 @ Run5 ‘

Fig. 6. Distribution of time used to generate each framfdvie different flies over the terrain.

Results (Figure 5) were obtained using a PC, rgnkifindows 7 OS, with a 2.8
GHz Intel® Core™2 Quad, 4GB system memory and aitidlvGeForce GTX 280
graphics card with 2GB of video memory.

Application was configured to run in a 1920 x 108d-screen window and a
viewer’'s horizontal field-of-view of 90 degrees. d@dising a threshold value of 5
pixels (0.5% of vertical resolution), we obtain awmerage of 120 frames/second,
which means an average of 8 milliseconds to gemerath frame. On other hand,
when the viewer flies near high detailed regiows, dxample the mountain present
near the center of Puget Sound terrain, the avdrages rate drops to 50 fps. Due to
refinement data loading, some frame time can raaciit 40 milliseconds.

We run five experiments flying over the Puget Soteidain at 340 meters per
second, from the center of the terrain to the ligtailed mountain. We measured the
time to generate each frame during a flying timéameen two and three minutes
approximately. From Figure 6, we obtained that T86 of the frame times are
between 5 and 15 milliseconds (44.35% in 5-10 rtexrwal, and 25.44% in 10-15ms
interval). At last, from Table 1, the maximum fratimae was 49.5 milliseconds.

Finally, note that average frame time allows inahgdthis technique into a
graphics engine, leaving free time to other praogsand rendering tasks within each
frame.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 412

4 Conclusion

This paper introduces a terrain rendering apprdiaahis based on the start-of-the-art
terrain rendering technique called Geometry Clipsnaphe contribution of this
solution is to introduce an approach where thetéitiun presented in Geometry
Clipmaps, to represent particular rough terrairhaitt noticeable surface changes, is
resolved. The strategy consists in adding view-ddpet screen-space error analysis
to ensure screen-space error-bounded terrain exgeg®NS.

The solution presented shows a good performancenddern hardware. As it
consumes little CPU processing time it can be nategl into a graphics engine to
resolve the terrain rendering problem.

Finally, the approach presented targets applicatiovhere an immersive
environment needs to be represented over a usdrkm@min real-world terrain
surface, such as a flight-simulator.

References

[1] Lossaso, F., Hoppe, H.: Geometry Clipmaps: TierRendering Using Nested Regular
Grids. ACM Transactions on Graphics (SIGGRAPH) 23{8p-776 (2004).

[2] Asirvatham, A., Hoppe, H.: Terrain Rendering tisiGPU-Based Geometry Clipmaps.
GPU Gems 2, Chapter 2, Addison-Wesley, March 2005.

[3] de Boer, W.: Fast Terrain Rendering Using Geoitedt MipMapping. E-mersion Project,
October 2000.

[4] Ulrich, T.: Rendering massive terrains using rdked level of detail. In: Super-size-it!
Scaling up to Massive Virtual Worlds (ACM SIGGRAPHutdrial Notes). ACM
SIGGRAPH (2000)

[5] Snook, G.: Simplified Terrain Using InterlockjrTiles. Game Programming Gems 2, pp.
377-383, Charles River Media, 2001.

[6] Wagner, D.: Terrain Geomorphing in the Vertéha8er. Shader X2, Wordware Publishing,
2003.

[7] Patidar, S., Bhattacharjee, S., Singh, J., Navag, P.: Exploiting the Shader Model 4.0
Architecture.Technical Report IIIT Hyderaba@006.

[8] Lindstrom, P, Koller, D., Ribarsky, W., Hodgels,, Faust, N., Turner, G.: Real-Time,
Continuous Level of Detail Rendering of Height F&l®roceedings of SIGGRAPH 96
109-118. August, 1996.

[9] Pajarola, R., Gobbetti, E.: Survey on Semi-RegMaltiresolution Models for Interactive
Terrain Rendering. The Visual Computer 23(8), 583;@D07.

[10] Duchaineau, M., Wolinsky, M., Sigeti, D., Mg, M., Aldrich, C., Mineev-Weinstein, M.:
ROAMing Terrain: Real-time Optimally Adapting Mesh&SEE Visualization '97 81-88.
November, 1997.

[11] Hoppe, H. Smooth view-dependent level-of-detaintrol and its application to terrain
rendering. IEEE Visualization 1998, 35-42, Octob@88.

[12] Blythe, D. Direct3D 10. GPU Shading and Rendgr®lGGRAPH 06 Course, 2006.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 413

