First Steps Towards a Tool for Legacy Systems

Mariano Méndez, Fernando G. Tinetti*

III-LIDI, Fac. de Informaética, Universidad Nacional de La Plata,
50 y 120, La Plata, Argentina

Abstract. After its first release, software must face change, because
change is a part of its true essence. Often, programmers have to deal
with software built by others. When an improvement, change or update
must be introduced, programmers need first to understand the existing
software. In order to achieve that understanding, development tools are
crucial. This paper describes some key features required by a tool to help
programmers to understand and handle existing software. We propose to
put all these features together so as to add them to an IDE (Integrated
Development Environment). This paper purports to characterize a set of
steps in order to help in and/or manage that transformation process.

Key words: Software Transformation, Legacy Systems, Fortran Legacy
Systems

1 Introduction

Software is constantly exposed to the pressure of change because change is part of
its essence [6]. Thus, how these changes are introduced in an already operational
program is still a challenge nowadays. If we try to imagine how a change is intro-
duced in a system built following modern techniques of Software Engineering,
most probably the conclusion will be that it is not an easy task. Every change will
impact (in)directly on the software specifications and in a much more profound
way on the software behavior. The impact entails a long list of elements such
as: requirements specification, requirements validation, system documentation,
source code, tests, maintenance tasks, and others major artifacts resulting from
the development process. The nature of the changes to be applied on programs
is very complex, even on those systems built thoughtfully. There are authors
that believe that software development is program transformation, they assert
that “programmers view software development as a process to convert one pro-
gram version to next” [14]. The same tasks conducted in a Legacy System can
become an arduous challenge. Most of the legacy software lacks system documen-
tation, requirement specification, testing, and so forth. The process to update
or improve this kind of software is still a challenge. Moreover, the preliminary
process of understanding the system is a feat in itself . We focus our research
on scientific legacy software, written in Fortran, but we expect this research can

* Comisién de Investigaciones Cientificas de la Prov. de Bs. As.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 799

be extended to any kind of software. These days, applications written in For-
tran (the most long lived programming language with a particular evolutionary
process [4,17,16]), are available on the web as scientific software that can be
downloaded and used by anyone.

We have gathered software coming from a set of institutions such as NASA
(USA National Aeronautics and Space Administration), CERN (Conseil Eu-
ropéen pour la Recherche Nucléaire, or European Council for Nuclear Research),
and USA US Geological Survey Water Resources, just to analyze some Fortran
source code examples. Modern programming techniques does not seem to be
used in the development of the collected software (downloadable from the cor-
responding web sites).

Why is it so important to improve scientific software? Most of the scientific
software developed in Fortran and used in production environments is closely
related to natural events not completely understood by human beings to this
day. There are multiple models of earthquakes, tsunamis, quantum physic phe-
nomena, biological population dynamics, weather research and forecasting, and
so forth. Thus, in order to help scientists in this process, quality software tools
become necessary. In this work, we will focus on scientific legacy software written
in Fortran and the key features for a tool which is meant to upgrade, improve
and/or apply changes.

2 Legacy Source Code

In this section we want to analyze some features found in scientific Fortran
programs available on internet. Initially, a list of problems or characteristics that
should be corrected or improved in Fortran legacy software should be defined.
One of the first interesting facts in the collected code, is that code identified as
Fortran 90 (in .f90 source code files) still has some old language features. Even
when Fortran 90 is fully compatible with FORTRAN 77 (Fortran 90 can be seen
as a superset of FORTRAN 77) some FORTRAN 77 superseded features are
extensively used, such as fixed format source code, old style Do Loop (no End
Do statement used) and old logic operators (i.e.: .eq., .neq.) [16,17,1,2].

From the view point of coding style, the use of GO TO statement has been
avoided since several decades [8] but nowadays we still find code written using
the GO TO statement. The use of this statement was proved to be a source of
code complexity increase, error prone source code, unintelligibility, unreadability
and so on [9]. There are other non desirable features that come to light such
as a) Simulate a WHILE statement with GO TO statement, e.g. Fig. 1; b)
Spaghetti code [9], e.g. Fig. 2; ¢) More than one subprogram entry point, e.g.
Fig. 3; d) Usage of magic numbers [10];) Usage of non self-descriptive variables
[10]. All of these characteristics sometimes turn the source code unreadable and
incomprehensible, transforming the updating or improving process into a highly
time consuming and sometimes unsuccessfully task.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 800

20 jlo = jhi - inc
IF(jlo < 1) THEN

jlo=0
ELSE IF(x < xx(jlo) .EQV. ascnd) THEN
jhi = jlo
inc = inc + inc
GO TO 20
END IF
END IF

Fig. 1. Extract from Hst3d (U.S. Geological Survey) [15]

55 continue
if (i1.1t.1) goto 999
if (snam.ne.stname(il)) goto 999
if ((scom(1:2).eq.scompt(il)(1:2)).and. snet.eq.snetwk(il)) goto 900
if ((scom2(1:2).eq.scompt(il)(1:2)).and. snet.eq.snetwk(il)) goto 900
if ((scom(1:2).eq.’XX’).and. (snet.eq.’XX’)) goto 900
il=i1-1
goto 55

Fig. 2. Extract from Hash v1.2 (U.S. Geological Survey) [13]

C INITIALIZE ET2 FOR °STATE’ AND SET UP COMPONENT COUNT
¢
ET2(1)=ET
ET2(2)=0.D0
GO TO 11
C ENTRY POINT ’DPLEPH’ FOR DOUBLY-DIMENSIONED TIME ARGUMENT
C (SEE THE DISCUSSION IN THE SUBROUTINE STATE)

ENTRY DPLEPH(ET2Z,NTARG,NCENT,RRD)
ET2(1)=ET2Z(1)
ET2(2)=ET2Z(2)

11 IF(FIRST) CALL STATE(zips,list,pv,pnut)
FIRST=.FALSE.

Fig. 3. Extract from JPL Planetary and Lunar Ephemerides (NASA)

3 Handling Legacy Programs

In the software improvement or updating process we have to differentiate two
stages. The first one is the understanding stage in which a clear comprehension
is needed in order to know how and where a change should be applied. By
the end of this stage, the programmer or the team should have acquired or

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 801

elicited knowledge from the program. The second stage is closely connected to
the process of how the changes are introduced in the program. We propose to
follow five steps in this process:

1. Identify and save (e.g. in a software version manager) the current legacy
software application/program, which will be taken as the reference. Every
change will be accepted /rejected according to its relationship to the reference
program.

2. Select and apply a specific change/update to be applied to the reference pro-
gram. A new program version should be produced from a well known and
documented change/update the the current software version. Code transfor-
mation should guarantee the preservation of the external software behavior
[10].

3. Check/verify the new program version by comparison with the previous one.
Define and apply some software testing comparison criterion/criteria in order
to accept or reject the new program version. This may /should include a set
of test cases if necessary.

4. Accept/reject the change according to the previous comparison. An accepted
program version will be the candidate as the current version for the next
change. A rejected program version would be:

— Discarded in order to avoid investing more time/effort in a possible use-

less change.

— Reviewed in order to find out the problem/s and possible solution/s.
The choice can be according to some cost evaluation, at this point there is
some work already made, so the experience can be useful for the correspond-
ing cost evaluation.

5. Document the accepted/rejected change. In case of an accepted change, doc-
umentation should include at least a general description of the change plus
several (if not all) specific/actual changes. Specific changes are highly prone
to be produced automatically (e.g. by a software version manager).

And the complete legacy software update process can be described as an iteration
on these steps, each iteration for a different specific change, as shown in Fig. 4.
This incremental succession of changes has several points in common with a task
referred to as reengineering step in [12]. Moreover, the complete process shown
in Fig. 4 should be integrated in a single tool or environment (IDE), which
eventually uses other specific tool/s which can be identified for each step, such
as

— Understanding and/or documentation tools.

— Software versioning and revision control system tools must be used to keep
changes under control.

— Restructuring infrastructure and/or specific software/tools. The concept of
code restructuring has existed for many years now, and some transformation
tools have been built to apply transformation rules on a complete program
in batch mode. An example of this kind of infrastructure is the DMS tool,
which allows for re-engineering and migration of programs in many different
programming languages [5].

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 802

— Testing infrastructure and/or specific tools.

Fig. 4. Software Update Process

In the case of Fortran, the vast amount of existent lines of Fortran code and
the investment made on them has encouraged the development of some tools to
upgrade legacy Fortran code [20,21,19]. However, applying some transformation
rules in batch mode may help updating the code by replacing outdated con-
structs, but that does not necessarily imply that a developer will gain a better
understanding of the structure of code, nor a programmer will be able to clean,
modularize, or remove duplicated code. Legacy code will still be (or have several
characteristics of) legacy even if it is written in Java but with poor development
practices.

4 The Understanding Stage

In this stage, information about the program should be gathered in order to
obtain an abstract construction of “what” the program does and “how” it does
it. In order to obtain this information a set of tools is used, and usually, these
tools are completely disaggregated one from the other, they are not integrated
to one another in the same environment on which programmers work such as
an IDE (Integrated Development Environment). Some changes/updates can be
applied without understanding of what the program does. On the other hand,
there are some changes like transforming serial into parallel computing, imple-
menting new requirements, correcting some bugs, and so forth, which need a
more comprehensive understanding of the program/software.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 803

When there is no further information about the system other than the source
code, two different types of knowledge needed to understand the system can be
identified /extracted from the source code. The first one is a language indepen-
dent knowledge, which is required to understand the program as a whole. Under
this characterisation it is suggested to obtain information such as:

— Static call graph.

— Dynamic call graph.

— A runtime profile (or an average of several runs).
— Input and output files/data.

The second type of knowledge which can be extracted from a program is closely
related with its internal structure, such as source code dependencies and char-
acteristics (standards, language obsolete features). In the case of Fortran spe-
cific source code, relevant features to be updated/changed, include a) Common
blocks dependencies, b) Parameter dependencies, ¢) Module dependencies, d)
Old style/standard code: fixed source form, GO TOs, arithmetic IF, etc.

Even when features above mentioned seem to stem from common sense, there
exist very few tools that put all of them together into an integrated development
environment, let alone Fortran community, in which IDEs are not broadly used.
Several criteria or points of view could be used for ranking those features iden-
tified as candidate for updating the software

— Risk: (at least) wrong ways of GO TO usage could lead to spaghetti software,
which in turn is usually highly prone to error, so replacing GO TOs by better
structured code would reduce risks.

— Optimization: DO loops are commonly used for computationally intensive
sections of code, so identifying and updating DO loops would produce better
source code for optimization and, eventually, for parallelization.

— Frequency: a single outdated or obsolete feature (e.g. arithmetic IF) used too
frequently often leads to unreadable code, so replacing such code enhances
the legacy code quality (e.g. readability).

5 The Transformation Stage

Once the understanding stage has been initially approached (full legacy soft-
ware comprehension can be hardly completed in general), the process in which
changes are applied starts. This stage can be manually performed, but at least
it would be tedious and error prone. Thus, these changes should be done in
an automated way. There are tools such as NAGWare tools [20], SPAG [21],
PlusFOR [21], Flint [19] most of then are command-line or stand-alone tools.
In order to make changes easy to apply, a tool should provide a good trans-
formation infrastructure, including handling the software as a complete project.
Optional features include suggestions to the programmer, source code difference
highlighting for each change, selection of code portions to upgrade (as opposed

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 804

to the whole project), etc. We consider restructuring [3,7] as the candidate tech-
nique for those changes, which are specific to each legacy application and we
have described some of those changes for Fortran legacy code.

At this point, the understanding stage and the transformation stage were
covered/described separately, but both of them are not integrated yet. To make
the whole process agile and efficient, both stages should be performed with/in
the same tool or environment. A good set of source code analysis tools can be
found on internet, such as ROSE [18] and, also, open source IDEs such as Eclipse
[22] are available. AST (Abstract Syntax Tree) representation of source code are
considered extremely useful in this stage, since it allows an immediate identi-
fication of each program component/structure and, thus, allows more focused
analysis and implementation tasks of each individual change.

6 A Tool For Legacy Systems

Some of the tools mentioned in Section 3 were integrated in order to show how
helpful they can be when integrated directly into an IDE. An Eclipse plug-in
was selected to be assembled with some of these tools: Photran, is defined as an
IDE and refactoring tool for Fortran based on the Eclipse CDT. Photran refers
to restructuring as refactoring, and several of them have been implemented for
this tool, as shown in [16]. In the next subsections we show two specific tools
integrated to the IDE.

6.1 Static Call Tree

The static call tree of a Fortran Program is shown as a directed graph, where
each node represents a function or a subroutine and the edges show the caller-
callee relationship between two nodes. This view was developed using Zest, a
set of visualization components built for Eclipse. The main feature of Zest is
that it makes graph programming easy [23]. The basic purpose of this view is
to help programmers to understand easily the relationships between program
components and to obtain a clearer picture of how complex the connections
among these program components are (see Fig. 5).

The static call tree implementation has two major components. The first
one is based on Photran VPG (Virtual Program Graph) and it is used in order
to obtain the source code representation as an AST (Abstract Syntax Tree). A
Visitor pattern [11] is used to build the Static Call Tree by visiting a set of nodes
such as functions, subroutines, main/program, and call statements. The second
component is used to show the static call tree once it was built from the AST.
In order to achieve it, the JFace infrastructure of zest was used to allow this
implementation (see Fig. 6).

6.2 Common Block Dependencies

Common blocks (for global data definitions) are widely used in legacy Fortran
programs. It is also commonly found in practice one Fortran file per COMMON

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 805

= = o]

| E &Y B | & s o | Kooy | B Fortran|

([static call Tree 52 > =g —

& 2 s

gt m

g grasku plot gxterm g af gxfrm1 avfa gxan gxclos gxpmsw, 9% 0X0§ G g @i @ : jawks

9xasku plok, gt o 2 9 £ 9 o o P =

& isp. guplet v 1 owait § AT woawk [gpm oxclrw W wacwk. B

= grsiar vks ol s gxmarg = apron welwk B
o). (gppow gxeubi gxm.- grspmt e i

axervt N i N = i i N o ,

I oxtx gxscal gxquar Z 74 gxarvp 8
gxtx1 gxstx i
s e : S 2 i)
avbx ' jabxfp gupl grstep grsave s jsofp gxrest axfchr o

ol 9ph [japlci ci_ iqentn hh | ax: i jaln jalct | g jant o isbial sx sl jswn s is jsmiksc
gt gt gl
iabal gxsdef gl gpl h japlci ci
gxinit gxwtx
- T =
I Author: H. Grote / CERN date: Jan. 25, 1994 .
! last mod: Jan. 25, 1994 Jgtxal

end subroutine wopuk

Fig. 5. Static Call Tree- Real Life Example

i KH = B s |Gy *

" 113 cutee | 5 pab Taaat | o, S b T

yragom e
st s s

[
call piafis
e m

sk sting Besmti]
Yeint ¢, i
ot ageren

s i, o

e (L

Rk BRI
print *, o
LD AT
rall piafie

nd e wATe o

mbbine g Trnd
it * b
rmd el CEThTE

mbeenting wbfer i)
Wil 7, i

mi gt ee o LIS il

Fubzmning wfive) |
P
ami SR BT

£ Potie: |1 G e 15 Prrmm Dt & P i okt Pt bk

Fig. 6. Static Call Tree

BLOCK defined in the program. This practice can define a very intricate set
of dependencies among program files, making the program hard to understand.
Furthermore, it is worth noting that common blocks are almost directly related
to parallelization tasks where shared/distributed memory has to be explicitly
defined and used. Thus, every information about global access data is very use-
ful not only for program legibility but also for further code transformation for
parallel computing on shared as well as distributed memory parallel hardware. In
order to obtain a global perspective of how they are related, a new feature to the
IDE was added. This feature shows COMMON BLOCK dependencies among the

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 806

project files, as an HTML. Dependencies are shown as follows in Fig. 7. Depen-
dencies among the files are obtained using some VPG features. These features are
language-dependent due to the fact that COMMON BLOCKS are specifically
define in the Fortran language.

MAIN.F90 FILE1.F90
COMMON_BLOCK_1 COMMON_BLOCK_1
COMMON_BLOCK_2 COMMON_BLOCK_2
COMMON_BLOCK_4 COMMON_BLOCK_3

COMMON_BLOCK_4
FILE2.F90
COMMON_BLOCK_2
COMMON_BLOCK_3

Fig. 7. Common Blocks

7 Conclusions and Further Work

In general, software changes can not be trivially managed, and legacy software
in particular entails one of the worst scenarios. To introduce a change or im-
provement in an already operational legacy program, a long list of constraints
should be taken into account. This process can be extremely complex and a set
of tools could be used to assess the changes. We propose the use of a single tool
in order to decrease the process complexity and to limit the number of errors
that can result from it.

The Legacy software change process should be divided into several stages,
including the understanding stage and the transforming stage. These two stages
are driven by change. A legacy tool should provide means for carrying out both
stages: understanding and transforming tools which should be all integrated
into a single tool. We have implemented two tools specifically focused to the
understanding stage: the first one is a Static Call Tree View, and the second one
is a COMMON BLOCK dependency analyzer. The Static Call Tree View can
be used for understanding how the Fortran routines are related to one another.
The COMMON BLOCK dependency analyzer shows how COMMON BLOCKS
are used by the program routines or files. None of them has been previously
integrated in a Fortran IDE.

Further improvements could be made to the Static Call Tree by adding extra
information about call nodes, different view styles, and so forth. The COMMON
BLOCK analyzer was submitted to be included as a new feature in Photran.
Also, having integrated different tools into an IDE provides experience for other
tools to be included, each focused to a specific step of the legacy software update
process: document, control versioning, specific update/change, check/test.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 807

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.
22.
23.

. American National Standards Institute. X3. 9-1978. American National Standards

Institute, New York, 1978.

American National Standards Institute. American National Standard for program-
ming language, FORTRAN — extended: ANSI X8.198-1992: ISO/IEC 1539: 1991
(E). American National Standards Institute, September 1992.

R. S. Arnold. Software restructuring. Proceedings of the IEEE, T7(4):607-617,
1989.

J. Backus. The History of Fortran I, II, and III. ACM SIGPLAN Notices,
13(8):165-180, 1978.

I. Baxter, P. Pidgeon, and M. Mehlich. DMS: Program Transformations for Prac-
tical Scalable Software Evolution. In Proceedings of the International Conference
on Software Engineering, IEEE Press, 2004.

F.P. Brooks. No silver bullet: Essence and accidents of software engineering. IEEE
computer, 20(4):10-19, 1987.

E.J. Chikofsky and J.H. Cross. Reverse engineering and design recovery: A taxon-
omy. IEEE software, 7(1):13—-17, 1990.

E.W. Dijkstra. Letters to the editor: go to statement considered harmful. Com-
munications of the ACM, 11(3):147-148, 1968.

B. Foote and J. Yoder. Big ball of mud. Pattern languages of program design,
4(654-692):99, 2000.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional, 1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley Reading, MA, 1995.

C. Greenough and D. Worth. The Transformation of Legacy Software: Some Tools
and a Process. Technical report, RAL Technical Report TR-2003 012, 2004.

J. Hardebeck and P. Shearer. HASH1.2 Calculates earthquake focal mechanisms.
http://earthquake.usgs.gov/research/software/HASH /hash.v1.2.tar.gz.

R.E. Johnson. Software development is program transformation. In Proceedings of
the FSE/SDP workshop on Future of software engineering research, pages 177-180.
ACM, 2010.

Jr Kenneth L. Kipp. HST3D:A Computer Code for Simulation of Heat
and Solute Transport in Three-Dimensional Ground-Water Flow Systems.
http://wwwhbrr.cr.usgs.gov/projects/GW _Solute /hst /.

M. Méndez, A. Garrido, J. Overbey, F.G. Tinetti, and R. Johnson. Refactorizacién
en Cédigo Fortran Heredado. In VII Workshop on Software Engineering (WIS),
CACIC 2010, pages 546-555, 2010.

M. Metcalf. The seven ages of fortran. Journal of Computer Science and Technol-
ogy, 11(1):1-8, 2011.

D. Quinlan. Rose: Compiler support for object-oriented frameworks. Issues,
2(3):215-226, 2000.

Fortran Lint - Home Page. http://legacy.cleanscape.net/products/fortranlint/.
NAGWare Tools - Reference Page. http://www.qaportal.cse.clrc.ac.uk/html/ Nag-
Ware/.

SPAG - Home Page. http://www.polyhedron.com/spag.html.

The eclipse foundation, eclipse.org home. http://www.eclipse.org/.

Zest - Home Page. http://www.eclipse.org/gef/zest/.

CACIC 2011 - XVIl CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACION 808

