
    Toward an Automatic Management of   
      Aspectual Connections to Compose 

   Business Rules  
Sandra Casas and Franco Herrera

Universidad Nacional de la Patagonia Austral 
Campus Universitario, Av P. Rivero S/N, 

9400 Río Gallegos, Argentina 
scasas@unpa.edu.ar  

Abstract. AOP/AOSD is a convenient approach to connect business rules to the 

domain without altering these components. However in complex applications 

such B2B and B2C systems, where rules play an important role it is necessary to 
manage these connections to really assist the developers. The automatic 

mechanisms are needful too, in order to ease business rules deployment, software 
maintenance and evolution. Then particular specifications of these operations 
must be improved. In this work we provide a semi-formal description of the 

aspectual connections and a set of operations to manage them. The point of 
view to connections and operations description that we use is taxonomy. 

Another subject that we outline is the description of particular AOP language. 
The goal is to provide a more concise notation that can serve as a guideline for 
the implementation of tools that automatically gather these and related 

operations.  

Keywords: Business Rules, Aspect-Oriented Programming, Aspectual 

Connections, Volatile Concerns.  

1   Introduction 

A business rule is a statement that defines or constrains some aspect of the business. It 

is intended to assert business structure or to control or influence the behavior of the 

business [1].The volatility of the business rules is a problem for the software 

development. The dynamics of the organizations produces new business rules, or 

decides to disable the existing business rules, or modifies some aspect of the current 

business rules. When a current software system is in operation, it is necessary that 

these modifications be carried out in a fast and easy way. Then business rules 

implementation is an essential part of any enterprise system; they are applies to many 

features of business behavior that support policy and strategy changes. Business rules 

tend to change over time due to new policies, new business realities, and new laws 

and regulations that appear. 
Current mechanisms to implement business rules (Object rule pattern or rule 

engine systems) require embedding the rule evaluation or their calls in core modules 

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 899



of the system, thus causing the implementation to be scattered over multiple modules.  

A change in the rule specification requires changes in all modules that are involved. 

These modifications are invasive and time-consuming. Further, because of business 

rules being far more volatile than the core business logic, mixing them together 

causes the core system to become just as volatile. 

For this reason, AOP/AOSD [2] is convenient when providing mechanisms that 

allow to connect or to integrate the business rules to the domain without altering these 

components. Just as it is stated in [3], the AOP/AOSD facilitates the constant 
evolution of this type of concerns. Some contributions [4][5][6][7] show that the 

aspect-orientation reduces the dependencies and coupling; thus, best reusing is 

achieved and maintenance efforts reduced. In this context, an aspectual connection 

links a business rule with core functionality; and thus, it refers to any implementation 

mechanism (code – xml – annotation) that encapsulates: the object rule invocation; 

the transmission of the information required by the business rule; the interaction 

resolution among business rules and the returned information by the rule. However, 

the encapsulation of connections with aspects is not a trivial task due to the following 

factors: AOP languages restrictions, software application design and implementation, 

and design and implementation decisions of aspectual connections as we discussed in 

[11].  With this encouragement, in the same article, we present taxonomy of aspectual 

connections which serves to identify the different elements of the possible aspectual 
connections and the situations where they can occur, in a commendable schema, and we 

found an additional benefit as it can be possible to identify dependence relations among 

aspectual connections. Even so, we have observed that it is necessary to manage 

connections in order to really assist the developers, mainly in complex applications 

such as business-to-business (B2B) and business-to-consumer (B2C) systems, where 

rules play an important role and aspectual connections link business rules with the core 

functionality. The automatic mechanisms are needful too in order to facilitate the 

business rules deployment, software maintenance and evolution. Then particular 

specifications of these operations must be improved.  

In this work we provide a semi-formal description of the aspectual connections and 

a set of operations to manage them. The point of view to connections and operations 
description that we use is the taxonomy of aspectual connections. Another subject is 

that we outline is description, which is independent from particular AOP language. 

The goal is to provide a more concise notation that can serve as a guideline for the 

implementation of tools that automatically gather these and other related operations.  

The remainder of this work continues as follows: Section 2 presents the aspectual 

connections taxonomy as it is a guide for next sections. In Section 3, we describe the 

abstract aspectual connections manager, which is composed of aspectual connections 

and a set of operations and functions. In Section 4, we present a simple case study in 

order to enlighten the previous concepts. Finally, in Section 5, we finish with 

conclusions, related works and future works. 

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 900



2. Taxonomy of Aspectual Connections 

Aspectual connection that compose business rule, refers to the code in charge of  not 

only triggering the application of the rules at certain events, but also gathering the 

necessary information for their application and incorporating their results in the rest 

of the core application functionality. The aspectual connection must meet some 

requirements for the business rule to be triggered. Here it is important to stress that a 

particular business rule could require different aspectual connections in different 
applications or even in the same application if it must be triggered by different events. 

Then, according to the imposed domain constrains, we can clearly can identify four 

categories of aspectual connections: basic, query, change and complex. 

Basic aspectual connection:  the connection triggers the business rule in a specific 

point of the core functionality (event) the required information by the business rule is 

either available in the event context or it is global system information. The basic 

connection description needs the following elements: i) Business rule elements, such 

as the class and method that encapsulates the business rule, the required information 

by the business rule and the business rule return. ii) Event elements, such as the 

domain class and method that represent the event that triggers the business rule, an 

indicator of when (before/after/around) the business rule should be applied regarding 

the event execution.  
Query aspectual connection: the connection triggers the business rule in a specific 

point of the core functionality but the information required by the business rule is not 

available in the event context. Then connection must first retrieve the information in 

order for it to be available when the business rule is applied. In this case, the aspectual 

connection should manage two events (pointcuts) and two advices, each one with 

different purposes. The query connection description needs the same elements of 

basic connections, and also the event (class and method name) where no contextual 

information should be retrieved plus the data type.

Change aspectual connection: the connection should add new properties 

(fields/methods) to the core functionality components in order for the business rule to 

be triggered. It means that the new business rule requires adapting the domain 

vocabulary. Then, the connection must support the domain adaptation such as the 

addition of new fields and methods in existing classes. The change connection 

description includes the same elements as basic connections and the description of the 

properties that should be added, such as new methods and fields.  

Complex aspectual connection: this connection has the same characteristics of 

query and change connections. The connection has to update the domain for new 

business rules to be applied, but the needed information for the business rule 

condition is not available in the event context that triggers the business rule. This 

connection has the same elements that basic, query and change connections. 

Other interesting issues are the potential business rule relations; they also cause 

dependences between their aspectual connections. For example, BR#1: business rule 
sets a condition to decide if a customer is frequent. Afterwards, BR#2: business rule 

sets a special discount for frequent customer. In these cases, we say, there is a relation 

between these business rules, where BR#2 depends on BR#1 and where BR#1 

governs BR#2. Our reasoning is that BR#2 would make no sense if the BR#1 is 

removed. And on the other hand, BR#1 is created to sets states that will be used as a 

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 901



condition for other business rules. BR#1 by itself does not change anything in the 

business. Then, all connections description should maintain these relations. Each 

connection has a list of dependence connections and a list of domain connections 

perhaps one or both of them are empty. 

This taxonomy is independent of AOP language or base language. It only depends 

on the domain design and implementation and on the new business rules. The 

taxonomy of aspectual connections was explained in deep in [11]. 

3. A Framework to Manage the Aspectual Connections 

In complex applications where rules play an important role and aspectual connections 

integrate business rules with the core functionality, it is necessary to manage these 

connections to really assist the developers. The automatic mechanisms are needful too 
in order to facilitate the business rules deployment, software maintenance and evolution. 

The aspectual connections will be isolated in specific package, layer or container in 

order to assure the separation of concerns. In this context, a dedicated manager is 

responsible for providing the services to add, remove, search, and analyze the 

connections. 

Next we provide a semi-formal description of aspectual connection to compose 

business rules. The goal is to distinguish the different requirements of any kinds of 

connections and, on the other hand, we want to avoid language constructs. Here we 

have considered that the programming and weaver model of the AOP tools are 

extremely different. For example AspectJ [13], Spring AOP Framework [14] and 

CaesarJ [17] are very different, although all these tools support AOP. In 
implementation terms, a connection is an aspect. But due to the fact that our 

description is language-independent, we have done without specific AOP linguistic 

expressions such as “pointcut”, “call”, “aspect”, etc. 

We describe the framework using a functional programming style (similar to 

Haskell [12]). This notation provides a more concise description than natural 

language and can serve as a guideline for the implementation of tools that 

automatically gather these and related metrics. We start by describing the aspectual 

connections manager, followed by the description of the connections and functions 

used to define the manager operations.  
manager :: (container, operations) 

3.1 Aspectual Connections 

Connections do not work in isolation. Their functionality is typically implemented in 

conjunction with a set of business rules classes and domain events. Domain event are 
classes and interfaces which represent the core functionality of the software 

applications. One restriction leads our description: a connection links one event with 

one business rule. That it to say, if a business rule should be linked with two or more 

events, then two or more connections are required respectively. In the same way, if 

two or more business rules are applied to the same event, then, two or more 

connections are required respectively.  

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 902



We define a container C to be a set of connections Ci, denoted with the following 

list:  
C =[C1,C2,...,Cn] 

Where C is of type Container and Ci is of type connection. Figure 1 

summarizes the abstract representation of our programs in the form of a grammar. 

According to the proposed taxonomy, a connection can be basic

(basic_connection), query (query_connection), change

(change_connection) or complex (complex_connection).  

container :: [connection] 

connection :: basic_connection query_connection|  

              change_connection | complex_connection 

basic_connection :: (id_connection, br_elements, event_elements, 
relation_connection) 

br_elements :: (br_class, br_method, [br_require], br_return) 

event_elements :: (event_class, event_method, when)

query_connection :: (id_connection, br_elements, event_elements, 
query_elements, relation_connection) 

query elements :: (query_class,query_method, query_retrieve, when) 

change_connection :: (id_connection, br_elements, event_elements, 
change_elements, relation_connection) 

change_elements :: (change_class, [add_method], [add_field]) 

complex_connection :: (id_connection, br_elements, event_elements, 
query_elements,change_elements,relation_connection)

relation_connection :: ([domain],[depend]) 

Figure 1. Aspectual connection description. 

A basic connection is a tuple whose elements are a connection identifier

(id_connection), business rule elements (br_elements), event elements 

(event_elements) and relations connection. In turn, a br_elements is denoted as 

tuple of business rule class name (br_class), method that must be invoked to trigger 

the rule (br_method), the input types of input arguments ([br_require]) and the 

return type (br_return). An event_elements is denoted as tuple of event class 

(event_class) and method name (event_method) where the business rule must be 

applied, and when it can be applied (after/before/around). The relation 

connection is a tuple composed by two lists: one contains the connections that is 

independent of this connection ([domain]) and the other list contains the connections 

in which this is dependent ([depend]).  
 A query connection has the same elements as a basic connection and new query 

elements (query_elements). Query element is a tuple that denote a different context 

of the event (query_class, query_method) and in which connection should 

retrieve information (query_retrieve) for the business rule.  

A change connection has the same elements as a basic connection and new change 

elements (change_elements). Change element is a tuple that denote the new 
properties that connections should add to the domain. This tuple is formed by the 

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 903



class to be changed (change_class), and the list of new methods ([add_method])

and fields ([add_field]). A complex connection has the same elements as a basic, 
query and change connections. 

3.2 Aspectual Connections Manager  

In this section we provide a semi-formal description of the needful operations and 
functions to manage the aspectual connections that compose the business rules. We 

have classified these operations in: auxiliary functions, query operations; update 

operations; and measure functions. 

3.2.1 Auxiliary Functions 
count. This function returns the number of elements (n) in a list ([a]) of any type.  

count :: [a] → n 
search. This function searches an element (x) in a list ([a]) and returns a boolean 

value (b).  
search :: [a] → x → b 

times. This function counts the times an element (x) is in a list ([a]). (where [a] and 

x are any type)
     times :: [a] → x → n   

extract. This function extracts any repeated elements from a list ([a]), (where a is 

any type). 
  extract :: [a] → [a´] 

3.2.2 Update Operations 

Let c be a connection and [connection] a container, we define the following update 

operations: 

add. This operation adds a new connection into the container.  
add :: c→[connection]→ [c | connection] 

remove. This operation removes a connection from the container. 
remove:: c→[c|connection]→ [connection]  

3.2.3 Query Operations 
Let [connection] be a container we define the next query operations:

BCL. This operation receives as input a list of connections of the container and 
returns the list of basic connections. 

BCL :: [connection] → [basic_connection] 

QCL. This operation receives as input a list of connections of the container and 

returns the list of query connections. 
QCL :: [connection] → [query_connection] 

CHCL. This operation receives as input a list of connections of the container and 

returns the list of change connections. 
CHCL:: [connection] → change_connection] 

CCL. This operation receives as input a list of connections of the container and 

returns the list of complex connections. 

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 904



CCL :: [connection]→[complex_connection] 

BRL. This operation receives as input a list of connections of the container and 

returns the list of business rule elements in connections. 
BRL :: [connection] → [br_elements] 

EL. This operation receives as input a list of connections of the container and 

returns the list of domain event in connections. 
EL :: [connection] → [event_elements] 

CRL. This operation receives as input a list of connections of the container and 

returns the list of dependence relations in the list.
CRL::[connection]→ [relation_connection] 

3.2.4 Analysis Functions 
Let C be a container. We define the following analysis functions:

dominate. This operation receives as input a connection and a list of connections 

and returns true if c is a member of the list of dominate connections. 
dominate ::  c → [connection] → boolean 
dominate (c, C) = search(c (CRL ( C )) 

depend. This operation receives as input a connection and a list of connections and 

returns and returns true if c is a member of list of depend connections. 
depend :: c → [connection] → boolean 
depend (c, C) = search(c (CRL ( C )) 

3.2.5 Measure Functions  
Let C be a container. We define the following metrics:

NOC. Number of connections. 
NOC (C) = count (C) 

NOBC. Number of basic connections
NOBC (C) = count (BCL (C)) 

NOQC. Number of query connections
NOQC (C) = count (QCL (C)) 

NOCHC. Number of change connections
NOCHC (C) = count (CHCL (C)) 

NOCC. Number of complex connections
NOCC (C) = count (CCL (C)) 

NOBR. Number of business rules in connection. 
NOBR (C) = count (extract (BRL (C))  

NOE. Number of events in connections.
NOE (C) = count (extract (EL (C))  

CARDBR. This function computes the cardinality of a business rule (br). That is 

to say, how many connections there are for specific business rule.  
CARDBR (br, C) = times (br BRL (C)) 

CARDEV. This function computes the cardinality of an event (ev). That is to say, 

how many connections there are for specific event. 
CARDEV (ev, C) = times (ev EL (C)) 

Other relevant operations for the manager are the mapping functions. A set of 

functions which transforms the aspectual connections with the structure of Figure 1 

into aspects, in specific aspect-programming language, as AspectJ or JasCo.  

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 905



4. Simple Study Case 

This section enlightens the approach described in the previous section by means of a 

simple case study based on a store, where the logic of the business dictates that firstly 

the costumer orders are registered (Order), and these operations include the costumer 

data (Costumer) and requested items (Item). Later on (the same day or another), when 

the costumer wants to place the order and pays for it, the invoice (Invoice) is issued, 

then the system calculates subtotal, discount and total. Each invoice keeps a copy of 
customer details (CostumDetails) for printing. After the invoice is created, costumer 

purchase quantity is incremented (inv_count field in Costumer class). Figure 2 shows 

a simplified diagram of the store. 

Figure 2. Summarized diagram of the Store. 

In Table 1, a set of discount business rules are described. Some of these rules set 

discount field of Invoice according to any condition, or they set any field of Costumer 

or Item that should be used when issuing an Invoice. The business rules are classes 
that implement condition(), action() and apply() methods, such as suggested by the 

Object Rule pattern. Below, in Table 2, the set of aspectual connections are 

enumerated. In the second column, it is the aspectual connection description 

according to the notation presented in Figure 1. In the third column, the aspectual 

connections are classified according to the taxonomy presented in Section 2. 

Table 1. New business rules 

Business Rule Class 

BR#1: if order date and invoice date are equivalent then apply a discount of 3% 

when issuing the invoice.  
BrDateDiscount 

BR#2: if invoice date is equivalent to with costumer birth date then apply a BrBirthdateDiscount 

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 906



discount of 2% 

BR#3: if costumer purchases are grater than 20 then the costumer is frequent. BrFrequent 

BR#4: if the costumer is frequent then apply a discount of 0,5% when issuing

the invoice. 
BrFrequentDiscount 

BR#5: if the invoice date is 30 days after the order date then the system updates 

the items price before issuing the invoice. 
BrPriceUpdate 

BR#6: if the last invoice of a frequent costumer was 180 days ago, then the 

costumer is not frequent. 
BrRemoveFrequent 

BR#7: if the stock item is less than the minimum stock then the item is in 

promotion. 
BrPromotion 

BR#8: if an item is in promotion then its price is reduced by 25%. BrPromotionDiscount

Table 2. Aspectual connections description 

BR# Aspectual Connection Taxonomy

1 (C#1 (BrDateDiscount apply [Order Invoice] none) (Invoice new before)([][]))  Basic 

2 
(C#2(BrBirthdateDiscount apply [Invoice Costumer] double) (Invoice  

calculateTotal, before) (Invoice new [Costumer] Date after) ([][])) 
Query 

3 
(C#3 (BrFrequent, apply [Costumer] boolean) ( Invoice calculateTotal after) 

(Costumer  [setFrequentCostumer getFrequentCostumer] [frequent]) ([C#4][])) 
Change 

4 
(C#4 (BrFrequentDiscount apply [Costumer]  boolean)( Invoice calculateTotal  

before) ( [] [C#3])) 
Basic 

5 (C#5 (BrPriceUpdate apply  [Order] none) (Invoice new before) ([][])) Basic 

6 (C#6 (BrRemoveFrequent  apply [Customer] boolean) (Invoice  new  after )([][])) Basic 

7 
(C#7 (BrPromotion apply [Item] none ) (Item  decrementStock  after) (Item 

[setPromotion getPromotion] [promotion] boolean) ([C#8][])) 
Change 

8 
(C#8 (BrPromotionDiscount apply [Item] boolean) (Invoice calculateTotalItem 

before) ( [][C#7])) 
Basic 

Lastly, if C = [C#1 C#2 C#3 C#4 C#5 C#6 C#7 C#8], then in Table 3 some 
functions and their results are shown.  

Table 3. Functions applied to study case. 

Functions Result 

dominate(C#8 C) True 

dominate(C#1 C) False 

depend(C#7 C) True 

depend(C#4 C) False 

NOC (C) 8 

NOBC (C) 5 

NOQC (C) 1 

NOCHC (C) 2 

NOCC(C ) 0 

NOBR (C)  8 

NOE (C)  4 

CARDBR(C BrPriceUpdate) 1 

CARDEV (C (Invoice calculateTotal before)) 3 

With this simple and short example, we have proved that separation and isolation 

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 907



of connections in aspects enhance design, implementation and maintenance of 

application. This set of operations and functions allow to manage aspectual 

connections and to obtain system information. However, manual performance of 

operations and functions could be tedious and error-prone. An automatic manager of 

aspectual connections is needful in order to really assist to developers. 

5. Conclusions 

In this final section, we present related works and a summary.  

5.1 Related Works. 

Several methods were proposed to describe business rules, such as templates [20][22], 

tables[20], natural language[20], XML[23], OCL[24], etc. However, it is difficult to 

find notations or specific mechanisms to describe their connections.  

Even several classification of business rules have been exposed [1][20][21], but it 

does not exist a classification of the business rule connections, then the taxonomy of 

aspectual connections presented is a relevant contribution. 

Cibrian [15] presents a high-level business rule connections language, this notation 

specifies the details of the rules integration with the core application and typically 
denotes an event at which the rules need to be applied, the exact moment when the 

rule needs to be applied at that event, and the specification of how the required rule 

information is made available to the rule. She only uses this language to map 

automatically the connections to JasCo aspect-oriented language [16].  

Some works have dealt with aspectual connections to compose business rules, but 

they have been addressed as implementation with different AOP tool, such as AspectJ 

[8], JasCo [9] and Spring AOP Framework [10]. [6] presents a template to implement 

the business rules with AspectJ. [7] presents an experience of refactoring Business rule 

with AspectJ, in an important J2EE application. However, none of these works 

proposed “the management of aspectual connections”, in order to its future automation.   

Other contributions consider the handling of volatile concerns in early stages of 

software development. For example, an interesting contribution is [3], the authors 
present a method for handling volatile concerns during early lifecycle software 

modeling. The method consists of several steps: concern classification, requirements 

refactoring, model instantiation and model composition. These techniques improve 

the business rules ant their aspectual connection in modeling activities but not their 

implementation directly. Along the same line, a framework is proposed to identify 

volatile and crosscutting concerns at the requirements level [18][19]. The 

identification of such concerns is based on a crosscutting pattern and simple matrix 

operations.   

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 908



5.2 Summary 

In this work we emphasize that the volatility of business rules is a critical factor in 

order to develop, maintain and evolve the software applications therefore it is 

advisable to isolate the management of aspectual connections and their specific 

operations to control them automatically. This approach assures a suitable separation 

of concerns. Our notation is language-independent, then, it serves to implement more 
sophisticated tools that automate the aspectual connections management. However, 

this notation also serves to map the connections to a specific AOP language. In this 

work we present some operations, but this set is not complete. For example, it can be 

completed with operations to resolve interactions among aspectual connections.  

Currently, we are developing a tool in order to implement the management of 

aspectual connections following the descriptions mentioned in this work. This tool, 

must map the aspectual connections to AOP languages as well.  

Acknowledgments. This work was partially supported by Universidad Nacional de la 

Patagonia Austral, Santa Cruz, Argentina. 

References

1. Business Rule Group. 2001. Defining Business Rules: What Are They Really?. 
http://www.businessrulesgroup.org/. 

2. Kiczales G., Lamping L., Mendhekar A., Maeda C., Lopes C., Loingtier J., Irwin J. 1997  
Aspect-Oriented Programming. In Proceedings ECOOP’97 – Object-Oriented 

Programming, 11th European Conference. Finland, Springer-Verlang.  
3. Moreira A., Araújo J., and Whittle J. 2006. Modeling Volatile Concerns as Aspects.  E. 

Dubois and K. Pohl (Eds.): CAiSE 2006. LNCS 4001, pp. 544 – 558.Springer-Verlag Berlin 

Heidelberg 2006  
4. Cibrian M., D’Hondt M., & Jonckers V. 2003. Aspect-oriented programming for connecting 

business rules. In Proceedings of the 6th International Conference on  Business Information 
Systems. Colorado, USA.  

5. Laddad R. 2003. AspectJ in Action.  Manning Publications Co. 
6. Kellens A., De Schutter K., D´Hondt T., Jonckers V. and Doggen H. 2008. Experiences in 

modularizing business rules into aspects.  ICSM 24 th. IEEE International Conference on 

Software Maintenance. Page(s):448 – 451. China. 

7. Cibrán A., Suvée D., D’Hondt M., Vanderperren W., Jonckers V. 2004. Integrating Rules 

with Object-Oriented Software Applications using Aspect-Oriented Programming. ASSE  in 
33th JAIIO – Argentina 

8. Cibrán M. and D’Hondt M. 2003. Composable and reusable business rules using AspectJ. In 

Workshop on Software engineering Properties of Languages for Aspect Technologies 
(SPLAT) at the International Conference on AOSD. Boston, USA.  

9. Cibrán, M., D'Hondt, M., Suvee, D., Vanderperren, W. and Jonckers, V. 2005. Linking 
Business Rules to Object-Oriented software using JAsCo. Journal of Computational 

Methods in Sciences and Engineering, pp 13-27, IOS Press, Volume 5(1). 

 10. Vidal G., Enriquez J. and Casas S. 2010. Integración de Reglas de Negocio con Conectores 
Aspectuales Spring. 11th Argentine Symposium on Software Engineering - Argentina – 

2010 

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 909



11. Casas S. 2010. Clasificación y Documentación de Conexiones Aspectuales para Reglas de 

Negocio. I Encuentro Internacional de Computación e Informática del Norte de Chile. Chile.  
12. Thompson S. and R. Birds. 1999. “Haskell: The Craft of Functional Programming”, 2nd 

edition. Addison-Wesley 

13. The AspectJ Prog. Guide, http://eclipse.org/aspectj 
14. Spring Framework Guide http://www.springsource.org/  

15.Cibrán M. 2007. Connecting High-Level Business Rules with Object-Oriented Applications: 
An approach using Aspect-Oriented Programming and Model-Driven Engineering. Phd 

Tesis Universiteit Brussel.  
16. Vanderperren, W., Suvee, D., Cibrán, M., Verheecke, B. and Jonckers, V. 2005. Adaptive 

Programming in JAsCo. In Proceedings of AOSD, ACM Press, Chicago, USA  

17. CaesarJ homepage, http://caesarj.org 
18. Conejero J., Hernández J., Moreira A., and Araújo J. 2007. Discovering Volatile and 

Aspectual Requirements Using a Crosscutting Pattern. 15th IEEE International 
Requirements Engineering Conference. India. 

19. Berg, K. van den, Conejero, J. M., and Hernández, J. 2006. Analysis of Crosscutting in 

Early Software Development Phases based on Traceability. International workshop on Early 
aspects at ICSE.  China. 

20. Ross R.  The BRS Rule Classification Scheme. 2001. 
21. Date C. J. What Not How: The Business Rules Approach to Application Development. 

Reading, Mass. Addison-Wesley Longman Inc. 2000. 

22. Ross R. Principles of the Business Rule Approach. Addison Wesley. 2003 
23. XRules homepages, http://www.xrules.org/ 

24. Demuth B., Hußmann H., Loecher S. OCL as a Specification Language for Business Rules 
in Database Applications. Proceeding «UML» '01 Proceedings of the 4th International 

Conference on The Unified Modeling Language, Modeling Languages, Concepts, and Tools  
Springer-Verlag London, UK. 2001

CACIC 2011 - XVII CONGRESO  ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 910




