
Modifying the Behaviour of Minix System Calls

through the Redirection of Messages

Pablo Andrés Pessolani

Departamento de Sistemas de Información - Facultad Regional Santa Fe

Universidad Tecnológica Nacional - Santa Fe – Argentina

ppessolani@frsf.utn.edu.ar

Abstract. Minix 3 is an open-source operating system designed to be highly

reliable, flexible, and secure. The kernel is small and user processes, specialized

servers and device drivers runs as user-mode isolated processes. Minix is a

client/server operating system that uses message transfers as communication

primitives between processes. Minix system calls send messages to request for

services to the Process Manager Server (PM) or the File System Server (FS),

and then waiting for the results. The request messages refer to destination

processes with fixed endpoint numbers for each server. This article proposes

changes to the Minix kernel that allow the redirection of messages to different

servers other than the standard FS or PM, without changes in the source code or

binary code of programs.

Keywords: Operating System, microkernel, IPC, message transfer.

1. Introduction

Minix [1] is a complete, time-sharing, multitasking Operating System (OS)

developed from scratch by Andrew S. Tanenbaum. It is a general-purpose OS broadly

used in Computer Science degree courses.

Though it is copyrighted, the source has become widely available for universities

for studying and research. Its main features are:

• Microkernel based: Provides process management and scheduling, basic memory

management, IPC, interrupt processing and low level Input/Output (I/O) support.

• Multilayer system: Allows modular and clean implementation of new features.

• Client/Server model: All system services and device drivers are implemented as

server processes with their own execution environment.

• Message Transfer Interprocess Communications (IPC): Used for process

synchronization and data sharing.

• Interrupt hiding: Interrupts are converted into message transfers.

Minix 3 is a new open-source operating system [2] designed to be highly reliable,

flexible, and secure. It is loosely based somewhat on previous versions of Minix, but

is fundamentally different in many key ways. Minix 1 and 2 were intended as

teaching tools; Minix 3 adds the new goal of being usable as a serious system for

applications requiring high reliability.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1155

Minix 3 kernel is very small (about 5000 lines of source code) and it is the only

code that runs under kernel privilege level. User processes, system servers including

device drivers are isolated one from another running with lower privileges (Figure 1).

These features and other aspects greatly enhance system reliability [3]. This model

can be characterized as a multiserver operating system.

Figure 1: The Internal Structure of Minix 3 [From [4]]

A process makes system calls to request OS services, and the system calls may

deliver the user requests to other functions of the OS which process the requests and

return the result to the caller. Minix implements system calls using message transfers,

packaging function arguments and the results in the same way as RPC does. The

following source code shows how it is done:
PUBLIC int _syscall(who, syscallnr, msgptr)
int who; /* destination server i.e. PM or FS */
int syscallnr; /* System Call number */
register message *msgptr; /* pointer to the message */
{
 int status;
 msgptr->m_type = syscallnr; /* System Call number */
/* Send the Request and wait for the Reply */
 status = _sendrec(who, msgptr);

 if (status != 0) {msgptr->m_type = status; }
 if (msgptr->m_type < 0) {errno = -msgptr->m_type;
 return(-1); }
 return(msgptr->m_type);

}

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1156

The POSIX system call getpid() is implemented sending a GETPID request to the

PM and waiting for the reply from the server:
pid_t getpid()
{
message m;
return(_syscall(PM, GETPID, &m));

}

PM is a constant define as:
#define PM PM_PROC_NR
#define PM_PROC_NR 0 /* process manager */
The destination process is hard coded into the system call as a constant restricting

that system calls can only be served by PM or FS Servers.

The development of some useful features as remote process execution, multiple

filesystems support, multiple processing environments or personalities, proxy and

gateway servers, security reference monitors, system call profiling, etc. would be

simplified if a system call message transfer would be served up by other servers

without the need of changing the program. The problem and the solution were

described by the Minix`s author, prof. Andrew Tanenbaum:

“Currently FS_PROC_NR is defined as a hard constant (1). Instead, it could be a

per-process entry in the process table, so when a process sent a message to 1, this

would tell the kernel to look up the real number in the process table. This would mean

every process could have its "own" file server. Same for PM_PROC_NR. For a

specific process, the number of the "File Server" could be a user-level gateway

process that had a permanent TCP connection to a remote server. The command that

the user sent would then be forwarded to gateway locally and from there it would be

forwarded to the remote machine and executed there. That would allow using remote

file systems. On the remote machine would be another gateway process that did the

work and marshalled and returned the answer….”

Redirection of Messages can satisfy those needs where redirection basically refers

to send a message to an entity but really the message is deliver to another.

This article examines several approaches and pieces of modified or added source

code to the Minix 3.1.2a kernel as a proof of concept of Redirection of Messages. It

must be clear that it is not a definite and refined version of Minix 3.

The rest of this article is organized as follows. Section 2 is an overview of Minix 3

system calls implementation, Section 3 describes the Redirection of Messages

mechanism. Section 4 refers to the proposed relay() IPC primitive. Finally, Section 5

presents conclusions and future works.

2. Overview Minix 3 System Calls Implementation

All processes in Minix 3 can communicate using the following IPC primitives:

− send(): to send a message to a process.

− receive(): to receive a message from a specified process or from any process.

− sendrec(): to send a request message and to receive the reply from a process.

− notify(): a non blocking send of a special message type.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1157

Those primitives are implemented as CPU traps that change the processor from

user-mode to kernel-mode.

As it was mentioned in the previous section, Minix uses message transfers to

implement system calls. Usually, the destinations of request messages are the PM

server and FS server.

Minix does not have a single process table, it is scattered among servers and the

kernel. The kernel process table keeps attributes, status and statistical information of

each process. The FS and PM have their own process tables with fields with specific

information that they need.

The kernel process table has (NR_TASKS+NR_PROCS) entries (See Figure 2)

where NR_TASKS counts the following special tasks:

− The Idle task: It runs when no other runnable process can be scheduled.

− The Clock task: It accepts only messages from the timer interrupt handler. It keeps

the realtime variable that counts timer ticks.

− The System task: It represents the kernel and shares its address space (it is like a

kernel thread). It accepts requests for special kernel services (called kernel calls)

from drivers and servers and carry them out.

− A bogus Kernel task: Really this task does not exist but its process number is used

by interrupt handlers as the source process when they send notify() messages to

device driver tasks.

NR_PROCS entries are available for servers, device drivers tasks and user

processes. It can be specified in a configuration file but the operating system must be

compiled completely.

Figure 2: Minix 3 Kernel Process Table

The kernel proc data structure that describes a process has two fields related to

message tranfers:
proc_nr_t p_nr; /* index of this entry in the table */
int p_endpoint;/* endpoint number */

The p_nr field is the index of the entry in the kernel process table minus

NR_TASKS. Therefore, the first process in the table (proc[0]) has p_nr = (-

NR_TASKS). The reader should not confuse p_nr with the PID of the process. The

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1158

former is a number for system internal use related to the kernel process table slot, and

the latter is a number that identify Minix processes to be used as a parameter in

system calls for processes management, such as adjusting the process's priority.

The endpoint field uniquely identifies a single processes with respect to IPC and its

associate the p_nr field with the generation number of the slot. Each slot has a

generation number that counts how many processes has occupied that slot. Each time

a new process occupies the slot, the generation count is increased. This action

prevents that a message addressed to a dead process that has previously used the slot

will be delivered to the new one.

The kernel implements IPC primitives using a function with the confusing name

sys_call() defined as follow:
int sys_call(call_nr, src_dst_e, m_ptr, bit_map)
The parameter call_nr really is the code of an low-level IPC primitive (SEND,

RECEIVE, SENDREC, NOTIFY, explained in Section 4).

The src_dst_e parameter is the source/destination endpoint number.

The m_ptr parameter is a pointer to the request message, and the bit_map

parameter is a bitmap of flags that change the behavior of the call.

3. Redirection of Messages

Redirection of Messages refers on resolving the process number of destinations

process (p_nr) through a table instead of setting it as a constant. It requires adding

new kernel data structures and making some modifications of the sys_call() function

to send/receive messages to/from endpoints that are referred indirectly.

3.1. Data Structures

The following approaches were analyzed for Redirection of Messages:

− Two new fields into the process data structure: Adding one field for the PM

process number, and other field for the FS process number. I.e. when a user

processes makes a system call to the PM or FS, the kernel gets the destination’s

endpoints from those fields. This approach limits the Redirection of Messages

only to user process and POSIX system calls.

− A per process Servers Table: Each process has its own servers table where the

index is the p_nr of the server used to get the server endpoint.

− A fixed number of system wide Servers Tables: As possibly not all processes need

Redirection of Messages, and surely some of them could use the same table, only a

fixed number of servers tables are needed. Each table represents an execution

environment that can be set to each process similar to the priv table that Minix uses

for privileges management.

A convenient table size could be (NR_PROCS+NR_TASKS) to allow the

Redirection of Messages not only to user-space processes but to system processes and

tasks too. The experimental version has NR_SVRTABS number of tables named

svrtab[] with (NR_TASKS + NR_PROCS) entries each.
proc_nr_t svrtab[NR_SVRTABS][NR_PROCS+NR_TASKS];

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1159

A new field in the kernel process descriptor was added to store the servers table

that the process will use in system calls message transfers. This field is named

p_svrtab, and represents the execution environment for the process. The servers table

establishes the set of servers that will reply for system calls requests for the process

environment.

3.2. Data Structures Initialization

The initialization code sets the numbers of default servers used by Minix for all

tables. System programmers can change the servers numbers of a table to redirect

some system calls messages to new servers leaving the other servers numbers

unchanged for a standard behaviour.

The kernel svrtab[] is initialized in main() function of the kernel as it is shown in

the following source code:
void init_svrtab(void)
{
int i, j;
for(j = 0; j < (NR_PROCS+NR_TASKS); j++)
 for (i = 0; i < NR_SVRTABS; i++)
 svrtab[i][j] = (j-NR_TASKS);

}
All entries in svrtab[] are initialized with the corresponding p_nr, therefore the j-th

entry of each table is initialize with the value (j-NR_TASKS) as it can be seen in

Table 1.
Table 1: Kernel Servers Table – svrtab[]

Server svrtab[0] svrtab[1] svrtab[2] svrtab[3] ….

-4 -4 -4 -4 -4 ….

-3 -3 -3 -3 -3 ….

-2 -2 -2 -2 -2 ….

…. …. …. …. …. ….

The p_svrtab field of a process is initialized with the value 0, therefore it use

svrtab[0] as its default table. This means that if svrtab[0] table has not been changed,

the servers numbers will be the same as in the official Minix version, therefore the

system calls will have the standard behaviour.
#ifdef MSGIND /* rp points to the process descriptor */
rp->p_svrtab = 0; /* Servers Table = 0 */
#endif
The p_svrtab is a process attribute that will be inherited by its children when the

process forks. The internal function of the SYSTEM task copies this field from parent

to child process descriptor.
#ifdef MSGIND /* rpc points to child’s descriptor */
 /* rpp pointes to parent’s descriptor */
 rpc->p_svrtab = rpp->p_svrtab;

#endif /* MSGIND */

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1160

3.3. Changes in IPC Primitives

As system calls use the sendrec() IPC primitive, the kernel function sys_call() was

modified to apply Redirection of Messages as it is shown in the following source

code.
#ifdef MSGIND
if (function == SENDREC) {
 old_sd_e = src_dst_e; /* save original endpoint */
 src_dst = _ENDPOINT_P(src_dst_e);
 old_sd = src_dst; /* save original process number */
 new_sd = /* get the new process number from table */
 svrtab[caller_ptr->[p_svrtab][src_dst+NR_TASKS];
 new_sd_ptr = proc_addr(new_sd); /* get the pointer */
 /* change the original endpoint */
 src_dst_e = new_sd_ptr->p_endpoint;
}

#else
 …. original source code of Minix ……
#endif
The user process will be deceived that it sends the request to the server specified in

src_dst_e parameter, but really the request it will be sent to the server obtained from

the process’ p_svrtab servers table.

In Minix, user processes can’t send any message to any other process. They can

only send messages if they have the correct permissions for the destinations.

Therefore, the process privileges to execute a system call are checked against the

permissions to send to the standard server (old_sd_e) instead of the permissions of the

new server to keep compatibility.

3.4. Auxiliary System Calls and Functions

Two basic auxiliary system calls were added to manage servers tables:

− int setsti(int tabnbr, int index, int value): The Sets Servers Table Index system call

sets the index-th item of table tabnbr with the specified value.

− int getsti(int tabnbr, int index): The Gets Servers Table Index system call returns

the value of the index-th item of table tabnbr.

A modified version of the fork() system call named tfork() was added to set the

servers table number of the child process. The tfork() system call has the following C

declaration:
pid_t tfork(int ptabnbr);

The parameter ptabnbr is the servers table number to be set for the child process.

The tfork() calls two auxiliary functions:

1. sys_fork(): This is the standard Minix function to create a new process

(the child) and returns its PID.

2. sys_setpsvrtab(): It sets the process’ p_svrtab field to the value specified

in the ptabnbr parameter.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1161

The function that shows the kernel process table on system console was changed to

print the svrtab field of each process. As it is shown in the following screen output,

the process named xtest has p_svrtab=1, and the process inet has p_svrtab=0.
-nr---svrtab--endpoint--name--- -prior-quant- -user---sys----size-rts
 48 1 71126 xtest 07/07 08/08 0 1 52K -pm
 51 0 35590 inet 03/03 04/04 5 0 900K ANY

An auxiliary function named svrtab_dmp() was added to the Information Server

(IS) to dump on console screen the servers tables when the Shift-F9 keys are pressed

on the console keyboard.

The following console output shows that the servers table 1 has the value 30 for the

28
th
 entry. Those processes that have p_svrtab=1 that make system calls to the server

with process number 28, really they will make the system calls to the server with

process number 30. Those processes that have p_svrtab≠1 will make the system calls

to the server with process number 28.
<PRESS Shift-F9>

index [0] [1] [2] [3] [4] [5] [6] [7] [8]
[26] 26 26 26 26 26 26 26 26 26
[27] 27 27 27 27 27 27 27 27 27
[28] 28 30 28 28 28 28 28 28 28
[29] 29 29 29 29 29 29 29 29 29
[30] 30 30 30 30 30 30 30 30 30
[31] 31 31 31 31 31 31 31 31 31

4. The relay() IPC Primitive

A new IPC primitive named relay() was added to help system programmers to

implement proxy services, gateways, security reference monitor, system call

interception, intrusion detection system or confinement software [5].

When a user program makes a system call to a server, the request would be

redirected to an alternative server (may be a proxy or gateway) using Redirection of

Messages that process the requests and return the result to the caller, or it could

forward the request message (perhaps previously modified) to the original destination

server using relay() (Figure 3). A similar technique called trampoline function is used

by other OS, but as function relay (not message relay) that bounce a call to other

function (hence the term trampoline).

Minix does not have IPC primitives that allow sending a message from a source

process to a destination process through a third process (the caller).

To use relay() the following actors must be distinguished:

− Source: The process (i.e. a user process) that makes a system call to a server

process (i.e. PM or FS) using the sendrec() primitive.

− Destination: The process the deals with system calls (i.e. PM or FS).

− Caller: The process that receives the request message from the source process

through Redirection of Messages and will forward it to the destination process.

The relay() function has the following C declaration:
int relay (int src_e, int dst_e)
where src_e and dst_e are the source and destination endpoints.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1162

Figure 3: Sample use of relay()

The message itself it is not needed as an argument because it will be copied from

the source message buffer to the destination message buffer.

The use of relay() assumes that the caller has received a request from the source

process (using sendrec()), therefore the source process is waiting for the reply from

the caller.

The kernel checks that the source process has the RECEIVING bit in the

p_rts_flags field set to indicates that it is waiting for the reply message (line 0008),

and the p_getfrom_e equals to the endpoint of the caller process to indicates that is

waiting for the reply from it (line 0010).
0001 switch(function) { /* function is the IPC code */
0002 #ifdef MSGRLY
0003 case RELAY: /* for RELAY IPC */
0004 src_p = _ENDPOINT_P(src_e); /* source process */
0005 src_ptr = proc_addr(src_p); /* source endpoint */
0006 dst_p = _ENDPOINT_P(dst_e); /* dest. Process */
0007 dst_ptr = proc_addr(dst_p); /* dest. Endpoint */
0008 if(src_ptr->p_rts_flags != RECEIVING)
0009 return(EBADSRCDST);
0010 if(src_ptr-> p_getfrom_e !=
0011 caller_ptr->p_endpoint)
0012 return(EBADSRCDST);
0013 result = mini_relay(src_ptr, dst_ptr);
0014 break;
0015 #endif /* MSGRLY */

The mini_relay() kernel function is like mini_send() function that send the message

to the destination process, but the caller process never blocks.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1163

5. Conclusions and Future Works

Minix has proved to be a feasible testbench for OS development and extensions

that could be easily added to it. Its modern architecture based on a microkernel and

device drivers in user-mode make it a reliable operating system. The message transfer

is the paradigm used by Minix to implement system calls, task calls and kernel calls.

A drawback of Minix implementation is the fact that system calls are server by FS

and PM. If new system calls need to be added, some kernel source code constants

must be modified and the system must be recompiled.

The proposed Redirection of Messages mechanism allows that multiple servers and

drivers could execute concurrently and be interpreted as different environments for

processes. A user process could use the standard filesystem server, but other process

could use other servers that support EXT2/3/4, FAT16/32, VFAT, NTFS, etc., or

remote filesystems through a file system proxy or gateway server.

This article describes the use of Redirection of Messages only applied to user level

processes and system calls, but the same approach would be applied to servers and

drivers processes. New IPC primitives, like relay() are needed to take advantage of

those facilities.

The reliability and robustness of Minix 3 would be improved with Redirection of

Messages and the relay() IPC primitive. The primary/backup approach [6] for servers

or drivers could be implemented easily. A server or driver would receive a request

from a user or server process and could replicate the request to a primary server or

driver and to a backup server or driver that could be local or remote.

The proposed extensions can be used to develop a variety of security related

functions such as custom auditing and logging, fine grained access control, intrusion

detection or confinement.

The author is working on his PhD. thesis about a Distributed Microkernel based

Operating System as a Middleware where servers and drivers register their services

and versions on different machines, making use of Redirection of Messages and the

relay() system call to provide new facilities in the field of modern operating systems.

References

1.Tanenbaum, Woodhull. “Operating Systems Design and Implementation, Third Edition”.

Prentice-Hall, 2006.

2.MINIX3 Home Page. http://www.minix3.org/

3.Herder, "Towards A True Microkernel Operating System", master degree thesis, 2005.

4.Herder, Bos, Gras, Omburg, Tanenbaum. "Modular system programming in Minix 3". ;Login:

April 2006.

5.K. Jain, R. Sekar; “User-Level Infrastructure for System Call Interposition: A Platform for

Intrusion Detection and Confinement”; Iowa State University.

6. Budhiraja, Marzullo, Schneider, Toueg. “The Primary-Backup Approach”. Cornell

University.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1164

