
Applying Software Engineering Techniques to
the Development of Robotic Systems

Claudia Pons1,2, Gabriela Arévalo1,2, Gonzalo Zabala1, Ricardo Morán1

1 CAETI - UAI,
Buenos Aires, Argentina

2 CONICET
Avda. Rivadavia 1917

(1033), Buenos Aires, Argentina
{gabrielag.arevalo, claudia.pons,gonzalo.zabala}@uai.edu.ar,

richi.moran@gmail.com

Abstract. In these days most robotic systems tend to be complex to
maintain and reuse because existing frameworks are based mainly on
code-driven approaches. This means the software development process
is reduced to the implementation of systems using specific programming
languages. During the constant evolution, the systems grow in size and
in complexity. Even when these approaches address the needs of robotic-
focused markets, currently used methodologies and toolsets fail to cope
with the needs of such complex software development process. The gen-
eral objective of our project is the definition of a methodological frame-
work supported by a set of tools to deal with the requirements of the
robotic software development process. A major challenge is to make the
step from code-driven to model-driven in the development of robotic
software systems. Separating robotics knowledge from short-cycled im-
plementation technologies is essential to foster reuse and maintenance.
In this paper we report our initial results.
Keywords: robotic software system, software development process, soft-
ware engineering.

1 Introduction

Robotic systems (RSs) play an increasing role in everyday life. The need for
robotic systems in industrial and educational settings increases and becomes
more demanding. While robotic systems grow to be more and more complex, the
need to apply the engineering principles to their software development process is
a major challenge in these days. Traditional approaches, based on mainly coding
the applications without using modelling techniques, are used in the development
process of these software systems. Even when the applications are running and
being used in the different robotic systems, we identify several problems. Among
them, it is worth mentioning there is no clear documentation of design decisions
taken during the coding phase, making the evolution and the maintenance of the
systems difficult. When using specific programming languages, such Smalltalk in

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1264

EToys 3, or C in RobotC 4, we lose the possibility of generalizing concepts that
could be extracted, reused and applied in different systems, avoiding to code
them from scratch when they are needed.

Thus, we observe that currently used methodologies and toolsets fail to ad-
dress the needs of such complex software development process. It is widely ac-
cepted that new approaches should be established to meet the needs of the devel-
opment process of actual complex RSs. Component-based development (CBD)
[20], Service Oriented Architecture (SOA) [8] [9], as well as Model Driven soft-
ware Engineering (MDE) [19] [15] and Domain-Specific Modeling (DSM) [13]
are the main modelling and composition-based technologies in the RSs domain.
In our project, we will investigate on the current use of those modern software
engineering techniques to improve the development of robotic software systems
and their actual automation level. Considering that existing systems are already
coded, a major challenge is to make the step from code-driven to model-driven in
the development of robotic software systems to extract the general and specific
concepts of existing applications based on the different specific programming
languages.

The general objective of our research and development project is the defini-
tion of a methodological framework (composed of models and code) supported
by a set of tools able to deal with the requirements of the robotic software devel-
opment process and considering the existing implemented approaches. Robotic
platforms must possess a highly dynamic adaptive capacity, accompanying the
rate of development of such technologies and the specific features of each hard-
ware platform.

2 Specific Objectives and Working Hypothesis

In this project we are working on the following hypothesis:

– It is mandatory to work towards applying engineering principles to cope with
the complexity of existing implemented robotic software systems because
actual systems are more focused on hand-crafted single-unit systems.

– Interfaces and behavior of the robotic systems should be defined at a higher
level of abstraction so that they could be re-used with different platforms.
Separating robotics knowledge from short-cycled implementation technolo-
gies is essential to foster reuse and maintenance.

– Applying existing software engineering modelling methodologies, such as
MDE, SOA and CBD, to build robotic software systems will save a great
amount of time and effort while favouring reusability and maintenance of
such systems.

Within this context, the specific objectives of our project are:

3 http://www.etoys.com/
4 http://www.robotc.net/

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1265

– Summarizing the existing state of the art concerning the application of soft-
ware engineering modelling methodologies, such as SOA, MDE and CBD on
the robotic systems development field;

– Building a methodological approach on top of the applications of existing
techniques providing an advance in the field;

– Building tool support to the robotic software development process. Exam-
ples of these tools are: a domain specific modeling language equipped with
graphical editors, code generation facilities, integration with web services
and component definition editors.

– Addressing the results to build real robotic systems used in industry and
education.

3 Problem Relevance: Existing Approaches

Although the complexity of robotic software is high because it is mainly based on
specific programming languages, reuse is still restricted to the level of libraries.
At the lowest level, different libraries have been implemented for robotic systems
to perform tasks, such mathematical computations for kinematics, dynamics and
machine vision [10]. Instead of composing systems out of building blocks with
proved services, the overall software integration process for another robotic sys-
tem often is still reimplementation of the glue logic to bring together the various
libraries. Often, the overall integration is completely driven by middleware sys-
tems and their functionalities. Middlewares are often used to hide complexity
regarding inter-component communication, such as OpenRTM-aist [4]. Obvi-
ously, this approach is expensive and does not take advantage from a mature
process to enhance overall robustness. We have faced with this problem in our
own practice. We have been programming educational robots for more than 10
years [3] [2] and we have observed in the last years the emergence of robotic kits
oriented to non-expert users gave rise to the development of a significant number
of educational projects using robots. Those projects apply robots at different ed-
ucation levels, from kindergarten through higher education, especially in areas
of physics and technology. In this context, one of the problems we have found is
that the hardware of the robotic kits is constantly changing; in addition its use
is not uniform across different regions and even education levels. Therefore, the
technical interfaces of these robots should hide these differences so that teach-
ers are not required to change their educational material every time they are
used. An example of these interfaces is “Physical Etoys” [2], a project which we
participated in and which proposes a standard teaching platform for program-
ming robots, regardless of whether they are based on Arduino, Lego, or other
technologies. In this context, it is widely accepted that new approaches should
be established to meet the needs of the development process of today complex
RSs. Component-based development (CBD) [20], Service Oriented Architecture
(SOA) [8] [9], as well as Model Driven software Engineering (MDE) [15] and
Domain-Specific Modeling (DSM) [13] are the most relevant technologies in the
RSs domain. Firstly, the Component-based development paradigm [20] states

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1266

that application development should be achieved by linking independent parts,
the components. Strict component interfaces based on predefined interaction
patterns separates the functionalities in different parts, and thus partition the
overall complexity. This results in loosely coupled components that interact via
services with contracts. Components, such as architectural units, allow speci-
fying very precisely, using the concept of port, both the provided services and
the required services by a given component and defining a composition theory
based on the notion of a connector. Component technology offer high rates of
reusability and ease of use, but little flexibility regarding to the implementation
platform: most existing component are linked to C/ C++ and Linux (e.g. Mi-
crosoft robotics developer studio [1], EasyLab [7]), although some achieve more
independence, thanks to the use of some middleware (e.g. Smart Software Com-
ponent model [16], Orocos [10]). Secondly, we need to define interfaces and
behavior at a higher level of abstraction so that they could be used in systems
with different platforms. This is what prompted the idea of abstract components,
which would be independent of the implementation platform but could be trans-
lated into an executable software or hardware component. Thus, the migration
from code-driven designs to a model-driven development is mandatory in robotic
components to overcome the current problems. A model-based description is a
suitable means to express contracts at component interfaces and to apply tools
to verify the overall behavior of composed systems and to automatically derive
the executable software. Instead of building tool support for each framework
from scratch, one should now try to either express the needed models in stan-
dardized modeling languages like UML or any DSL, separating components from
the underlying computer hardware. In the context of software engineering, the
Model Driven Development (MDD) [19] [15] and Domain-Specific Modeling ap-
proach (DSM) [13] have emerged as a paradigm shift from code-centric software
development to model-based development. Models are considered as first-class
constructs in software development, and developers’ knowledge is encapsulated
by means of model transformations. The essential characteristic of MDD and
DSM is that software development primary focus and work products are mod-
els. Its major advantage is that models can be expressed at different levels of
abstraction and hence they are less bound to any underlying supporting technol-
ogy. Finally, Service-oriented architecture (SOA) [8][9] is a flexible set of design
principles used during the phases of systems development and integration in
computing. A system based on a SOA will package functionality as a suite of
interoperable services that can be used within multiple, separate systems from
several business domains. SOA also generally provides a way for consumers of
services, such as web-based applications, to be aware of available SOA-based
services. SOA defines how to integrate widely disparate applications for a Web-
based environment and uses multiple implementation platforms. Rather than
defining an API, SOA defines the interface in terms of protocols and functional-
ity. Service-orientation requires loose coupling of services with operating systems,
and other technologies that underlie applications. So far, there is no proposal
taking advantage of the combined application of CBP, SOA and MDE neither

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1267

to robotic software system development in general, nor to educational robotic
system development in particular.

4 First results: Modeling and automatic code derivation

The MDD approach represents a paradigm where models of the system, at dif-
ferent levels of abstraction, are used to guide the entire development process.
Models are implementation-independent and they are automatically transformed
to executable code. The MDD process can be divided into three phases: the
first phase builds a platform independent model (PIM), which is a high-level
technology-independent model; then, the previous model is transformed into one
or more platform specific models (PSM); these models are lower level and de-
scribes the system in accordance with a given deployment technology; finally, the
source code is generated from each PSM. As said in section 1, most systems are
coded without documentation or designed models. In this section we show how
we could have MDD process for automatically deriving from the existing code
of an already implemented robotic system with a reverse-engineered approach.

Fig. 1. Implementation of the Robot with
Etoys in a visual way

Fig. 2. Implementation of the Robot with
Etoys using code

To illustrate our approach, we use a small example of a 4-wheel robot, which
is composed of a distance sensor and two motors A and B. The robot moves
straightforward constantly, while there are not obstacles on its way. Whenever
the robot finds an obstacle, it turns left to avoid the obstacle and keeps moving.
To find the obstacle, the distance sensor will detect if the robot has a wall in a
distance less than 20 cm. If so, the robot will change the power of the motors to
make them turn left. If there is no wall, the motor keeps with the same value.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1268

Depending on the existing platforms, there are different ways we implement this
robot behavior. We will show Physical Etoys5, RobotC6 and Pharo 7.

Physical Etoys is a visual programming tool that connects the virtual world
of computers with the real world in which we live in. With Physical Etoys you
can program real world objects (such as robots) to perform interesting tasks,
or you can sense the world and use that information to control virtual objects
(such as drawings on the screen). The user must grab tiles representing instruc-
tions and assembling a script. Figure 1 shows the visual representations of our
example using Physical Etoys. If you do not use the predefined tiles to build the
script, you can code explcitly the robot and its behavior using Smalltalk8(the
embedded programming language) as shown in Figure 2. Robotc is an Integrated
development environment targeted towards students that is used to program and
control LEGO NXT’s, VEX’s, and RCX robots using a programming language
based on C. It aims to allow code to be ported from one robotics platform to
another with little or no change in code. You do not have a visual programming
environment in RobotC, all robot behaviour must be defined by coding in C as
shown in Figure 3. If you use an embedded robot framework in existing program-
ming languages, in our case Pharo (a free open-source Smalltalk environment),
you can also code the robot behaviour. Figure 4 shows how we code the example
using Pharo. Depending on the abstraction level of the programming languages,
sometimes we need to deal with specific details of the implementation. For ex-
ample, in Pharo we code explicitly how to connect the port and plug the motors
previously to specify the desired behavior. These connections are implicit in
other platforms.

If we need to represent our example in another platform, we must provide
some code transformation from one platform to another one, or even build the
application from scratch. But this process is expensive. Our proposal is to build
a PIM that allows to abstract the domain concepts and their functionalities
using MDD and CBSD. With the generated models we can then derive the
code in any specific robotic language. Thus, in our example, we can identify the
components Robot, DistanceSensor and Motor, and the functionality is as we
described previously.

We can represent this robot with a Component and Behaviour Models rep-
resented with their respective UML models. Figure 6 shows a UML Component
Diagram that identifies the structural components of the example and which are
the required/provided interfaces in their connectors, and Figure 5 shows an Ac-
tivity Diagram to model the behaviour of the robot example. Even though these
models are useful enough to understand the existing implementation and show
the transformation of PSM (code) to PIM (Component and Behavior Models),
we could have an intermediate PSM model of objects (due to the fact we are
working with object-oriented code) represented with a Class Diagram inferring

5 http://tecnodacta.com.ar/gira/projects/physical-etoys/
6 http://www.robotc.net
7 http://www.pharo-project.org
8 www.cincomsmalltalk.com

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1269

Fig. 3. Implementation of the
Robot with Nxc

| nxt motorA motorC sensorDeDistancia |
nxt := LegoNxt new connectOnPort: 'COM4'.

motorA := NxtMotor new plugOn: nxt portA.
motorC := NxtMotor new plugOn: nxt portC.
distanceSensor := UltrasonicSensor new plugOn: nxt port1.

[distanceSensor rawValue < 20
ifTrue: [motorA power: 50.

motorC power: -50]
ifFalse: [motorA power: 75.

motorC power: 75]] repeat.

Fig. 4. Implementation of the Robot with Pharo

the classes and their relationships based mainly on the code. This last step can
be a semi-automatic approach using the initial work done in Passerini work [14].
Due to the space limitations of the paper, we will not present the correspond-
ing Class Diagram of our example. Thus, with an abstraction of the concepts
represented mainly in Component and Behavior models, we can generate semi-
automatically the example in another robot programming language considering
that we can have glue code to fill in the code (as we have shown in Pharo).

wall ?

Distance Sensor

Walk forwardTurn Left
NoYes

Fig. 5. Activity Model of the Be-
haviour of our Example

!!"#$ %#&’&())*

+,-(.&/’*0’&-#1*

!!"#$ %#&’&())*

2 #(#1*

!!"#$ %#&’&())*

3#4#(*

5,-(.&/’*

%#6’1*

Fig. 6. Component Model of our Example

All the previous examples are built based on already implemented applica-
tions where the developer is able to access and modify -if needed- the code.
However, the robot can be connected to external devices using predefined in-
terfaces defined in those external components and whose implementation the
developer can not access in the environment he/she is working on. In our exam-

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1270

ple, Figure 8 (Pharo code) shows how we code and connect our example robot
to an external component named Kinect Server that will indicate if it moves
forwards or backwards depending the movements of arms of the user. In this
specific case, we are not able to see the code of the component that models
those arms’ movements. However, in Pharo we can design the interfaces that
will connect to the external component. In this specific case, the code is kinect
:= KinectServer new connect. However, in Physical Etoys we can design the
interfaces that will connect to the external component using a visual represen-
tation and code (Figures 9 and 10). In our case, they are blue points represent
the connections to the external device that deals with arms movements. When
we design the interfaces we mean we are not implementing the functionality of
the external components, but more than we implement the glue code to be able
to connect both components. Even though the internal and external identified
components have a similar structure in the models, the way they connect to the
robot are different because in the first case the developer implements their inter-
faces, and in the second case, the interfaces are already defined and the developer
should be able to connect to them by implementing the corresponding glue code.
In our specific case in Physical Etoys, it is represented with blue points.

!!"#$ %#&’&())*

+,-(.&/’*0’&-#1*

!!"#$ %#&’&())*

2 #(#1*

!!"#$ %#&’&())*

3#4#(*

!!"#$ %#&’&())*

5,&’/(*0’16’1*

7,-(.&/’*

%#8’1*

!"#$%&’($%
)*"#$%+’,-./9*

Fig. 7. Component and Service
Models with External Interaction

nxt := LegoNxt new connectOnPort: 'COM4'.
motorA := NxtMotor new plugOn: nxt portA.
motorC := NxtMotor new plugOn: nxt portC.

distanceSensor := UltrasonicSensor new plugOn: nxt port1.

kinect := KinectServer new connect.

kinect when: #skeletonUpdate evaluate: [:skeleton |
 motorA power: skeleton rightHand y - skeleton rightShoulder y.
 motorC power: skeleton leftHand y - skeleton rightShoulder y].

[distanceSensor rawValue < 20
 ifTrue: [nxt playSoundFile: 'Woops.rso']] repeat.

Fig. 8. Implementation of the Robot with Pharo

It is then worth to be able to identify two models: the Component Model
shows the internal components, and we build a Service Model that shows the
external components. Thus, Figure 7 shows the Component and the Service
Models together. In our specific case, our service model is reduced to only one
component. In more complex platforms, we can have several services that can
be modelled with their respective glue code to be connected to the implemented
robots.

Summarizing, based on existing implementations we propose to infer the
structure and behavior of the robots into class, activity and component/service
models. These models are PIMs that can generate then new implementations

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1271

of the robots in another specific programming language, keeping the abstract
concepts in these models and specific features in PIMs (such as code).

Fig. 9. Implementation of the Robot with
Etoys in a visual way

Fig. 10. Implementation of the Robot with
Etoys using code

5 Conclusions and Future Work

In our project we are focused on capturing the fundamental concepts of the
robotic software development process, its relationships and properties. This mod-
eling approach includes concepts to represent services and components as pri-
mary elements in the robotic system in a higher level abstraction than the code
itself.. So, the CBSD and SOA paradigms provide a starting point for a MDE
approach in robotics where the differences between various software platforms
and middleware systems can be completely hidden from the user due to the defi-
nition of intermediate abstraction level. The original contribution of this project
consists in the development of a methodological framework supported with dif-
ferent tools for the construction of robotic software systems using mainly MDD.
There are only preliminary proposal on applying model-driven development to
robotics, see for example the works described in [17], [12], [7] [18]and [5]. None of
these works takes advantage of the combination of the model-driven paradigm
with service-oriented and component-based approaches, as we propose in this
project. It is worth mentioning the Microsoft Robotics Studio (MSRS) [1], that
is a service-oriented development and simulation platform to create robotics ap-
plications. MSRS is strongly based on the concept of SOA.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1272

References

1. Microsoft: Microsoft robotics developer studio (March 2009), http://msdn.

microsoft.com/en-us/robotics/default.aspx

2. Centro de Altos Estudios en Tecnoloǵıa Informática (CAETI): Proyectos del Area
Robótica (June 2011), http://www.caeti.uai.edu.ar

3. Gira Grupo de Investigación en Robótica Autónoma del CAETI: Physical Etoys
(May 2011), http://tecnodacta.com.ar/gira/

4. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Yoon, W.: RT-middleware: Dis-
tributed component middleware for RT (robot technology). In: Proceedings of the
International Conference on Intelligent Robots and Systems 2005 (IROS 2005). pp.
3933–3938 (2005)

5. Arney, D., Fischmeister, S., Lee, I., Takashima, Y., Yim, M.: Model-Based Pro-
gramming of Modular Robots. In: Proceedings of 13th IEEE International Sympo-
sium on Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC). pp. 66–74 (2010)

6. Barner, S., Geisinger, M., Buckl, C., Knoll, A.: EasyLab: Model-based develop-
ment of software for mechatronic systems. In: Proceedings of the IEEE/ASME In-
ternational Conference on Mechatronic and Embedded Systems and Applications.
Beijing, China. IEEE (2008)

7. Bell, M.: Introduction to Service-Oriented Modeling. Service-Oriented Modeling:
Service Analysis, Design, and Architecture. Wiley and Sons (2008)

8. Bell, M.: SOA Modeling Patterns for Service-Oriented Discovery and Analysis.
Wiley and Sons (2010)

9. Bruyninckx, H.: Open Robot Control Software: the OROCOS project. In: Pro-
ceedings of the 2001 IEEE International Conference on Robotics and Automation,
ICRA 2001, Seoul, Korea. pp. 2523–2528. IEEE (2001)

10. Iborra, A., Caceres, D., Ortiz, F., Franco, J., Palma, P., Alvarez, B.: Design of
Service Robots. Experiences Using Software Engineering pp. 24–33 (march 2009)

11. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling. John Wiley and Sons, Inc
(2008)

12. Passerini, N.: Migration from inheritance to composition paradigms. In: Proceed-
ings of the CACIC 2011 - ASSE Workshop (2001), submitted for evaluation

13. Pons, C., Giandini, R., Pérez, G.: Desarrollo de Software Dirigido por Modelos.
Teoŕıas, Metodoloǵıas y Herramientas. McGraw-Hill Education (2010)

14. Schlegel, C.: Communication patterns as key towards component interoperability.
In: Software Engineering for Experimental Robotics (Series STAR, vol. 30), D.
Brugali, Ed. Berlin, Heidelberg. pp. 183–210. Springer-Verlag (2007)

15. Schlegel, C., Hassler, T., Lotz, A., Steck, A.: Robotic Software Systems: From
Code-Driven to Model-Driven Designs. In: Proceedings of ICAR 2009 International
Conference on Advanced Robotics. IEEE Press (2009)

16. Son, H.S., Kim, W.Y., Kim, R.: Semi-automatic Software Development Based on
MDD for Heterogeneous Multi-joint Robots. In: Proceedings of Future Generation
Communication and Networking Symposia, 2008. FGCNS ’08. pp. 93–98 (2008)

17. Stahl, M.V.: Model Driven Software Development. John Wiley and Sons, Inc (2006)
18. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edn. (2002)

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1273

