
Propositional Satisfiability (SAT) as a language
problem

José M. Castaño and Rodrigo Castaño
jcastano,rcastano@dc.uba.ar

Depto. de Computación, FCEyN, UBA, Argentina

Abstract. We present an approach to propositional satisfiability as a
Finite State Automata automata construction problem. From a theo-
retical point of view it has consequences for languages beyond context
free power. There are no consequences on complexity issues due to Au-
tomata construction (using intersection) is PSPACE-complete. From a
practical point of view it was shown that this approach is competitive
with ALL-SAT approaches and even with state of the art SAT solvers on
traditional hard problems. Here, we show that techniques used in DPLL
can be used in an automata approach. This kind of approach opens a
new path of research on propositional satisfiability.

Keywords: ALL-SAT, model counting, FSA intersection, regular expression
compilation, Non-clausal formula, clause learning

1 Introduction

There are tons of research done on the satisfiability problem (SAT) in proposi-
tional logic. This research has been mainly dominated by a search approach, in
particular the DPLL algorithm. This is explained partly by the success obtained
in this approach. A few other approaches were also pursued such as resolution
based algorithms (DP), graph based algorithms (BDD).

Early studies by Büchi, Elgot [6, 10] and Trakhtenbrot, analyzed transforma-
tions from formulas to automata and vice-versa in the context of the relation
between FSA and Monadic Second Order logic (MSO). Sometimes referenced as
the Büchi-Elgot-Trakhtenbrot Theorem it was established that FSA and MSO
have the same expressive power [17]. This was the basis of the approach that
uses Büchi automata to decide satisfiability of modal logic formulas (LTL) [18].
This is also the only reference to an automata based approach to satisfiability
found in [5]

Schützenberger, McNaughton, Papert and Kamp, established the equivalence
between star-free regular expressions, counter-free finite state automata, first-
order logic and temporal logic, see [15].

The approach presented here is framed into a more general enquiry about
propositional satisfiability as a language or automata problem. As far as we know
this question has not been pursued. It is difficult to know whether some of the

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1344

results that we will bring into attention, were not considered interesting or were
not known, even though the existing connections are or look so obvious after
presented. There are no references to it in either classical books on language and
automata nor in the recently published Handbook of Satisfiability [5]. There
is only one exception in [19], but this approach was not pursued further as a
propositional satisfiability problem.

Using a different perspective, there are a number of works that relate, satis-
fiability, to language problems in order to show NP-completeness of the recog-
nition problem for a particular language. Examples of this approach are the
proofs that the word and generation problem for Two Level Morphology (TLM)
are NP-complete. [3]. There are a number of proofs for many other language
classes. It should be stressed that the focus in this case is the NP-completeness
property and not an approach to SAT solving.

The only machines related to Satisfiability are binary decision diagrams
(BDDs), which cannot be strictly regarded as language ’machines’ (they do not
generate/recognize a language), although they can be considered as a sort of
finite state machine. Logic circuits are considered finite state machines, they are
classically related to transducers like Mealy or Moore state machines. However
the satisfiability of logic circuits (circuit-SAT), is tested using DPLL algorithms.

In the approach presented in [7, 8], given an ordering of variables valuations
as strings in a binary alphabet. In other words, given a set of n variables and
an ordering p1, . . . , pn and a binary alphabet, say {0, 1}, the set of possible
valuations can be represented as the set of 2n strings of the language Ln = {
01, · · · , 0n, . . . , 11, · · · , 1n }.

Therefore the set of satisfying valuations for a formula in propositional logic
with n variables can be represented as a subset of Ln. This is an acyclic regular
language, where each word has the same length. The propositional formula is
interpreted as a regular expression that specifies the language (and the corre-
sponding automaton. Satisfiability, and model counting are computed by con-
struction the finite state automata (in the same way that satisfiability for an
LTL formula is computed constructing a Büchi automata. The costly operations
to construct the automaton will be intersection and union [20]. From a theoret-
ical point of view, this is no improvement, given that automata intersection is
P-SPACE complete [11].

In [7, 8] it was shown that for every propositional formula in CNF, it is pos-
sible to construct a regular acyclic automata that describes the set of satisfying
valuations. It also brings into question the power of FSA intersection to capture
fenomena that are supposedly beyond context freeness [7].

From a practical point of view, this approach opens a path that has not been
explored, with many possible ramifications. In [8] it was shown that the cost
of constructing the automaton to solve a SAT problem will be influenced by
choices such as ordering of variables, ordering of clauses (sub-automata). Here
we also show how it is possible to DPLL strategies using a finite state automata
approach. This alternative produces a change of perspective on SAT solvers
which can provide a better understanding on the limits of current approaches. It

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1345

also provides a better understanding on Language problems which are considered
NP-complete. The remainder of this paper is structured as follows, in section 2
we provide some definitions. In Section 3 we review the automata construction
approach to SAT. In Section 4 we show how to preprocess CNF formula to add
’learned’ clauses, using limited resolution. In section 5 we show how to compute
non-clausal formulae on Iscas 85 benchmark, using XFST. Finally we present
conclusions and future work.

2 Definitions

Most of these definitions and notation follow the ones given in [14].

L(A) denotes the language generated by an Automaton or Grammar, A.

A clause is a propositional formula of the form l1 ∨ . . . ln, where each li is a
literal a positive or negated propositional variable.

A term is a propositional formula of the form l1 ∧ . . . ln.

Valuations, are defined as functions v on a set of variables V ar and with
values in {0, 1}. Valuations assign a truth value from {0, 1} to each propositional
variable p ∈ V ar. We denote the set of literals (positive or negated variables)
determined by the set of variables V ar by Lit. Then if |V ar| = n, |Lit| = 2n.
We say that a valuation v satisfies a formula φ or v |= φ.

Complete set of literals:

A complete set of literals is a set S ⊆ Lit such that for every p ∈ V ar exactly
one of p,¬p belongs to S. There is a bijective correspondence between valuations
and complete sets of literals. One such mapping associates positive literals with
1 and negative literals with 0. An alternative mapping associates positive literals
with 0, and negative literals with 1. It follows that if |V ar| = n, then there are
2n complete sets of literals over the set V ar

Total ordering. Truth values are ordered, 0 ≤ 1. Given an arbitrary ordering
of V ar there is a total (linear) ordering of valuations, which can be ordered
lexicographically or anti-lexicographically. Valuations can be thought as elements
of the Cartesian product V al =

∏
p∈V ar{0, 1}. The Cartesian product V al can

be ordered lexicographically or anti-lexicographically.

Therefore the ordered elements of V al may be represented as boolean n-
tuples (given |V ar| = n). Consequently the least element in V al, is the n-tuple
(01, .., 0i, .., 0n), where 0 ≤ i ≤ n, and the maximum element in a valuation is
(11, ..., 1i, ..., 1n). Ordered elements in V al also can be represented as strings in
{0, 1}n, which can be (anti-)lexicographically ordered. We will say that a word
w satisfies a formula φ (w |= φ) iff w is the string representation of an element
v ∈ V al and v |= φ.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1346

3 CNF Satisfiability as a Regular Language Problem

We describe how to construct a FSA automaton A for each formula φ in CNF,
such that the formula is satisfiable iff the language ofA is not empty and for every
word w in the language of A, w |= φ, i.e. L(A) = {w ∈ {0, 1}n|w |= φ, n = |Vφ|}
This means that the language of the automaton is the string representation of
the set of valuations v such that v |= φ.

The construction is based on the mapping between clauses and the dual
terms. It is also based on the direct translation between boolean formulas and
regular expressions, given the direct correspondence between ∨,∧,¬ and |,&, ˜,
respectively and the closure properties of finite state automata.

Following [14], we can define inductively the semantics of propositional for-
mulae with the operators ¬,∨,∧ in terms of the set of words w in {0, 1}n repre-
senting valuations.

1. w |= ⊤, w 2 ⊥, ∀w ∈ {0, 1}n

2. w |= p if p is a variable and wp = 1,
where wp denotes the order position of p in w and we use Wp to denote
{w|w |= p}.

3. w |= ¬φ if w 2 φ or equivalently w /∈Wφ

4. w |= φ ∧ ψ if w ∈Wφ and w ∈Wψ or equivalently w ∈Wφ ∩Wψ

5. w |= φ ∨ ψ if w ∈Wφ or w ∈Wψ or equivalently w ∈Wφ ∪Wψ

Let T be a set of formulas, we write w |= T if for every φ ∈ T , w ∈Wφ.
Each clause in a CNF formula will be interpreted as a regular expression

that describes the automaton representing the set of valuations that satisfy each
single clause. For a formula with m clauses the automata to be constructed will
correspond to the intersection of m clauses. For instance, a clause of a formula in
CNF, such as v1∨v2∨v3, with |V ar| = 10 the number of variables in the formula,
will be translated as the regular expression ˆ’000.......’ with an extended use of
the complement operator (ˆ) with scope over the complete expression. Thus
ˆ’000.......’ matches any string in (0|1)10, that does not start with 000.

The novelty in the approach is the use of the following steps:

a. Reorder variables,
b. reorder clauses,
c. translate formula into A regular expression.
d. use an available FSA toolbox to compile the regular expression into a DFA

The first two steps mean BOTH variable ordering (also known to be impor-
tant in BDD and DPLL, to properly prune the search/construction space) and
sub-automata intersection ordering (clause ordering) are important for obtaining
an efficient processing time. The computational cost as reflected by the size of
intermediate automata is evidenced by processing time.

Step c. above is obtained as follows:

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1347

– Represent the set of possible valuations as (0|1)n, this is the first initial r
– translate each clause as a regular expression r of length n such that:

• each positive literal with variable order p ≥ 1 ≤ n is translated as the
character ’0’ in position p in r.

• each negative literal with variable order p ≥ 1 ≤ n is translated as the
character ’1’ in position p in r.

• for each variable p which has not a corresponding literal use the wild-card
expression ’.’ in position p

• construct the regular expression r.
• join the set R of r expressions with the intersection operator.

Clearly the asymptotic complexity of the automata construction is O(nm), which
might be worse than the exponential boundary O(2n). This is no surprise given
that the automata intersection problem is a PSPACE problem, therefore there
is no theoretical interesting result in terms of computational complexity. It is
however at the heart of a number of correlated problems, see [13].

This well known fact about the complexity automaton intersection and union
[20], provides an explanation, on why even if this approach is so transparent, it
was not pursued. A direct implementation will result in an inefficient approach as
we will see in the next section. However, in [8] we have shown that it is possible to
address ALL-SAT and model counting [12] using finite state automata construc-
tion, and that this approach is capable of reaching a competitive performance
compared to state of the art sat solvers. In [8] we showed that variable and clause
order highly affect the automata intersection. It is also shown that this approach
is capable to reach a reasonable performance as compared to other equivalent ap-
proaches. In particular it can be compared with BDD (binary decision diagrams)
and NNF (negated normal form) approaches. It is more efficient in a number of
traditionally hard benchmarks, in particular in unsatisfiable cases. The following
table shows a comparison of the construction of the automata using XFST[4],
with FORCE [1] heuristic to order variables, and anti-lexicographic ordering of
clauses. These and other results are discussed in [8].1

Heuristics Force-AL sbsat ebddres c2d relsat sharpsat clasp

Total time 10847,41 18050,99 10764 16969 21637,99 18320,99 15471
Not Solved 15 28 17 27 29 29 21

Solving Time 1847 4250 564 2569 4237 920 2871
Solved 36 23 34 24 22 22 30

Average 51,39 184.78 16.58 107.04 192.58 41.81 95.7
Table 1. Summary: FSA with Force and AL clause ordering vs other solvers

.

1 See also the times for some of the same problems using Minisat2 and other solvers
at http://evanescent.googlecode.com/files/results-DAC2002-deescover-v0 1.html.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1348

4 Automata Generalization and Clause learning.

Clause learning [16], one of the improvements to the DPLL alogorithm has been
shown to be equivalent to unrestricted resolution and there have been different
proposals to restrict it (e.g. Extended Resolution [2]). We present here clause
learning as a sort of regular expression deduction, bounded in clause width and
deductions order. This alternative and simple limitations to unrestricted resolu-
tion in this setting shows how clause learning can be directly implemented as a
preprocessing step to the automata construction.

The algorithm we use to simulate a sort of clause learning uses two loops
based on obtained variable order and anti-lexicographic clause order heuristics
(steps a. and b. in previous section).

We use two for loops. The first starts by the first (lowest and most frequent)
variable and compares all the clauses (following the anti lexicographic order) that
have this variable, for any clause that has the dual variable, adds any resolvent
clause that is not tautological. For instance, if we have the clauses v1∨v3∨v5 and
¬v1∨¬v2∨v6 then the clause v1∨¬v2∨v3∨v5∨v6 is added in the corresponding
anti-lexicographic order. The second loop, starts from the last (highest and less
frequent) variable and performs the same operation. For instance, if there are
clauses v4 ∨v5 ∨v6 and ¬v1 ∨¬v2 ∨¬v6, then clause ¬v1 ∨¬v2 ∨v4 ∨v5 is added.

Deduced clauses in the previous loop will be available as they are stored in
the anti-lexicographic ordering, and given we started from the last variable, the
deduced clauses in this loop will be also available. In order to avoid exponential
blow-up of resolution techniques only clauses that satisfy a limit in the number
of literals are added. As a consequence of this preprocessing step, a number of
’learned’ clauses are added to the original formula, and the original clauses are
kept.

Table 2 summarizes some experiments using clause learning with different
limits in the number of literals. Lit. limit is the maximum number of literals
allowed in a learned clause and # clauses are the total number of clauses after
the clause learning process finished. We can observe that the complexity of au-
tomata intersection (as reflected by the processing time), is inversely influenced
by the number of intersections which are reduced in this case as we add more
intersections.

problem lit. limit time # clauses

uf100-01 4 248.78 3976
uf100-01 5 49.57 9091
uuf100-01 5 4.84 9667
uuf200-01 6 > 38min 48967

Table 2. Clause learning: examples of number of clauses added

The effect of clause learning can be appreciated in Figure 1 below, where in
the upper part a formula with 20 variables is represented in anti-lexicographic

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1349

order. Each vertical line represents a clause with a literal in each position. The
leftmost corner contains the shortest span in the most frequent variables. The
rightmost part contains the largest span (from variable 1 to 20). The lower part
shows the space marked with a line in the upper part that is now filled with new
learned clauses, again in anti-lexicographic order. These new clauses restrict the
space of possible solutions from variable 1 to 5.

Fig. 1. Effect of clause learning

5 Non-clausal formula satisfiability.

One of the advantages of using a translation of propositional formula into regular
expressions is that it is not necessary to restrict the input to clausal formulae.
Therefore we can translate non clausal formula into regular expressions, using
the mapping ∨,∧,¬ to |,&, ˜ respectively. We describe how we used XFST to
encode formulas in Iscas 85 format. Iscas 85 Benchmark files have the following
syntax and one or more lines of each of the following types:

INPUT (VAR)
OUTPUT (VAR)
DEFVAR = OP(VARLIST)

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1350

where OP are for instance NOT, AND, NAND, NOR, OR and XOR. VARLIST
is a list of one or more (according to the operator arity) INPUT or DEFVARs
variables.

The translation into regex using XFST was as follows.

Start with the first line of the type VAR = OP(VARLIST), and replace it by
define gVAR. The function define, in XFST defines an automata, and gVAR is
the variable used by XFST to refer to this automata. In the body of the automata
definition we replace the operator by corresponding regular expression operator
mapping (i.e. , |or&). If there is an input variable in VARLIST, replace it by the
regular expression [? ? ...1... ? ?] or if it is negated by [? ? ...0... ? ?]2. There are as
many positions available, as input variables in the formula. Last define the OUT
variables. If there is only one OUT variable, the formula is satisfiable if there is
an assignment of values for the input variables that satisfies the conditions of the
OUT variable (and all the variables under it). If there are more OUT variables,
it allows to test the properties of each OUT variable separately. This can be
seen as a bottom up computation of the different expressions that compose the
formula. The structural definition of the formula is respected.

Example 1 (Iscas non-clausal formula (left) XFST translation (right)).

c17

5 inputs

2 outputs

0 inverter

6 gates (6 NANDs)

INPUT(1)

INPUT(2)

INPUT(3)

INPUT(6)

INPUT(7)

OUTPUT(22)

OUTPUT(23)

10 = NAND(1, 3) define g10 ~[a ? a ? ?] & [a|b]^5;

11 = NAND(3, 6) define g11 ~[? ? a a ?] & [a|b]^5;

16 = NAND(2, 11) define g16 ~([? a ? ? ?] & g11 & [a|b]^5);

19 = NAND(11, 7) define g19 ~([? ? ? ? a] & g11 & [a|b]^5);

22 = NAND(10, 16) define g22 [a|b]^5& ~(g10 & g16);

23 = NAND(16, 19) define g23 [a|b]^5& ~(g16 & g19);

define OUT g23 & g22;

2 We repeat that we used a for 1 and b for 0. In some cases, to the definition of the
variable we add an intersection with [0|1]n, where n is the number of input variables.
This can be redundant but necessary to restrict the empty string as a possible value.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1351

It can be observed in the results presented in table 3 that the ordering of vari-
ables has an impact on the performance of the XFST machinery. The reordering
of variables was made using a simple strategy according to the most frequent
variable across the sub-formulas. However no reordering of clauses was done to
compute intersections or disjunctions. In the following table the reordering of
variables is referenced by Var R(enaming), and Var O(riginal) with no variable
mapping. We tried c2d 3 We report them c2dt, c2dr stands for the compilation
time reported at the web page (see also [9]. OM means it has been reached the
memory limit available at XFST.

Problem Var R Var O c2dr c2dt

c499.bench 6.54 2.44 8 9.40
c880.bench 0.36 134.62 46 49.92
c1355.bench 6.55 4.38 18 20.46
c1908.bench 1.24 1.99 81 222
c2670.bench 324.57 OM 350 1018.18
c3540.bench 73.47 107.94 – –
c5315.bench 678.58 OM – –
c7552.bench OM OM 384 > 2700

Table 3. Non clausal tests against NNF compilation

The results however are not directly comparable, because the XFST imple-
mentation as it is apparent from the description, did not use a CNF input,
however c2d was run on the CNF translation of the iscas format.

6 Conclusions and Future Work

We have used a direct transformation from a propositional logical formula into
a regular expression. This transformation allows to construct the automata that
generates the set of valid valuations for such formula. This approach represents
a novel approach to SAT solving. Given this approach involves finding all the
possible valuations it is not directly comparable with standard SAT solvers. We
compared our approach with well established approaches both in clausal and
non clausal formulae. We found that those approaches do not have an advantage
over a FSA construction in the benchmarks that were used. This research opens
a number of paths that need to be explored in order to assess in a proper way
the capabilities of a FSA approach to SAT problems, and their relations and
connections to other approaches. In particular we showed how to address clause
learning and non clausal formulae. We also performed some initial experiments
on assigning values to variables, by adding a conjunctive clause (a term with the
assigned values). This initial and simple experiment showed an improvement of
10% in running time for the uf50 class in SATLIB, that contains 1000 formula.

3 We used the same parameters for c2d (-in memory -dt method 0 -dt count 25 -count
) reported in c2d web page, but have some differences on timing.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1352

References

1. F. A. Aloul, I. L. Markov, and K. A. Sakallah. FORCE: a fast and easy-to-
implement variable-ordering heuristic. In ACM Great Lakes Symposium on VLSI,
pages 116–119. ACM, 2003.

2. G. Audemard, G. Katsirelos, and L. Simon. A restriction of extended resolution for
clause learning sat solvers. In 24nd Conference on Artificial Intelligence(AAAI’10),
2010. To appear.

3. G. E. Barton. Computational complexity in two-level morphology. In Proc. of the
24th ACL, pages 53–59, New York, 1986.

4. K. Beesley and L. Karttunen. Finite State Morphology. CSLI Publications, 2003.
5. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfia-

bility. IOS Press, 2009.
6. J. R. Büchi. Weak second-order arithmetic and finite automata. Zeit. Math. Logik.

Grund. Math., pages 66–92, 1960.
7. J. Castaño. Two views on crossing dependencies, language, biology and satisfiabil-

ity. In 1st International Work-Conference on Linguistics, Biology and Computer
Science: Interplays. IOS Press, 2011.

8. J. M. Castaño and R. Castaño. Variable and clause ordering in an FSA approach
to propositional satisfiability, 2011.

9. A. Darwiche. New Advances in Compiling CNF into Decomposable Negation Nor-
mal Form. In ECAI, pages 328–332, 2004.

10. C. C. Elgot. Decision problems of automata design and related arithmetics. Trans-
actions of the American Mathematical Society, 1961.

11. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

12. C. P. Gomes, A. Sabharwal, and B. Selman. Model Counting. In Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 633–654. IOS Press, 2009.

13. George Karakostas, Richard J. Lipton, and Anastasios Viglas. On the complexity
of intersecting finite state automata and n l versus n p. Theor. Comput. Sci.,
302(1-3):257–274, 2003.

14. V. W. Marek. Introduction to Mathematics of Satisfiability. Chapman and
Hall/CRC, 2010.

15. I. Schiering and W. Thomas. Counter-free automata, first-order logic and star-free
expressions. In Developments in Language Theory II, pages 166–175, Magdeburg,
Germany, 1995.

16. J. P. Marques Silva and K. A. Sakallah. Grasp—a new search algorithm for sat-
isfiability. In in Proceedings of the International Conference on Computer-Aided
Design, pages 220–227, 1996.

17. M. Vardi. Logic and Automata: A Match Made in Heaven. In J. Baeten, J. Lenstra,
J. Parrow, and G. Woeginger, editors, Automata, Languages and Programming,
volume 2719 of LNCS, pages 193–193. Springer, 2003.

18. M. Y. Vardi and P. Wolper. Automata-Theoretic techniques for modal logics of
programs. J. Comput. Syst. Sci., 32:183–221, April 1986.

19. N. R. Vempaty. Solving Constraint Satisfaction Problems Using Finite State Au-
tomata. In AAAI, pages 453–458, 1992.

20. S. Yu, Q. Zhuang, and K. Salomaa. The state complexities of some basic operations
on regular languages. Theor. Comput. Sci., 125(2):315–328, 1994.

CACIC 2011 - XVII CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 1353

