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Abstract. In this article we analyze two kinds of metaheuristic algorithms and random search algorithm applied
to distribution of wind turbines in a wind farm . The basic idea is to utilize CHC (a sort of GA) and Simulated
Annealing algorithms to obtain an acceptable configuration of wind turbines in the wind farm that maximizes
the total output energy and minimize the number of wind turbines used. The energy produced depends of the
farm geometry, wind conditions and the terrain where it is settled. In this work, the terrain is irregular and we
will analyze two study farm scenarios with a real wind distribution of Comodoro Rivadavia city in Argentina and
we will apply both algorithms to analyze the performance of the algorithms and the behavior of the computed
wind farm designs.
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1 Introduction

Wind energy is one of the most important alternative energies in the world. It is an economic, free, and clean energy
and nowadays it can compete with other kinds of energy like fossil-fuel power production methods. The capital
interest is to produce a maximum of energy at the same time as reducing the total cost of the wind farm. A farm
is a set of wind turbines, every one being costly, whose position is a strategic decision to minimize thewake effect
[1] in orden to maximize the produced energy . The goal in this paper is obtain a better configuration of the wind
farm by using the conditions of the wind and the terrain given by the enviroment. In this work, we include a real
wind distribution from Comodoro Rivadavia in Argentina taken in2008 [2]. For that we need effective algorithms,
that should be first evaluated before utilization.

Simulated Annealing [3] and Distributed Genetic Algorithms [4] have been used in the past to solve this kind
of problem. In a previous work we used CHC and GPSO considered constant North wind [5] and CHC y Simulated
Annealing considered the real wind distribution and flat terrain [6]. Now, we compare two scenarios using the real
wind distribution and we consider irregular terrain. We analize the best farm configuration found, the fitness value,
the produced power, the efficiency, the performance of the algorithms in terms of their running, time and number
of evaluations needed to obtain the best solution.

The rest of the article is structured as follows: Section2 explains the wake model, the power model, and the
cost model used. Section3 will detail the real wind distribution, wind rose and field data. Section4 describes
CHC, SA and Random Search, the proposed algorithms. In Section5 we will detail the objective function and the
representation of wind turbine locations. In Section6 we will detail the experimental studies and discuss on the
results obtained; finally Section7 summarizes the conclusions and future work.

2 Wind Farm Modelling

In this section we describe the mentioned inter-turbine wake effect model, the power model, and the cost model
for our further mathematical manipulations. These are the basic components to deal with a realistic farm design,
and they are combined together into an objective for the needed guidance of the function algorithms in their quest
for an optimal farm configuration.
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2.1 Wake Effect Model

The used model in this work is similar to the wake decay model developed by Katic [7]. Depending of the farm ge-
ometry, the wind turbine that is upwind of other wind turbine results in lower wind speeds than the one downwind,
as shown in Fig. 1. Thevelocity deficitmeasures this effect [7]:

dV = U0 − Ut = U0
1−

√
1− Ct

( 1+2kX
D )2

, (1)

whereU0 is the initial free stream velocity,Ut is the velocity in the wake at a distanceX downstream of the
upwind turbine,Ct is the thrust coefficient of the turbine,D is the diameter of the upwind turbine, andk is the
wake decay constant. This model assumes that the kinetic energy deficit of interacting wakes is equal to the sum
of the energy deficits of the individual wakes. Thus, the velocity deficit at the intersection of several wakes is:

Ut = U0 ×

1−

√√√√ N∑
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U0
)2

 , (2)

whereUi is the free stream velocity of the individual wake, andN is the number of wind turbines in the wind
farm.

Fig. 1.Wake model for interaction between two wind turbines

2.2 Power Model

The previous wake model directly defines the power model, that is to be maximized. The power curve for the wind
turbine under consideration is a Gamesa G47, whose power model (in KW) follows here:

Pi =


0 for Ux < 4m/s,

ρ×A× p(v)× U3
x × Cp for 4m/s ≤ Ux < 12.5m/s,

700× Cp for 12.5m/s ≤ Ux ≤ 25m/s,

0 for 25m/s < Ux

(3)

whereUx is the wind speed on the wind turbine,p(v) is the weibull probability of the windv, ρ is the density
of the environment(1.23kg/m3), A is the swept rotor area andCp is the power coefficient of the wind turbine
(0.45 in this case).

the total power generation for all the wind turbines in the wind farm is:

Ptot =
N∑

i=1

Pi, (4)

whereN is the total number of wind turbines.
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2.3 Cost Model

In our case, only the number of wind turbines influences the total cost to be minimized. The total cost per year for
the entire wind farm, assuming a predefined and constant number of wind turbines, can be expressed as follows:

costtot = costgy ×N × (2/3 + 1/3e−0.00174N2
), (5)

wherecostgy represents the cost per wind turbine per year, and its value in this work ise 730, 000. We consider
three different cost, the cost of installation (e 800 per Kw installed),e 80000 per cost of foundation ande 90000
per cost of the tower.

3 Real Wind Distribution from Comodoro Rivadavia

In this section we introduce the real data obtained from Comodoro Rivadavia, Patagonia Argentina, and the process
to obtain a good aproximation from the data for its later use in this work. Fig. 2(a) show the frequency histogram
and the relative frequency of the actual wind. We can see that the most probable frequency of the wind is between
2 and5 m/s, and high probability has a range between5 and12 m/s. The Weibull distribution is the most important
probability distribution used in wind energy; it is usually used to approach the real wind data taken yearly (each
15 minutes) in our case. The process consists in obtaining a histogram of the wind with it frequency of ocurrence,
relative and cummulative frequency. Then we apply a linear regression like least-squares to obtain a linear trend
and calculate the parametersk andb of the Weibull distribution.

(a) Frequency histogram (b) Relative frequency

Fig. 2.Absolute Frecuency and Relative Frecuency of the real wind distribution

The probability of wind ocurrency is calculated as follows:

p(v) = (k/c)(v/c)k−1 × e(v/c)k

, (6)

wherek is a parameter form indicating if the wind speed tends to a particular value, andc is a parameter scale
indicating how many winds are there in the environment. To obtain parametersk andc out of the natural measured
data in the histograms we apply a linear regression whose form isy = mx + b, wherem = k andc = e−b/k

We obtain the linear trends for the independent variablex = ln(v) and the dependent variabley = ln−(ln(1−
p(v))), beingv the wind speed andp(v) the cummulative frequency of the windv, as shown in Fig. 3(a).

We obtained, with the least-squares approach, the parameterk = 1.42, the parameterc = 7.53, and98%
correlative coefficient, and then we have completed the Weibull distribution needed for our algorithms and shown
in Fig. 3(b). Table 1 shows a comparison between real data and the Weibull distribution to show their acurracy.
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(a) Least-Squares fitting for real data (b) Weibull distribution

Fig. 3.Weibull Distribution

Table 1.Comparison with Weibull Approach

Method Mean WindMedian

Real Data 6.79 6.1

Weibull Data 6.84 5.8

The resulting wind rose Fig 4 indicates the different frequency and direction of the wind. This rose is divided
in to eight zones that indicate (in degrees) different cardinals point. In this scenario, the higher probability of
ocurrence of wind direction is270o (West direction). Thus our initial scenarios for evaluating the algorithms before
a final real study will only consider in this work the wind coming from the West.

Fig. 4.Wind Rose of Comodoro Rivadavia (Patagonia Argentina)

4 Algorithms

In this section we will explain the algorithms that we will use to solve the optimization problem of optimally design
a wind farm. We have selected two well-known algorithms, a good feature found in a previous work [3][5][6].
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4.1 CHC

The CHC algorithm was designed to work with populations coded as binary strings. CHC is a type of genetic
algorithm that does not use mutation to produce new solutions; insteads it uses a mechanism calledHUX crossover.
The selection of individuals to complete the next generation is under only an elitist approach between parents and
children.TheR best solutions are retained and will be present in the next generation. When stagnation in the
population is detected, a cataclysmic method of restart is used. The population tends to be homogeneous due to
the absence of mutation and the elitist approach because there is no diversity; in order to solve this problem CHC
implements a mechanism calledincest prevention. The parents are selected randomly, but crossover takes place
only if the individuals are not too close between them (Hamming distance) exceeds a certain threshold calledthe
threshold of incest. As the population evolves, fewer individuals have the condition of not incest; in this case it
is necessary to reduce the threshold. Every time that no change appears in the population (after one iteration) the
threshold reduces in one unit.

The mechanism of crossover HUX also preserves diversity. This crossover copies in the two offspring all bits
matched in both parents, and then copies half bits different in each offspring, such the Hamming distance between
children and between children and parents is high. Once that the threshold of incest is0, if q iterations pass without
any new solution has entered the population, it means that the population has converged and the algorithm has
stagnated, thus requiring a restart. All individuals except the best are modified by a mutation by bit inversion with
very high probability (in our case is 50%). Fig.5 shows an example of crossover HUX. It generates a mask with
the common bits from the parents and non-common bits are assigned randomly to each child taking into account
that each one must take half of the bits not common.

The pseudocode of the CHC algorithm is shown in Algorithm 1.

Algorithm 1 CHC
1: t← 0; /* evaluation */
2: initialize(Pa, Distance) /*Initialize the population and the distances */
3: while not stop criterion(t, Pa) do
4: Parents← selected(Pa); /* Selected parent */
5: Offspring ← HUX(Parents) /* Crossover HUX */
6: evaluate(Pa, Offspring) /*evaluate Offspring*/
7: Pa← elitism(Offspring, Pa)
8: if Pa no change then
9: distance← distance− 1;

10: if distance == 0 then
11: reset(Pa)
12: initialize(distance)
13: end if
14: end if
15: t← t + 1 /* One more generation */
16: end while
17: Return: best solution found.

Fig. 5.Crossover HUX for CHC algorithm
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4.2 Simulated Annealing

Simulated Annealing (SA) is a metaheuristic for global optimization, aimed at locating a good approximation to
the global solution. Simulated annealing is a generalization of a Monte Carlo method for examining the equations
of states and frozen states ofn-body systems[6]. In SA only one tentative solution exists. The initial tentative solu-
tion is created randomly. The perturbation of a solution to get a neighbor solution is done by choosing one position
where the wind turbine exists and move it to other location. If the new solution is better than the old solution, it
becomes the present tentative solution. If not, it can be used anyway but with a probability regulated by a decreas-
ing temperature parameter called Boltzmann probabilitye−((sn−sb)/T ), wheresn is the present fitness value and
sb is the old fitness value,T is the temperature parameter whose initial value is100. After that, the temperature is
decremented in each iteration, thus decreasing the posibility of a worse solution is accepted. The iterative process
finishes when a stop criterion is reached (e.g.,maximum number of step), and returns the solution found.

The pseudocode implementing our simulated annealing solver is shown in algorithm 2:

Algorithm 2 Simulated Annealing
s← s0; /* Initial state */
sb← s; /* Initial best solution */
k ← 0; /* evaluation count */
t← 0; /* Initial temperature */
while k < kmax do

sn← neighbor(s); /* Pick some neighbor */
/* Is this a new best? maximizing */
if f(sn) ≥ f(sb) then

sb← sn;
end if
if Accept(sn, sb, t) then

sb← sn;
end if
t← UpdateT () /* Update temperature */
k ← k + 1 /* One more evaluation done */

end while
Return: Best solution found.

4.3 Random Search

The random search algorithm is a blind search, the search space is visited randomly choose a point in space and
compared with the last point, if it is better than the previous point, we save it. The pseudocode implementing our
random search solver is shown in algorithm 3:

Algorithm 3 Random Search
s← random(); /* generate random point */
while k < kmax do

sn← random(); /* generate random point */
/* Is this a new best? maximizing */
if f(sn) ≥ f(s) then

s← sn;
end if
k ← k + 1 /* One more evaluation done */

end while
Return: Best solution found.
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5 Instantiating the algorithms for the Problem

In this section, we will explain how our approach works: we will introduce the fitness function, the representation
used, and the customizing of CHC, SA and RS for the problem.

5.1 Objective Function

The objective function that we are maximizing is the annual profit got from the wind farm, defined as follows [8]:

profit =
[
st− (

costtot

Ptot
)
]

Ptot ±G(x) (7)

wherest represents the estimated selling price for a KWh of electrical energy on the market ine (in this work
it value is0.1 e /KWh), Ptot represents the total expected energy output (kWh) of the wind farm per year, and
costtot is given by equation 5. The number of wind turbines is unknown and here also to be found by the used
optimization algorithms.
The penalty function G(x) depends of the number of wind turbines included in the penalty zone, in this case we
substract to fitness function the value calculated as follow:

G(x) = (
k

q
) ∗ F (x) (8)

where k is the number of the wind turbines included in the penalty zone and q is the total of places included in
the restricted zone.

5.2 Representations of Wind Turbine Locations

As other existing approches for the problem of Wind Energy Optimization we discretize the terrain in a matrix.
A wind farm is logically divided into many small square like cells. Each cell in the wind farm grid can have two
possible states: it contains a turbine (represented by 1) or it does not contain a turbine (represented by 0). A10×10
grid is used here as the ground platform to place the wind turbines, and shown in Fig. 6. A binary string with100
bits represents the location of the wind turbines in the wind farm. There are2100 candidate solutions. The width at
each cell, in the center of which a turbine would be placed, is equal to five times rotor diameter,5D (or 235 m).
Thus, the resulting dimension is50D × 50D. The5D square grid size also satisfies the rule of thumb of spacing
requirements in the vertical and horizontal directions.

Fig. 6.Example of wind farm layout and the binary string representation
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5.3 Customizing Algorithms for the Problem

In this problem, SA was developed as follows: the individual consists of a binary vectorxi = (xi1, xi2,... ,xin )
representing the terrain (10× 10) where the wind farm will be installed; each elementxij can have a wind turbine
(represented by 1) or be empty (represented by 0). In this particular case (10× 10) the individual has a length (n)
of 100 elements.

CHC was developed as follows: each individuals consists of a binary vectorxi = (xi1, xi2,...,xin ) in the same
representation than SA, and the same criteria for the positioning of the wind turbines.

RS used the same criteria than SA and CHC to represent the random point.

6 Experimental Study

In this work we investigate two farm scenarios and we use the real wind distribution of Comodoro Rivadavia city.
Our aim is to analyse two different kind of irregular terrain and try to generalize our conclusions to guide designer
in similar configurations. Fig. shows the different kind of terrain used in this work.

We show the different configurations for each case with the average fitness values, standard deviation of the
fitness, total annual power output, average power output, number of wind turbines, average efficiency of the park,
average execution time of each algorithm and the number of evaluation needs to find the better solution. We have
also computed a statistical study comparing the average fitness values, and execution time of of each algorithm and
we calcule thep-valuewith theKruskal-Wallistest to conclude if it exists statistical significance between average
fitness values and between average execution times. Each algorithm was executed 30 independent times with a
stop criteria of5, 000, 000 evaluations. All the algorithms are executed in a MultiCore2× QuadCore 2 GHz and
for the implementation of the algorithms we have used the library of optimization MALLBA [9].

For each scenario we used the properties of wind turbines and the parameters of the each algorithm shown in
Table 2.

(a) Wind Turbine Property

Description Parameter Value

Nominal Power P 700KWh

Rotor Diameter D 47m

Trust Coefficient Ct 0.88

Wake Decay Constantk 0.11

Cut-in Velocity Vi 13km/h

Cut-Out Velocity Vp 90km/h

(b) Parameters of CHC

Description Value

Population Size 128

Crossover HUX

Cataclismic Mutation Bit Flip 50%

Preserved Population 5%

Initial Threshold 25% of instance size

Convergence ValueQ 1

Selection of Parents Randomly

Selection of New Generation Elitist

(c) Parameters of SA

Description Value

Temperature decay 0.99

Initial temperature 100

Probability of Mutation 0.3%

Table 2.Properties of wind turbines and parameters used in CHC and SA

6.1 Scenario(a): NorthWest Irregular Terrain

For this scenario we have executed both algorithms (CHC and SA) and Random Search algorithm with the param-
eters shown in Table 2(b) and 2(c) respectively, and we obtained the best configuration of the farm ilustrated in the
Fig. 7 and the numerical values shown in Table 3.

In this scenario CHC obtained better average fitness value, better power output and better efficiency. CHC
needs less execution time and less evaluations to find the best solution than SA and RS. SA obtained better values
than RS. We calcule thep-valuewith theKruskal-Wallistest for the average fitness values and it value is0.18e−04.
This value is smaller than0, 05, so we conclude that it exists statistical significance between average fitneses and
that CHC is more accurate than SA. Thep-valuefor the average execution time is0.46e−07, it is smaller than0.05,
so we conclude that it exists statistical significance between average execution times and CHC is more faster than
SA.

The configuration of the farm found for each algorithms is ilustrated in Fig. 7. We can see that the solution for
CHC and SA uses42 wind turbines and they are aligned in rows keeping a constants distance between them, and
in an orthogonal position with respect to the wind direction.
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Table 3.Results of scenario(a)

Description CHC SA RS

Average Fitness Values (e ) 1, 9658e + 08(± 8,2909 e+06) 1,9625 e+08 (± 8,3559 e+06) 1,5741 e+08 (± 1,0266 e+07)

Average Power Output (KWH) 12, 624.69 12,406.89 10,421.32

Farm Coefficient (%) 42.12 41.93 29.03

Number of Wind Turbines (N) 42 42 51

Average Execution Time (s) 26.95 45.25 51.04

Average Evaluation of Best Solution Found2, 335, 749 2,526,919 3,221,191

Fig. 7.Best configuration of the park for the three algorithms in scenarioa

6.2 Scenario(b): NorthWest and SouthEast Irregular Terrain

For this scenario we have executed both algorithms CHC and SA and RS with the parameters shown in Table 2(b)
and 2(c) respectively, and we obtained the best configuration of the wind farm ilustrated in the Fig. 8, with the
numerical values shown in Table 4

Table 4.Results of scenario(a)

Description CHC SA RS

Average Fitness Values (e ) 1, 4458e + 08(± 7,1458 e+06) 1,4225 e+08 (± 7,2296 e+06) 1,0014 e+08 (± 1,1277 e+07)

Average Power Output (KWH) 10, 745.11 10,444.2 4,524.11

Farm Coefficient (%) 43.85 41.44 16.15

Number of Wind Turbines (N) 35 36 40

Average Execution Time (s) 61.15 67.25 76.04

Average Evaluation of Best Solution Found4, 154, 111 4,214,245 4,222,985

In this scenario CHC obtained the best average fitness value, better power output and better efficiency again. SA
needed less execution time as it needed less evaluations than RS. We calculed thep-valuewith theKruskal-Wallis
test for the average fitness values and it is smaller than0.05, so we conclude that it exist stadistical significance
between average fitnees values. Thep-valuefor the average execution time is0.002, it is smaller than0.05, so we
conclude that it exists statistical significance between average execution times.

The best configuration of the wind farm found for each algorithms is ilustrated in Fig. 8, where we can see
that the number of wind turbines for CHC is35 against36 for SA, they forming two rows in the center and in the
opposite way with the wind sense.
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Fig. 8.Best configuration of the park for the three algorithms in scenariob

7 Conclusions and Future Work

We have here solved the problem of optimal placement of wind turbines in a wind farm with irregular terrain and
the objective to maximize the power energy produced with the less number of wind turbines to reduce the overall
cost. CHC and SA algorithms are very competitive. In the first scenario CHC obtained better values in average
fitness values, average efficiency and average power output than SA. Both obtained similar final configuration
of the wind farm but SA did it in more execution time and more number of evaluations. In the second scenario
CHC obtained better preformance in the majority of metrics, SA obtained a good performance and RS obtained
a bad performance in both scenarios. As a future work we will consider additional farm models, including more
real world factors, such as terrain effect and the esthetic impact. Also, we intend to study the scalability of this
problem with bigger instances of the wind farm and new parameters of the wind turbines. Finally we plan to solve
this problem as multiobjective consider two contrast function, the cost of design the wind farm and the produced
energy.
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