
Integrating a voting protocol within an
argumentation-based BDI System

Cecilia Sosa Toranzo, Federico Schlesinger, Edgardo Ferretti, and Marcelo Errecalde

Laboratorio de Investigación y Desarrollo en Inteligencia Computacional
Universidad Nacional de San Luis. San Luis, Argentina.
{ceciliasosatoranzo,fedest}@gmail.com,

{ferretti,merreca}@unsl.edu.ar

Abstract. BDI models are powerful tools that can play a fundamental role in
implementing intelligent systems for complex business and industrial problems.
Besides, it has also been recognized the benefits achieved when integrating BDI
models with different reasoning formalisms, like for instance argumentation or
case-based reasoning. Several multi-agent systems have been proposed where
voting-based protocols have proven to be efficient mechanisms to lead to a coor-
dinated social result. Likewise, there are several works where these protocols have
also been applied as internal processes that arise in one agent’s mind. Following
these trends, the main contribution of this work it to integrate voting jointly with
argumentation into a BDI system to implement the agent’s deliberative aptitudes.
All the concepts involved in this proposal are exemplified by working with a
travel assistant agent developed with freely available technologies.

1 Introduction

Within the field of Computer Science, decision making problems have been mainly
tackled from the research field of Artificial Intelligence (AI). As stated in [1], it is very
relevant to develop and formalize decision-making mechanisms but these should not
exist in a vacuum, and its is highly recommendable to integrated them in coherent ways
into agent models developed in the broader field of AI. Likewise, in [2] two main trends
which are currently influencing decision-making research in AI were distinguished:
Classical Decision Theory on the one hand, and cognitively-oriented approaches such
as Practical Reasoning or Beliefs-Desires-Intentions (BDI) settings on the other hand.

The BDI model have gained considerable attention as a powerful tool to build ar-
tificial intelligent systems, and is considered as one of the most influential practical
reasoning architectures. It has very solid theoretical foundations [3] and its use is not
only restricted to the academic area. Recent works have shown its potential to deal with
very complex business and industrial problems [4, 5]. Besides, different studies [6–8]
have recognized the benefits achieved when integrating BDI models with different rea-
soning formalisms, like case-based reasoning [9] or argumentation [10].

Several platforms [11–14] have been proposed to develop systems with multiple
cognitive agents using the BDI approach, as well as others that allow to develop hybrid
systems [15–17]. Independently of the agents type, when more than two agents interact

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 82

in a common environment, it is necessary to have mechanisms that allow that their in-
teractions lead to a coordinated social result. In this regard, the development of artificial
multi-agent systems is usually based on high-level interaction mechanisms frequently
used by humans beings, like voting, negotiation, auction among others. These mecha-
nisms differ in the social result achieved as well as the applicable interaction protocols.

Several of these mechanisms originally conceived for multi-agent systems, have
also been applied as internal processes that arise in the agent’s mind. One approach
that has received growing attention is the one that considers the agent’s decisions as
the result of a voting process among its inner components [18–20]. In this case, the
agent’s possible actions (or decisions) become the alternatives and its components act as
voters. Following these trends, in this paper a formerly developed BDI system [21, 22]
is extended by integrating voting to implement the agent’s decision-making policy.

In [21, 22] the WADEX (Web services, Argumentation and (BDI) Jadex) generic
framework was proposed to provide support to integrate argumentation-based inference
and web service technologies into the design of a BDI system. In this framework, ar-
gumentation was used in two of the three main processes of its control structure; the
alternatives’ acceptability filter and in the selection process. The feasibility of this inte-
gration was shown by implementing a travel assistant agent intended to help a human
user that wanted to go on a trip to an undetermined destination in USA. A device called
decision rules [23] was used to perform the decision process. Although this device
was used together with an argumentation formalism [24] which has an optimized inter-
preter [25], the response times noticeably increase with respect to the number of alter-
natives to be considered by the agent and the number of preference criteria it has been
provided. In this regard, other works [20, 26] have shown that voting-based decision
making is a quite efficient mechanism to manage a great number of alternatives to be
compared according to large number of preference criteria. In this way, implementing
the selection process of WADEX agent’s control structure by using a voting-based me-
chanism, combines the advantages in efficiency of this approach and it also maintains
the ease of argumentation to handle the alternatives’ acceptability.

As mentioned above, BDI models have been largely integrated with different rea-
soning engines to implement the agent’s deliberative aptitudes. As far as we know, this
is the first work which particularly uses voting jointly with argumentation as such a
mechanism.

The rest of the paper is organized as follows. Section 2 briefly introduces the voting-
based protocol used in this work. In Sect. 3 the WADEX framework is proposed to
integrate argumentation and voting in the framework’s decision component. Then, an
example showing a concrete application of the framework is explained in Sect. 4. Fi-
nally, in Sect. 5 some general conclusions are drawn and possible future work is put
forward.

2 Voting Overview

In a classic voting situation, there exist a set C of candidate alternatives and a set A of
agents. Each agent i∈A has a rational preference relation %i defined over C . The aim of
a voting-based mechanism is to determine a social choice rule that given as inputs the

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 83

agents’ individual preferences computes a social preference relation %A, with certain
desirable properties. These properties1 were initially stated by Arrow [27] who proved
from his Impossibility theorem that there was no social choice rule capable of simul-
taneously satisfy them all. In turn, Straffin [28] put forward desirable criteria (Pareto,
Condorcet winner, Condorcet loser, Monotonicity and Majority) to be fulfilled by the
results obtained with different voting rules.

An interesting voting rule proposed by Borda in 1781, known as Borda count, spe-
cifies that voters should provide a preference ranking for the n considered alternatives.
An alternative receives 0 points if it is the last one in the voter’s ranking, 1 point if it is
the second to last until n−1 points if it is the first one. Then, for each alternative all the
voters’ points are added, and the alternative with highest score becomes the winner. This
rule does not satisfy the Condorcet winner and Majority criteria formerly mentioned. To
solve this matter, Duncan Black proposed a simple rule which states that the Condorcet
winner should be chosen, if it does exist, otherwise the Borda count should be com-
puted. This simple approach known as rule of Black satisfies all the above-mentioned
criteria and is the voting protocol integrated in this work to the WADEX framework, as
described in the following section.

3 The WADEX Framework

The WADEX framework [21, 22] conceptually consists of: (a) an integration architec-
ture which describes how the software components implementing these models interact,
and (b) a general control structure that provides some general guidelines about how the
main steps involved in a particular application can be programmed.

The integration architecture is depicted in Fig. 1, where the agent platform and
the communication channels between the different elements involved are shown. Most
of the application logic is encapsulated in a Jadex agent. This agent runs on top of
a deployed JADE platform. There are other agents also running on the same JADE
platform, which can be of diverse nature and can communicate through messages with
the main Jadex agent, since Jadex provides facilities for sending and receiving messages
from plans, whether in a synchronous or asynchronous way. A JADE agent with special
characteristics is the Web Services Integration Gateway (WSIG) agent, which allows to
extend these advantages of messaging to the use of invoking web services as well.

A web service invocation process starts with a lookup for the service in the Direc-
tory Facilitator (DF), a JADE special agent implementing the yellow pages service.
Once the service has been located, the agent formats a request message in the body of a
plan and sends it. Information obtained from the web service invocation can be stored in
the agent’s belief base. Moreover, our Jadex agent can make queries to a DeLP-Server.
The DeLP-Server runs a DeLP program containing part of the facts and decision logic
which are supposed to be static. The possibility of including contextual information in
the queries allows to have a piece of the DeLP program in the Jadex agent and / or
dynamically generate it (or a part of it). In this case, queries are directly made from the

1Pareto efficiency, Nondictatorial existence, Independence of the irrelevant alternatives,
among others (see [27] for a detailed description).

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 84

executing code of the Jadex agent sending queries (via sockets) to the DeLP-Server,
and receiving responses in the same plan without any agent messages involved.

Fig. 1. The integration architecture

As the general application logic is controlled by a (BDI) Jadex agent which acts as
initiator of all the interactions requiring distinct web services and inference processes,
is important to analyze the three generic processes (the acceptability filter, the selection
process, and the execution stage) involved in the WADEX’s general control structure.

The acceptability filter, is the process which considers the whole set of available
alternatives and discards those that do not satisfy essential requirements to be consi-
dered acceptable options. The selection process takes as input the options that survive
the acceptability filter and compares them in order to decide which alternative will be
selected. Three approaches can be used to face this issue: (a) to simply delegate this res-
ponsibility to the user, (b) making decision in an automatic way, or (c) using an hybrid
approach mixing manual and automatic decisions. This latter approach is the one used
in this work. Finally, the execution stage involves deciding how to accomplish the se-
lected option and executing this plan to achieve the desired goals. At present, this stage
involves to select and execute plans from a library of pre-compiled plans, following the
standard approach adopted in most PRS-based BDI systems.

The plan for calculating the acceptable options takes each potential destination and
sets up a sub-goal for calculating its acceptability. At present, the process which consi-
ders the whole set of cities and discards those that do not satisfy essential requirements
to be acceptable options, only uses a web service to obtain its weather forecast.

The web service invoked by our application corresponds to the National Weather
Service of the United States’ National Oceanic and Atmospheric Administration.2 This
web service is relatively straightforward to use, and provides extensive information in
a well structured manner. Among the set of its available functions, it was only used
the one called NDFDgen, which receives as parameters two real numbers representing
latitude and longitude of the geographical point, two dates stating the period of time
for which the forecast is required, and a series of weather parameters indicating the
required information. Only the most common weather parameters, such as minimum
and maximum temperature, and probability of rain, were requested.

The agent has a goal that states the need of weather forecast information for a city
(given as a parameter to the goal). When the service has been located, the plan sets up

2http://www.nws.noaa.gov/forecasts/xml/.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 85

the request for the web service, taking the latitude and longitude from the parameter,
and sends it to the Gateway Agent. After getting forecast information from the web
service, the argumentation process takes place to determine the acceptability of a city.
Our application relies on a DeLP program that runs in an instance of a DeLP-Server,
and encapsulates the logic to decide whether a city is an acceptable option or not. The
acceptability of a city x in our DeLP program, will be given by a warranted argument
supporting the conclusion acc(x).

The candidate cities are stored in the agent’s belief base, in the form of Java ob-
jects containing the city name, its coordinates and an associated hash table to store the
weather-related information of that city. A default set of cities is specified in the agent’s
definition but more cities can be dynamically added.

When the set of acceptable alternatives has been determined, a sub-goal is set up for
computing the rule of Black, the voting-based decision process which compare them
among each other, as previously described in Sect. 2. When computing this rule, the
Java objects related to the acceptable cities are used along with those referring to the
dimensions which will be used to compare them. Both processes, filtering acceptable
cities and comparing among acceptable cities to select one, have to reflect the user’s
restrictions and preferences. These are captured through an screen with options that is
presented to the user when the agent is loaded, and they are automatically translated
into their internal representations.

The necessary steps to travel to the selected city can depend on many factors. Our
approach consists of having a set of plans with different courses of action to achieve
this goal, and use meta-level reasoning to choose the most adequate. A central aspect
of BDI architectures is the possibility of reconsidering intentions. In our example, it is
assumed that once the agent has selected a city, the necessary steps for travelling to that
city take a considerable amount of time, during which some conditions might change
and make the agent discard the selected city and choose a different one. We consider
here two possible situations: (a) the selected city ceases to be an acceptable option, and
(b) a new option arrives and is considered to be a better option than the current one.

The first case could happen if for example the weather forecast changes. When a
change is detected, the agent issues a sub-goal to recheck the acceptability of that city. If
the city has turned unacceptable, the goal to perform the necessary steps to travel to the
selected city must be dropped, and the main plan has to start over, recheck acceptability
for all the cities and select a new one. The second situation might arise for example, if
the agent receives information of a sale in flight tickets for a given destination different
from the chosen one. In this case, the next step would be to issue a goal to check the
acceptability of the new option. If the new option is acceptable, the agent issues the goal
to select a city from a set of acceptable cities, but this time only the currently selected
option and the new one are passed as parameters to the goal, to select among these
two. If the new option is chosen over the current one, the goal for performing steps to
travel to the selected city must be dropped. The main plan has to be repeated, but this
time there is no need to check acceptability for the other cities and selecting one, as the
selected city will now be the newly arrived option. So the main plan now begins from
the moment of starting to carry out the trip (i.e., the third abstract step).

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 86

4 Travel Assistant Agent Domain

Let us suppose that John (our tourist) is in New York, and the weekend of November
12th wants to visit another city of USA. New York is the only city he has visited, and he
has no particular preference for visiting any other specific city. Since he is leaving USA
on November 14th from JFK airport, he has only two days to travel. This fact, maybe a
reason for considering only New York’s nearby cities. Besides, John has no much extra
money to spend in expensive flight tickets or accommodation; therefore, if there is an
offer of a cheap flight for a distant city, this might change his mind about travelling
only to nearby cities. John is not a hard-to-please person, but as he has little time for
travelling he really wants to visit a place with nice weather to be able of visiting as
much as possible from that place.

As discussed in Sect. 3, a DeLP-program will be used to determine the acceptability
of the cities. In Fig. 2 an excerption of this program is shown. As it can be observed,
rules (1) and (2) are defeasible rules stating that, by default, a city is acceptable if it is
a nearby city, and is not recommendable if it is distant. Rules (3)−(5) exemplify more
complex considerations: a distant city can be acceptable if there is a cheap flight to that
city, but a city with bad weather is not acceptable, whether it is a nearby or a distant city
with a cheap flight to it. The definition of what constitutes a nearby or a distant city is
given by rules (6) and (7) (in this case, the limit was fixed to 500 Km).

Next, rules (8)−(12) define the predicate bad weather, exemplifying a way in
which the agent could deal with partial and potentially contradictory information. Bad
weather is first defined in terms of the forecast (information obtained from the web
service) using strict rules. However, forecast information might not be available for
some reason, like the date for the trip being very distant from the current date. The
last two rules in the extract define bad weather in terms of climate: for example, one
might suppose that there is a high probability of very low temperatures in Boston during
winter, or that Miami usually has good weather. These last rules are defeasible, because
forecast information could contradict them (e.g., the forecast could announce a tropical
storm heading to Miami).

[...]
(1) acc(X) -< nearby city(X).
(2) ∼acc(X) -< distant city(X).
(3) acc(X) -< distant city(X), travel date(Y), origin city(Z), cheap flight(Z,X,Y).
(4) ∼acc(X) -< nearby city(X), travel date(Y), bad weather(X,Y).
(5) ∼acc(X) -< distant city(X), travel date(Y), origin city(Z),
cheap flight(Z,X,Y), bad weather(X,Y).
[...]
(6) nearby city(X) <- origin city(Z), distance(Z,X,K), K < 500.
(7) distant city(X) <- origin city(Z), distance(Z,X,K), K >= 500.
[...]
(8) bad weather(X,Y) <- forecast(X,Y,rain).
(9) bad weather(X,Y) <- forecast(X,Y,snow).
(10) bad weather(X,Y) <- forecast(X,Y,min temp(K)), K < 0.
(11) bad weather(X,Y) -< bad climate(X,Y).
(12) ∼bad weather(X,Y) -< good climate(X,Y).
[...]

Fig. 2. DeLP-program for determining a city’s acceptability

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 87

Given the situation described at the beginning of this section, an example of con-
textual information might include the facts shown in Fig. 3. With this context, the set
of acceptable alternatives C = {Miami,Washington,Chicago} will be used as input to
the selection process.3 Boston is judged not acceptable, even when it is a nearby city,
since bad weather is assumed from the climate information due to the lack of weather
forecast for that city. Miami and Chicago are distant cities but the agent is aware of
cheap flight offers from New York to them, which is not the case with Los Angeles.

origin city(new york). forecast(miami,f11 12 10, min temp(20)).
travel date(f11 12 10). forecast(washington,f11 12 10,min temp(12)).
distance(new york, boston, 300). forecast(chicago,f11 12 10,min temp(5)).
distance(new york, miami, 1747). forecast(los angeles,f11 12 10,min temp(18)).
distance(new york, washington, 328). bad climate(boston, Y) <- winter(Y).
distance(new york, chicago, 1140). cheap flight(new york, miami, f11 12 10).
distance(new york, los angeles, 3921). cheap flight(new york, chicago, f11 12 10).

Fig. 3. Contextual information for the acceptability filter

In the selection process, it is considered a set of names of dimensions (preference
criteria) denoted D = {D1,D2, . . . ,Dn}. For each dimension Di ∈ D , the agent main-
tains the set ODi of options available to dimension Di, and the user’s preferences respect
to Di are represented by the function PDi : ODi 7→ [0,1]. Each preference criterion (di-
mension) is represented as a Java object containing all its related information. In this
particular scenario, we assume that when John interacted with the options screen he also
stated that enjoys cities with vivid nightlife and nice cityscapes plenty of skyscrapers
and bridges but containing galleries and museums to visit during the day, as well. There-
fore, D = {GM,C,N} where GM, C and N refer to Galleries and Museums, Cityscapes
and Nightlife, respectively. Besides, a function PD : D 7→ [0,1] will also be computed
to represent the user’s preferences within dimensions. In this particular example, the
values PD (GM) = 0.7, PD (C) = 0.5 and PD (N) = 0.8, are to be used to represent the
above-mentioned preferences.

To determine the Condorcet winner, if such a candidate exists, it should be cho-
sen that alternative which would beat each of the other ones in a run-off election. The
first step consists of calculating the number of votes assigned to each dimension. This
amount is given by the function VD : D 7→ R defined as follows:

VD (Di) =
PD (Di)

∑
D j∈D

PD (D j)
×K (1)

where K is an arbitrary constant used to scale the number of votes per dimension. In this
way, if K is set to 100 the number of votes will be given by VD (GM) = 35, VD (C) = 25
and VD (N) = 40, respectively.

Secondly, to perform the run-off election, the numbers of votes received by the
alternatives with respect to each dimension in D , should be computed. To determine if
the votes corresponding to dimension Di are given to one alternative or the other, the

3Due to space restrictions, the argumentation process that determined this set is not included.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 88

strengths of the alternatives with respect to dimension Di are compared. This strength is
defined by function fDi : A 7→R. In this particular setting, fDi(a j) = PDi(a j(Di)), where
alternative a j is considered a mapping a j : D 7→O , such that O = OD1 ∪OD2 ∪ . . .∪ODn

and a j(Di) ∈ ODi .
In this way, an alternative a j is preferred over another alternative ak with respect to

dimension Di, if and only if fDi(a j) > fDi(ak), and is denoted as a j ÂDi ak. The total
number of votes that an alternative a j obtains in a run-off election with ak is calculated
as the sum of the votes associated to those dimensions where a j is preferred to ak. If
Vpar(a j,ak) represents this value, and D

a j
ak = {Di ∈ D |a j ÂDi ak}, Vpar can be defined

as a function Vpar : A ×A 7→ R, as shown below:

Vpar(a j,ak) = ∑
Di∈D

a j
ak

VD (Di) (2)

It may happen that two alternatives have the same strength with respect to a particular
dimension, in which case none of the alternatives will receive its corresponding votes.
The total number of votes regarding those dimension where alternatives a j and ak have
the same strength is to be denoted Ṽpar(a j,ak). Thus, an alternative a j is a Condorcet
winner, if and only if Vpar(a j,ak) > Vpar(ak,a j) for all alternative ak (k 6= j).

Figure 4 shows a graph representing the run-off elections among the three accep-
table alternatives in C . Arcs are labelled with the Vpar(ai,a j)-Ṽpar(ai,a j)-Vpar(a j,ai)
values, while the their orientations refer to the winners (origin) and losers (end) respec-
tively. As it can be observed in Fig. 4(b), there is no Condorcet winner, so the Borda
count should be computed. In Fig. 4(a), the alternatives are presented indicating the at-
tribute values they have for each dimension GM, C and N, respectively. The attributes
values presented have been discretized in order to have a finite domain of options ODi .
For dimension GM, the quality of the galleries and museums has been rated from one-
star to five-star values. Similarly, for dimensions C and N, the values regular, great
and outstanding have been used to qualify the cityscapes, as well as good, groovy and
spectacular for depicting the nightlife of the city, respectively. Finally, the PDi values
used for each dimension were:

PGM(f ive-star) = 1, PGM(f our-star) = 0.8, PGM(three-star) = 0.6,
PGM(two-star) = 0.4, PGM(one-star) = 0.2, PC(regular) = 0.5,
PC(great) = 0.7, PC(outstanding) = 0.9, PN(good) = 0.6,
PN(groovy) = 0.75, PW (spectacular) = 0.95

The columns BRGM , BRC and BRN of the table shown in Fig. 4(a) contain the Borda
ranking for each alternative with respect to the Galleries and Museums, Cityscapes
and Nightlife criteria, respectively. Then, the total amount of votes received by each
alternative is computed as:

VB(Miami) = 1×35+2×40 = 115
VB(Chicago) = 2×25+1×40 = 90
VB(Washington) = 2×35+1×25 = 95

In this way, the alternative selected by Borda count is Miami, which provides a good
balance among nightlife and daylight activities, e.g., visiting galleries and museums (as
indicated by John when interacting with the options screen).

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 89

Alternative MG BRMG C BRC N BRN
Miami four-star 1 regular 0 spectacular 2

Chicago three-star 0 outstanding 2 groovy 1
Washington five-star 2 great 1 good 0

(a)

Washington

75 − 0 − 25

40 − 0 − 60

35
 −

 0
 −

 6
5

ChicagoMiami

(b)

Fig. 4. Alternatives descriptions and results from: (a) Borda count and (b) run-off elections

5 Conclusions and Future Work

In this work, it was presented a proposal to effectively integrate into a BDI system, argu-
mentation and voting-based approaches to implement the agent’s deliberative aptitudes.
This task was performed by using only freely available resources and other wide-spread
technologies such as Web Services and FIPA-compliant agent development platforms.

All the concepts involved were exemplified by working with the travel assistant
agent implemented in [22], so as to focuss our work on the integration of a voting-
based approach to implement the agent’s deliberative aptitudes in WADEX. Despite
the fact that no efficiency tests were performed, a similar mechanism has already been
tested within this respect in an earlier work of Errecalde et al. [20]. Nonetheless, as
further work this performance test will be conducted. Likewise, other performance im-
provements of WADEX will be tested like comparing the functioning of the current
acceptability filter against the approach of acceptability thresholds used in [20].

At the moment, the authors are modifying WADEX to implement hardware agents.
As first step, it has been planned to work with a Khepera 2 robot which will use as
perception the information provided by an external camera instead of web services.

References

1. Doyle, J., Thomason, R.: Background to qualitative decision theory. AI Magazine 20(2)
(1999)

2. Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Artificial
Intelligence 173(3-4) (March 2009) 413–436

3. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning.
Computational Intelligence 4(4) (1988) 349–355

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 90

4. Benfield, S.S., Hendrickson, J., Galanti, D.: Making a strong business case for multiagent
technology. In: Proceedings of AAMAS ’06, New York, NY, USA, ACM (2006) 10–15

5. Evertsz, R., Fletcher, M., Jones, R., Jarvis, J., Brusey, J., Dance, S.: Implementing Industrial
Multi-agent Systems Using JACK. In: Programming Multi-Agent Systems. Springer (2004)

6. Corchado, J.M., Laza, R.: Constructing deliberative agents with case-based reasoning tech-
nology. International Journal of Intelligent Systems 18(12) (December 2003) 1227–1241

7. Rahwan, I., Amgoud, L.: An Argumentation-based Approach for Practical Reasoning. In:
Proceedings of AAMAS ’06, New York, NY, USA, ACM (2006) 347–354

8. Rotstein, N.D., Garcı́a, A.J., Simari, G.R.: Reasoning from desires to intentions: a dialectical
framework. In: Proceedings of AAAI’07, AAAI Press (2007) 136–141

9. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological varia-
tions, and system approaches. Artificial Intelligence Communications 7(1) (1994)

10. Rahwan, I., Simari, G., eds.: Argumentation in Artificial Intelligence. Springer (2009)
11. Hindriks, K.V., Boer, F.S.D., Hoek, W.V.D., Meyer, J.J.C.: Agent Programming in 3APL.

Autonomous Agents and Multi-Agent Systems 2(4) (1999) 357–401
12. d′ Inverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dMARS ar-

chitechure: A specification of the distributed multi-agent reasoning system. Journal of Au-
tonomous Agents and Multi-Agent Systems 1-2(9) (2004) 5–53

13. Winikoff, M.: JackTM Intelligent Agents: An Industrial Strength Platform. In: Multi-Agent
Programming: Languages, Platforms and Applications. Volume 15. Springer (2005) 175–193

14. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.
John Wiley (2007)

15. Rimassa, G., Greenwood, D., Kernland, M.E.: The Living Systems Technology Suite: An
autonomous middleware for autonomic computing. In: International Conference on Auto-
nomic and Autonomous Systems (ICAS). (2006)

16. CogniTeam: CogniTAO: A JAUS-based high-level control system for single and multiple
robots (2008)

17. NASA Ames Research Center: Brahms agent environment (2005)
18. Pirjanian, P., Christensen, H.I., Fayman, J.A.: Application of voting to fusion of purposive

modules: An experimental investigation. Robotics and Autonomous Systems 23(4) (1998)
19. Rosenblatt, J.K.: DAMN: A Distributed Architecture for Mobile Navigation. PhD thesis,

Carnegie Mellon University. (1997)
20. Errecalde, M., Aguirre, G., González, F.: Agentes y mecanismos de votación. In: X Congreso

Argentino de Ciencias de la Computacin (CACIC). (2004) 1474–1485
21. Schlesinger, F., Errecalde, M., Aguirre, G.: An approach to integrate web services and argu-

mentation into a bdi system. In: 9th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS). (2010) 1371–1372 (Extended Abstract).

22. Schlesinger, F., Ferretti, E., Errecalde, M., Aguirre, G.: An Argumentation-based BDI Per-
sonal Assistant. In: 23rd IEA-AIE. Volume 6096 of LNAI., Springer (2010) 701–710

23. Ferretti, E., Errecalde, M.L., Garcı́a, A.J., Simari, G.R.: Decision rules and arguments in de-
feasible decision making. In: 2nd Intl. Conference on Computational Models of Arguments
(COMMA). Frontiers in Artificial Intelligence and Applications, IOS Press (2008) 171–182

24. Garcı́a, A.J., Simari, G.R.: Defeasible Logic Programming: An Argumentative Approach.
Theory and Practice of Logic Programming 4(2) (2004) 95–138

25. Garcı́a, A.J., Rotstein, N.D., Tucat, M., Simari, G.R.: An argumentative reasoning service
for deliberative agents. In: 2nd KSEM. Volume 4798 of LNCS., Springer (2007) 128–139

26. Sen, S., Haynes, T., Arora, N.: Satisfying user preferences while negotiating meetings. In-
ternational Journal of Human-Computer Studies 47(3) (1997) 407–427

27. Arrow, K.J.: Social choice and Individual Values. John Wiley & Sons, Inc. (1963)
28. Straffin, P.D.: Topics in the Theory of Voting. Birkhauser (1980)

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 91

