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Abstract. Intrusion Detection Systems (IDS) have been the key in the
network manager daily fight against continuous attacks. However, with
the Internet growth, network security issues have become more difficult
to handle. Jointly, Machine Learning (ML) techniques for traffic classifi-
cation have been successful in terms of performance classification. Unfor-
tunately, most of these techniques are extremely CPU time consuming,
making the whole approach unsuitable for real traffic situations.

In this work, a description of a simple software architecture for ML based
is presented together with the first steps towards improving algorithms
efficiency in some of the proposed modules. A set of experiments on the
1998 DARPA dataset are conducted in order to evaluate two attribute
selection algorithms considering not only classification performance but
also the required CPU time. Preliminary results show that computa-
tional effort can be reduced by 50% maintaining similar accuracy levels,
progressing towards a real world implementation of an ML based IDS.

1 Introduction

The problem of network security has become more relevant in the past years.
In the beginning of Internet, protocols supporting it worked well. With the fast
growth of the Internet, more and more attacks against data confidentiality, au-
thenticity and availability were performed using underlying vulnerabilities in
protocols such as ARP, TCP, TELNET, SMTP and FTP. Although most of
these faults have been fixed, new ways of attacking networks are discovered
everyday.

Therefore, network managers in charge of preventing attacks are in a continu-
ously changing environment. Intrusion Detection Systems (IDS) are a remarkable
tool to aid in this task. There are two main approaches to IDS [1]. The first one
is misuse detection IDS, which works by representing attacks in a signature or
pattern, and based on this pattern detects attacks by using a large set of rules
that describe every known attack. Its main disadvantage is the fact that it is
very difficult to detect unknown attacks. The second approach is called anomaly
detection IDS which builds an statistical model to describe normal traffic and
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any deviation from this normal traffic is considered an anomaly and classified
as an attack. This approach is capable of detecting unknown attacks but due
to the difficulty in classifying normal traffic, many times this is followed by an
important false positive rate.

Although the mentioned approaches are commonly used in real world IDS
their disadvantages are an issue to improve. To open a new perspective in the
implementation of an IDS, Machine Learning (ML) algorithms have been used
and have proved to achieve good accuracy results when classifying attacks over
network traffic [2]. Many of these techniques, however, imply a great use of CPU
time in their process, something that may not be suitable for a real network
environment,.

Before classifying traffic, it is necessary to preselect a number of the attributes
present in the instances of network traffic. The set of instances together with the
selected attributes will form what is known in ML as a dataset. This preselection
stage is very important. In this case, it is the starting point to succeeding in the
classification of further instances as attacks or normal traffic. A good way of
deciding which attributes to consider is to use others experience under this field
[3]. Among these attributes source IP addresses, protocol type, connections flags
or port numbers can be found.

As mentioned in the previous paragraph, the correct attributes selection is
the key for obtaining high values in classification. Although, it is important to
notice that the more attributes used, the more CPU time and loss of efficiency in
the implementation. For this reason, the selection of a small group of attributes
that offer enough information for attack detection is a fundamental issue in the
development, of efficient IDS.

The aim of this work is to carry out a study of the minimum required at-
tributes to efficiently implement a ML based IDS by decreasing CPU time but
not the algorithms’ accuracy in classification of network traffic. To do so, Con-
sistency Based (CON)[4] and Correlation Feature Selection (CFS)[5] , two of
the most frequently used attribute selection algorithms have been applied to the
original set of attributes present in the datasets and then, ran over some of the
most representative classification algorithms to compare its results before and
after the selection of attributes. Evaluation is carried out using traffic instances
extracted from the 1998 DARPA dataset [6], widely used by IDS researchers
since it was introduced in the context of 1999 KDD Cup.

The rest of this paper is organized as follows. Section 2 provides a description
of the modules involved in the development of IDS based on ML with special
focus on the attributes selection process. A deep evaluation of representative
ML algorithms and their attributes selection needs are presented in section 3.
Finally, in section 4 concluding remarks and future work are commented.

2 Machine Learning Based IDS

When considering the study of an IDS based on Machine Learning techniques,
an overview from a software architectural point of view seems necessary. Spe-
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cial emphasis is put on modules responsible for handling the network data and
putting those modules relevant for classification aside.

2.1 Components of a ML based IDS Architecture

A simple architecture for an IDS based on ML techniques can be organized in
four modules|[7].

The first module has the responsibility for the traffic capture process. The
Traffic Capture Module intends to acquire all the data available on the wire in raw
mode. Then the Preprocessing Module has the responsibility to select, extract
and rearrange the data in a way needed by the algorithms on the ML module.
The Learning Module uses the information from the Preprocess Module to build
a model which, in turn, will be used for classifying new traffic instances. Finally,
the Ewvaluation Module uses the model obtained from the Learning Module to
classify new traffic instances.

During the last years, a considerable number of ML algorithms have been
proposed for being implemented inside the Learning Module. In that sense, Al-
gorithms such as K-nearest neighbor (k-NN)[8], Naive Bayes (NB), Neural net-
works [9] and decision trees[10], just to mention a few, have exhibited high attack
classification performance and seem to be ready for practical uses.

Despite the algorithm implemented, the Learning Module requires a number
of values that measure different aspects of a traffic instance. These values are
usually referred as attributes in the ML context.

One possibility consists of using as attributes all the data in raw mode ac-
quired from the Traffic Capture Module. However, the application of ML algo-
rithms on such data would require considerable computational effort and could
turn the whole ML approach infeasible. More appropriate is the idea of using
only a carefully selected set of attributes which can be representative enough for
applying ML algorithms with less computing effort and maintaining a reason-
ably good performance. As mentioned in previous paragraphs this selection is
performed by the Preprocessing Module.

2.2 Network Traffic Attributes

On the Preprocessing Module the set of selected attributes for describing the
traffic data consists of a number of fields available from a network traffic in-
stance as well as other high level attributes obtained after some network packet
preprocessing.

Table 1 shows a total of fifteen fields related to a TCP connection commonly
used as attributes by previous works on network intrusion detection [11,12]. In
this case only protocol, tcp.sreport, tep.dstport, ip.src and ip.dst are easily ob-
tained from an individual TCP connection. Remaining ones are higher level
attributes which provide information related to connection time and data trans-
ferred.
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Table 1: Basic attributes of individual traffic connections.
Attribute Name Description
connection.time Time of the connection in hours,
minutes and seconds
protocol Type of protocol, e.g ssh,http,ftp
tep.sreport TCP source port
tep.dstport TCP destination port
ip.src IP source address
ip.dst IP destination address
tep.len Number of bytes transferred
num.pkts.src.dst Number of packets from src IP to
dst IP
num.pkts.dst.src Number of packets from dst IP to
src IP
num.ack.src.dst Number of packet with ACK flag
active from src to dst
num.ack.dst.src Number of packet with ACK flag
active from src to dst
num.syn.src.dst Number of packet with SYN flag
active from src to dst
num.syn.dst.src Number of packet with SYN flag
active from dst to src
num.bytes.src.dst Number of bytes from src to dst
num.bytes.dst.src Number of bytes from dst to src

Attributes involving many connections are shown in Table 2. These high level
attributes show information involving the number of connections computed using
a five-second time window as well as information about the last 20 connections.

Note that the 32 attributes shown in Table 1 and Table 2 are far from being
a complete attribute list, but they have been considered useful in other works in
the IDS field.

2.3 Attributes Selection

For many ML algorithms the use of a large set of attributes like the ones men-
tioned in Subsection 2.2 can lead to high classification performance results. How-
ever, in some cases, the good performance is observed only at the expense of a
considerable computing effort, which could lead to the unviability of the ML ap-
proach. Therefore, it seems that selecting the minimal set of attributes required
by the Learning Module could be the first step on the development process of
an IDS based on ML.

Consistency Based (CON)[4] and Correlation Feature Selection (CFS)[5] are
two of the most frequently used algorithms for attribute selection. The final
idea behind these algorithms is finding an appropriate subset of attributes while
maintaining a high classification rate.

In this work both attribute selection algorithms are evaluated in order to get
a reduced subset of the original 32 attributes shown in Subsection 2.2. Evaluation
should be conducted observing not only classification rate but also CPU time
required for building the model and the time required for evaluating new traffic
instances.
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Table 2: High level attributes involving many connections.
Attribute Name Description
Information about the connections in the last five seconds

count.time.src. Number of connections from the
same address as the current
connection source address
count.time.dst Number of connections to the
same IP address as the current
connection destination IP address
count.time.srv.src Number of connections from the
same service as the current
connection
count.time.srv.dst Number of connections to the same
service as the current connection
Information about the last 20 connections
count.src Number of connections from the
same address as the current
connection source address
count.dst Number of connections from to the
same address as the current
connection destination address
count.srv.src Number of connections from the
same service as the current
connection
count.srv.dst Number of connections to the same
service as the current connection

3 Experiments

The experiments of this section focus on comparing a set of representative ML
algorithms in terms of classification performance and CPU time required when
datasets have been filtered using different Attribute Selection algorithms.

The ML algorithms chosen are examples of four of the major algorithm fam-
ilies present in WEKA software[13] , widely used in the ML community. As an
example of the decision trees, J/8 is proposed, Naive Bayes (NB) as part of
the statistics based, IBk1 as an example of the instance based, and Multilayer
Perceptron (MLP) as an example of the neural networks.

Experiments are carried out on an Intel Core 2 Duo E8400 with 4GB DDR2
RAM memory running WEKA version 3.6.1 over Debian Lenny 5.0 GNU /Linux.

3.1 Performance Metrics for IDS evaluation

Accuracy, a commonly used metric in the ML field, is used for evaluating the
performance classification. On the other hand, CPU time is evaluated considering
both model build time and test time.

Accuracy is computed as the ratio between the number of correctly classified
traffic instances and the total number of traffic instances. Model build time refers
to the CPU time the ML algorithm needs for building the model while test time
refers to the time required by the algorithm for classifying new instances.
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3.2 Dataset description

Evaluation is performed using an extract of five weeks from the 1998 DARPA
dataset. The attack instances are distributed differently among 9 datasets. Vary-
ing from a dataset with 10% of instances labeled as attacks and 90% as normal
traffic, to one with 90% of attacks and 10% of normal traffic. Each dataset con-
sists of 11639 instances of network traffic. A set of 32 attributes are selected as
mentioned in Subsection 2.2.

It is important to note that Cross folding validation, with 10 folds per dataset,
is used to perform the experiments[13].

3.3 Evaluation of the complete attribute set

Figure 1 shows average classification accuracy for the nine datasets when the
complete attribute set is used. All algorithms show near optimal accuracy over
the different attack distributions. NB algorithm is the one showing lowest ac-
curacy of the selected four. Although, the value shown is 99,11%, which can be
considered extremely good.

Algorithms

Fig. 1: Average classification accuracy using the complete attribute set

Figures 2(a) and 2(b) show average time needed for building the model. Due
to the fact that MLP exhibits an important difference in y-axis magnitude, its
results are detached and shown in Figure 2(b).

Timing difference exists between the different algorithms, especially for MLP
which takes approximately 80 times more , when compared to the next slowest
one J48.

Test time can be observed in Figure 2(c) and 2(d). AsIBk1 takes as least
62 times more to test instances against its model than the rest, it is shown
separately in Figure 2(d).

3.4 Evaluation of the CON and CFS Selected Attribute Set

As shown by Figure 3(a), in most cases, datasets with an attribute set reduced
by CON or CFS algorithms, take half the model build time, compared to the
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Fig. 2: Model Build time and Test time using the complete attribute set

dataset using a complete set. One Exception is MLP, shown in Figure 3(b) which
takes at the most, a fourth of the time when the attributes have been reduced
using CON or CFS and due to a difference of scale in the y-axis magnitude, is
shown separately.

Figure 3(c) shows the average time in seconds for the algorithms to test
datasets with a reduced attribute set. The relation is that a reduced attribute set
takes approximately half the time to be tested than the complete one. Also, IBk1
algorithm takes an excessive amount of time for testing, making it impossible to
be shown in Figure 3(c) and shown in Figure 3(d).

Figure 4, shows the average classification accuracy for each algorithm using
the complete attributes set and compares it with the attributes sets obtained
by CFS and CON. Only NB and MLP show an appreciable difference in accu-
racy when the complete attribute set is used compared with the attributes set
obtained by CON and CFS in the algorithm. Nevertheless, CFS shows better
results than CON for NB and MLP algorithm.
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Fig. 3: Model Build and Test time for the complete and the selected attributes set
obtained by CON and CFS algorithms

4 Conclusions and Future Work

Classification accuracy exhibited on different attack distribution datasets con-
firms that ML based IDS are a viable solution for dealing with network security
problems. However, the computational effort required, in some cases, seems ex-
cessive for a real world implementation.

Attribute selection appears to be a useful tool in the process of lessening these
CPU usage time without a meaningful reduction of the classification accuracy.
In many cases, using the attribute selection algorithms, a reduction of 50% in
build and test time can be achieved, over different attack distribution datasets.

Among the different experiments the use of J48 and NB algorithms offer the
best overall results. Even though, both algorithms have shown good accuracy
levels, when the selected attribute set has been used, J/8 has exhibited an
accuracy around 99% in all the experiments and has shown build and test time
suitable for an IDS implementation.

Finally, It is important to mention that the obtained accuracy levels might
be biased by the fact the 1998 DARPA dataset is old and outdated. Therefore,
experiments should be conducted in a real network environment.
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