
PseudoRandomSequencesPy Library v 1.0.

Alejandro Arroyo Arzubi
1
, Hugo Ballesteros

2
, Marcelo Cipiano

1,3

1 Escuela Superior Técnica - IESE - C1426AAA, Buenos Aires, Argentina; 2 Instituto de

Investigaciones Científicas y Técnicas para la Defensa - B1603ALO, Villa Martelli. Argentina;
3 Instituto Fátima – C1437CHD, Buenos Aires, Argentina.

Alejandro Arroyo Arzubi arroyoarzibi@iese.edu.ar, Hugo Ballesteros

hballesteros@citefa.gov.ar, Marcelo Cipriano marcelocipriano@iese.edu.ar

Abstract: An open source library in Python language is developed for

academic use. It can also be applied in software development. The library

allows users to implement applications using relevant stream ciphers, to

evaluate pseudorandom sequences and their robustness in cryptographic

applications. Its use may enhance teaching techniques, improve software

readability, and save encoding times at the developmental stage.

1 Introduction

With the advent of computers and telecommunications, the field of Information

Security, once restricted to the military and diplomatic arena, has extended its

influence to the civil and commercial scene. ATM connections, credit or debit card

payments, home banking, and cellular communications are a few examples of data

transmission requiring safety procedures.

Hence, teaching techniques addressing information security are strongly pervasive in

academic settings [01]. The library is created, as it was its sister library

NumTheoryPy [02], with a dual purpose: academic education and software

development.

2 General Objectives of the Project

The main objective of the Project is to design and develop a library written in a GNU

dynamic language with potential for further development. It aims to enhance direct

experiences in an academic environment by merging theory and practice to foster the

teaching/learning process [03] [04] [05].

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 862

mailto:arroyoarzibi@iese.edu.ar
mailto:hballesteros@citefa.gov.ar
mailto:LNCS@Springer.com

In the field of software development, it aims to assist at the encoding stage by saving

time and by gaining software readability.

3 Criteria for Library Design

3.1- The library must be open source.

To accomplish greater accessibility at no cost, and to enable improvements under the

GNU license provisions

3.2- User control must be safeguarded.

Users utilize the software with their own objectives, methods, and styles. The library

is a code cluster to be employed whenever called upon and not a final product.

3.3- Code lines must be kept at a minimum

The design reduces quantity of lines without compromising readability and algorithm

comprehension. Users define catch tasks and validate required input data for each

function, as well as data screen displays.

4 Programming Language Selection

Following the criteria established with the NumTheoryPy library, Python language is

selected once again [09]. Created in 1991 by Guido Van Rossum, the language

provides features granting the project with:

 Clarity in writing and reading the code

 Capability to work with numbers and mathematical functions

 Simplicity in the creation and implementation of functions, libraries, and modules

 Free of charge accessibility

 Solid background and potential for future development.

5 PseudoRandomSequencesPy Library

5.1 Random and pseudorandom sequences

Random sequences generate through aleatoric processes; for example at the toss of a

coin, dice, or with white noise of radioactive emissions later translated into binary

code. The required property to protect information with a random sequence is its

unpredictability. (Given any part of a sequence, the subsequent bit cannot be

predicted with probability greater than 0,5)

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 863

PseudoRandomSequencesPy Library v 1.0.

Pseudorandom sequences are number sequences generated with deterministic

procedures or recursive formulae. They lack unpredictability by nature. However,

they can be used in cryptography if they meet certain conditions [09][10] because

their behavior resemble that of a random sequence.

Vernam cipher, also known as One Time Pad, is the only system whose security has

been mathematically proven. Its encryption keys are long random or pseudorandom

sequences, as lengthy as the language itself. Note that the receiver must deliver the

sender the encryption key (through a different secure channel). This difficulty then,

known as the key distribution problem, can be solved with the use of certain

pseudorandom sequences if the receiver is able to reconstruct the sequence with only

a small portion of information and hence avoiding transmitting the entire sequence.

5.2 Stream Cipher

A stream cipher is a cryptographic system which, through a XOR operation, joins text

with key; thus originating the encrypted text. The key is normally a pseudorandom

sequence with unpredictability properties, granting the encrypted text with the

appropriate protection.

Considering these systems have high encryption speeds and a low processing

capacity, cryptography and information security have focused on studying random

and pseudorandom sequences and the methods to generate them.

Stream cipher methods are applied to symmetric or private key systems, because the

same key is used for encryption and decryption – as opposed to asymmetric systems

or public key systems. In the latter, two different keys are used: a public key for

encryption and a private key for decryption.

5.3 Library General Design

In the first version 1.0, the library consists of 12 functions. Note that in this

framework a function is understood in the computer science, and not mathematical,

sense; i.e., a piece of software which can be executed when called upon by other

software, avoiding code redundancy.

Certainly, the library does not cover the entire set of procedures and algorithms used

in stream ciphers. However, this initial version 1.0 addresses the basic procedures to

generate pseudorandom sequences and the tests required to satisfy the conditions for

cryptographic security.

Each function has its specific output which the user shall utilize for his or her

particular procedure. Although the functions are not designed to be called upon from

the command line, as the output does not display information clearly to the user, it can

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 864

be accomplished because Python has such features. It can also become a powerful

calculator.

Users call upon the functions from software with validation capabilities for the input

data and conveniently present the output values. Functions do not validate. Whenever

a function requires the input of a prime number and a compound number is entered,

the output could be compromised and incorrect. Validation needs to be performed at a

previous stage.

6 Library Functions

Functions, valid input and output values are detailed:

6.1 Function BINARYCONV(A)

Converts a base-10 number into a binary expression

def BINARYCONV(A):

 """Binary conversion of A"""

 D=""

 w=0

 while w<>1:

 r=int(A%2)

 w=int(A//2)

 D=D+str(r)

 A=w

 D=D+str(w)

 return(D)

6.2 Function PARITYBIT(N).

Finds a bit parity d of decimal number N when converted to a binary number

def PARITYBIT(N):

 """return parity bit of n"""

 a=BINARYCONV(N)

 p=a.count("1")

 r=p%2

 return(r)

6.3 Function SEQUENCEOPEN(F)

This function reads a sequence stored in file F

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 865

PseudoRandomSequencesPy Library v 1.0.

def SEQUENCEOPEN(F):

"""read binary sequence stored in file A"""

 f=""

 linea=""

 f=open(F,"r")

 linea=f.read()

 return(linea)

6.4 Function SEQUENCESAVE(A, F)

Stores the number sequence A in file F

def SEQUENCESAVE(A,F):

 """save binary sequence A in file F"""

 h=""

 for i in range (len(A)):

 h=h+str(A[i])

 f=open(F,"w")

 f.write(h)

 f.close()

 return(1)

6.5 Function PARITYBITSEQUENCE (A)

Finds all parity bits of the number sequence A

def PARITYBITSEQUENCE(A):

 """RETURN PARITY BIT OF SECUENCE´S NUMBERS"""

 B=[]

 h=len(A)

 for i in range(0,h):

 B.append(PARITYBIT(A[i]))

 return(B)

6.6 Function BBSGENERATOR(R, N, S)

Generates a pseudorandom sequence of R numbers using the algorithm BLUM-

BLUM-SHUB, module M and seed S

Note that this function calls upon another function called NTEXPMOD developed in

our NumtheoryPy library. Such function performs modular exponentiation efficiently

and rapidly.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 866

def BBSGENERATOR(R,N,S):

 """pseudorandom number generator of BLUM-BLUM-

SHUB"""

 """for mod(M) and start on S"""

 from criptolabnumtheorypy import NTEXPMOD

 c=0

 RN=[]

 while c<R:

 h=NTEXPMOD(S,2,N)[0]

 u=PARITYBIT(h)

 RN.append(u)

 c=c+1

 S=h

 return(RN)

6.7 Function LCGENERATOR(S, A, B, N, R)

Finds a pseudorandom sequence of R numbers using linear congruences of the form

A*X+B (mod N). The sequence follows a recursive procedure in X from the initial

value (or seed) S.

def LCGENERATOR(S,A,B,N,R):

 """Sequence of R numbers generated by LINEAR

CONGRUENCES"""

 """on form x1=Ax0+B (mod N)where S=x0"""

 i=1

 s=[]

 h=(A*S+B)%N

 s.append(h)

 while i<R:

 h=(A*h+B)%N

 s.append(h)

 i=i+1

 return(s)

6.8 Function MONOBITTEST(F).

Performs the MONOBIT test on the sequence of bits stored in file F, yielding 1 if

successful or 0 otherwise, as well as the quantity of 0 and 1 bits.

def MONOBITTEST(F):

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 867

PseudoRandomSequencesPy Library v 1.0.

 """MONOBIT TEST OVER BITS SEQUENCE SAVED ON F

FILE.""”

 linea=0

 bit1=0

 b=0

 f=open(F,"r")

 linea=f.read()

 f.close()

 bit1=linea.count("1")

 if 9654<bit1<10346):

 b=1

 else:

 b=0

 return(b,t,"0="+str(20000-bit1),"1="+str(bit1))

6.9 Function POKERTEST(F).

Performs the POKER test on a sequence of bits stored in file F, yielding 1 if

successful and 0 otherwise. It also finds the value of the statistical comparison for 4

bit combinations and a summary of their quantity.

 def POKERTEST(F):

 """ Uniform distributed for 4 bit combinations"""

 x=0.0

 b=0

 h=0

 i=0

 g=[]

 linea=0

 m=[]

 f=open(F,"r")

 linea=f.read()

 f.close()

g=[linea.count("0000"),linea.count("0001"),linea.co

unt("0010"),linea.count("0011")]

g=g+[linea.count("0100"),linea.count("0101"),linea.

count("0110"),linea.count("0111")]

g=g+[linea.count("1000"),linea.count("1001"),linea.

count("1010"),linea.count("1011")]

g=g+[linea.count("1100"),linea.count("1101"),linea.

count("1110"),linea.count("1111")]

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 868

m=["0000="+str(g[0]),"0001="+str(g[1]),"0010="+str(

g[2]),"0011="+str(g[3])]

m=m+["0100="+str(g[4]),"0101="+str(g[5]),"0110="+st

r(g[6]),"0111="+str(g[7])]

m=m+["1000="+str(g[8]),"1001="+str(g[9]),"1010="+st

r(g[10]),"1011="+str(g[11])]

m=m+["1100="+str(g[12]),"1101="+str(g[13]),"1110="+

str(g[14]),"1111="+str(g[15])]

 for i in range (0,16):

 h=h+g[i]**2

 x=(16/5000.0)*h-5000

 if (1.03<x<57.4):

 b=1

 else:

 b=0

 return(b,x,m)

6.10 Function RUNSTEST(F).

Performs a set of run tests -- a run is a sequence of consecutive all ones or zeros of

different lengths. It yields 1 if the general test is successful and 0 otherwise, as well as

the same values for individual tests.

def RUNSTEST(F):

"""A Run is a maximal sequence of consecutive bits

of either all ones or all zeros"""

 g=[]

 h=[]

 f=open(F,"r")

 linea=f.read()

 f.close()

 g=[linea.count("00"),linea.count("11")]

 g=g+[linea.count("000"),linea.count("111")]

 g=g+[linea.count("0000"),linea.count("1111")]

 g=g+[linea.count("00000"),linea.count("11111")]

 g=g+[linea.count("000000"),linea.count("111111")]

g=g+[linea.count("000000000000000000000000000000000

0"),linea.count("1111111111111111111111111111111111

")]

 if (2267<=g[0]<=2733) and (2267<=g[1]<=2733):

 h=[1]

 else:

 h=[0]

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 869

PseudoRandomSequencesPy Library v 1.0.

 if (1079<=g[2]<=1421) and (1079<=g[3]<=1421):

 h=h+[1]

 else:

 h=h+[0]

 if (502<=g[4]<=748) and (502<=g[5]<=748):

 h=h+[1]

 else:

 h=h+[0]

 if (223<=g[6]<=402) and (223<=g[7]<=402):

 h=h+[1]

 else:

 h=h+[0]

 if (90<=g[8]<=223) and (90<=g[9]<=223):

 h=h+[1]

 else:

 h=h+[0]

 if (90<=g[10]<=223) and (90<=g[11]<=223):

 h=h+[1]

 else:

 h=h+[0]

 return (h)

7 APPLICACION AND PERFORMANCE EXAMPLE

For instance, a line in Python code for a program can be written to generate a

pseudorandom sequence of 80 numbers using the linear congruential generator with

the formula X n+1= 3*Xn+7 mod(97), starting at seed X0=5. The parity bit is found for

each member of the series and the pseudorandom sequence of bits is stored in the file

b.txt”

SEQUENCESAVE(PARITYBIT(LCGENERATOR(5,3,7,97,80),”btxt”)

8 CONCLUSIONS

Information security (IS) protects information in processing and data storing systems,

as well as in communications. This field is used increasingly in software products;

academic institutions have focused on its teaching as well.

PSEUDORANDOMSEQUENCESPY library presented in this work was developed

for educational purposes as well as for software development use. It offers educators,

students, and developers the ability to run functions commonly used in stream cipher

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 870

applications such as cellular communications and other devices requiring to process

great amounts of data rapidly and with limited processing capabilities.

Software developers can save encoding time and gain readability for their products.

The library was developed entirely in PYTHON language, within the GNU open

source language to grant its free distribution. In addition, due to its open source

nature, users can read and verify its contents, and if necessary, modify them.

9 Further Work

More functions could be added to enhance the library, such as: linear and non linear

feedback shift register (LFSR and NLFSR), or use the MASSEY-BERLEKAMP

algorithm to find the linear complexity of a given pseudorandom sequence. It is also

possible to add examples of non linear combiners, such as Beth-Piper and Gollmann

cascade, among others.

10 References

[01] Schembari Paul: “Hands-on Crypto”: Experiential Learning in Cryptography.

Proceedings in the 11
th

 Colloquium for Information System Security Education.

Boston University. Boston MA, June 2007.

[02] Benaben, Castro Lechtaler, Cipriano, Liporace: “NumTheoryPy Library for

Cryptography”. XV Argentine Congress of Computer Science. ISBN 978-897-24068-

4. Jujuy, Argentina. October 2009.

[03] Chong, S. Cryptographic teachings tools. School of Computer Science and

Software Engineering. June, 2003.

[03] Olejar, D; Stanek M. Some Aspects of Cryptology Teaching. Department of

Computer Science, Comenius University, 2001.

[04] Dulal, K. Teaching Cryptography in an Applied Computing Program. Journal of

Computing Sciences in Colleges. Volume 21 Issue 4. April 2006.

[05] Baliga, A; Boztas, S. Cryptography in the Classroom using Maple. Department

of Mathematics. Royal Melbourne Institute of Technology University. Melbourne,

2001.

[06] Koblitz, N. Cryptography as Teaching Tool. Criptologia. Vol 21. No 4. 1991

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 871

PseudoRandomSequencesPy Library v 1.0.

[07] Saunders, Bonnie. and Janet Beissinger "Using Cryptography to Teach Number

Theory to Future Middle School Teachers" Paper presented at the annual meeting of

the The Mathematical Association of America MathFest, TBA, Madison, Wisconsin,

Jul 28, 2008.

[08] http://www.python.org/

[09] FIPS-PUB 140-1 Security Requirements for Cryptographic Modules. U.S.

Department of Commerce / National Institute of Standards and Technology. United

States, 1994.

[10] Golomb Shift Register Sequences, Holden-Day, San Francisco, 1967.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 872

http://www.python.org/

