

47

3. BACKGROUND OF OUR PROPOSAL

3.1 Introducing the Basis

In the following Sections we introduce four key topics that we will use throughout the

rest of the work, to make it self-contained. These are: (i) Aspect-Oriented Composition,

(ii) Reference Frameworks and Ontologies, (iii) User Interaction Diagrams (UIDs), and

(iv) Softgoal Interdependency Graphs (SIGs). Our aim is not to discuss these issues in

detail; instead we intend to stress the most important concepts. We also devote a special

section to the motivation for using the WCAG 1.0 [45] instead of WCAG 2.0 [46].

3.2 Aspect-Oriented Composition

A concern is an area of interest or focus in a system. Since Dijkstra [13], concerns are

the primary criteria for decomposing software into smaller, more manageable and

comprehensible parts that have meaning to a software engineer. Examples of concerns

include requirements, use cases, features, data structures, quality-of-service issues,

variants, intellectual property boundaries, collaborations, patterns and contracts. Thus,

Separation Of Concerns (SOC), is a long standing idea that refers to the ability of

identifying, encapsulating and manipulating parts of software that are crucial to a

particular purpose [13]. Software engineering development methods have been created

with this principle in mind. However, traditional paradigms to software development,

such as Object-Oriented methods and languages, are not able to modularize crosscutting

concerns effectively, because they suffer from a limitation called the “Tyranny of the

Dominant Decomposition”. This limitation means that they allow modularization in

only one way at a time, so they are unable to solve the many kinds of concerns that do

no align with that main modularization. In other words, given one out of many possible

decompositions of the problem (most of them are core functionality concerns), some

sub-problems show, such as non-functional and functional requirements, added after

facts, etc., which cannot be modularized. These problems are concerns that cut across

many other concerns producing “crosscutting symptoms” resulting into representations -

-e.g. specifications, classes, code, etc., which are difficult to understand and maintain.

48

An important issue to underline about this kind of behavior is not only manifested for:

(i) a given decomposition, but for all possible decompositions, (ii) a given paradigm,

such as object-orientation, also in other paradigms and, (iii) at the implementation stage,

also in other stages, such as analysis and design. Usually, these crosscutting symptoms

manifest in “scattering” and “tangling” problems. We say that the representation of a

concern is scattered over an artifact, when the code for the implementation of the

concern’s body is spread out over multiple and different modules or classes rather than

localized. While the representation of a concern is tangled within an artifact, when the

code for the implementation of the concern’s body is intermixed with code that

implements other concerns’ bodies. Scattering and tangling often go together, even

though they are very different concepts [17].

Typical examples of such crosscutting concerns are non-functional requirements, such

as security, availability, persistency, usability and Accessibility, the main topic of this

paper. However, crosscutting concerns can also be functional requirements, such as

order auditing, validation, and in the Web engineering domain, tracing the user

navigation history [21].

SOC can be supported in many ways, such as by process, by notation, by organization,

by language mechanism and, so on. Within the broad theme of SOC, Aspect-Oriented

Software Development (AOSD) is distinguished by providing new insight on the

separation of crosscutting concerns and in particular leads to the idea that single

hierarchical structures are too limiting to effectively separate all concerns in complex

systems36. AOSD aims at handling such crosscutting concerns at the various levels of

the process of software development, by providing means to their systematic

identification, modularization and composition [17]. Crosscutting concerns are

encapsulated in separate modules, known as “aspects”, and composition mechanisms

are later used to weave them back with other core modules, at loading time, compilation

time, or run-time. Since aspects are concerns that crosscut a primary or dominant

decomposition (other core modules), aspect “weaving” is a composition mechanism that

injects aspects into this primary or dominant decomposition.

However, aspects, as well as their compositions, also have an important role to play

36 AOSD community at http://www.aosd.net/wiki/index.php?title=Main_Page

49

before the implementation. On one hand, the notion of “early aspects” means it is

important to consider aspects early on in the software engineering lifecycle during

analysis and design, as opposed to only at the implementation and testing stages. At

these early stages of the development process, aspects will allow the modularization of

crosscutting concerns that cannot be encapsulated by a single use case, for example, and

are typically spread across several of them. Composition, on the other hand, allows the

developers to picture the whole system and to identify conflicting situations whenever a

concern contributes negatively to others [17].

Traditionally, AOSD has focused mainly on the implementation phase of the software

lifecycle since aspects are identified and captured mainly at coding. But aspects have

been also applied to former phases as design and even earlier as requirements to cover

consistently the entire development process [2] [28].

Figure 3.1: Aspects modularization [4]

3.2.1 Aspectual Implementation: Advices and Pointcuts

Aspect-orientation proposes a fundamentally new kind of modularization that goes

beyond generalized procedures: an aspect. An aspect is a module that can localize the

implementation of a crosscutting concern. The aspectual decomposition modularizes

scattering problems --i.e. one concern in many modules, and tangling problems --i.e.

one module, many concerns. Thus, the key to this modularization technique lies in its

module composition mechanism. Figure 3.1 shows graphically the idea supporting

aspects using an example at the implementation level. While subroutines explicitly

Aspects

15

Program

 Object 1
 data

 Object 2
 data

 Object 3
 data

 Object 4
 data

Program

 Object 1
 data

 Object 2
 data

 Object 3
 data

 Object 4
 data

Aspect

Implicit invocation

Crosscutting Concerns

7

Program

 Object 1
 data

 Object 2
 data

 Object 3
 data

 Object 4
 data

Concern Implementation

A Object 1
B Object 2
C Object 3
D Object 4
E Object 1,2,3

Typical examples: synchronisation, error handling, timing
constraints, user-interface, ...
Also concerns of a specific application, e.g.: login functionality in
webshop, business rules, ...

50

invoke the behaviors implemented by other subroutines, aspects have an implicit

invocation mechanism [4]. This mechanism that injects aspects into the primary or

dominant decomposition is called “aspect weaving”. The implicit invocation mechanism

requires that the aspect itself specifies “where or when” it needs to be invoked and also

“what” needs to be injected.

Figure 3.2: Aspects implementation [4]

Consequently, as Figure 3.2 shows, an aspect implementation consists of two

conceptually different parts: the aspect functionality code --i.e. aspect functional

implementation, and the aspect applicability code –i.e. aspect control over implicit

invocation. The aspect functionality code is not essentially different from regular code

and is executed when the aspect is invoked. This invocation of the aspect is determined

by the aspect applicability code. This code contains statements that specify where or

when the aspect needs to be invoked. In standard AOSD terminology, this aspect

applicability code is referred to as a “pointcut” expression, which must match a join

point, and the aspect functionality code is referred to as the aspect “advice” code. Since

a single aspect can consist of multiple different functionalities that need to be invoked

from various different places in the code, an aspect implementation can consist of

several pointcuts and advice code segments.

 Where / When ?

 What ?

Joinpoints

27

Program

 Object 1
 data

 Object 2
 data

 Object 3
 data

 Object 4
 data

Aspect

joinpoint: !

A join point is a point
of interest in some
artefact in the software
lifecycle through which
two or more concerns
may be composed.

Examples in implementation artefact:

- message sends

- method executions

- error throwing

- variable assignments

- ...

51

3.3 Reference Frameworks and Ontologies

Our approach involves two main elements when designing the user interface towards

achieving Accessibility of Web applications. Firstly, a reference framework can serve

us as a conceptual structure for making design decisions when building useful user

interface models for Accessibility purpose. Secondly, ontologies can provide us with a

formal specification for the abstract interface vocabulary. In the following sections, we

introduce these two main elements.

3.3.1 Design Decisions within a User Interface Framework

There are many decisions that developers must make during the design of a user

interface. As with any complex decision-making process, it is useful to partition the set

of decisions into classes and concentrate on the decision in each class, separately. A

design decision framework consists of a collection of design decision classes. When

decisions in each of the design decision classes are combined, an overall design is

synthesized [27]. The criteria for identifying and constructing decision classes are

separation, completeness, sufficiency, understandability, independence, reusability and

soundness.

We applied in our work the Larson’s user interface design decision framework [27] that

defines the following five classes:

! Structural decision class, which specifies the structure of the end users’ conceptual

model. These specifications include a description of the conceptual objects that are

consumed, produced, and/or accessed by the end users and application functions.

! Functional decision class, which specifies functions (operations), which the user can

apply to the conceptual objects. Functional decisions determine what requests the

users can express and what results the application functions can present to the user.

! Dialog decision class, which specifies the content and sequence of information

exchange between the user and the application. In this class, the designer specifies

the dialog style taking into account: (i) what the units of information exchanged

between the user and the application are, (ii) how these units of information are

structured into messages exchanged between the user and the application and, (iii)

52

what the appropriate sequences of message exchanged are. These units of

information, which have a formally defined meaning, are called “semantic tokens”.

! Presentation decision class, where the designer chooses interaction objects that

make up the end users’ interface. Informally, interaction objects are visible widgets

on a screen that the user can manipulate to enter lexical tokens and which the user

views to obtain lexical tokens. A “lexical token” is a keystroke, mouse movement,

or mouse click entered by the user or a character, icon, or elementary sound

presented to the user.

! Pragmatic decision class, which deals with issues of gesture, space, and hardware

devices. Often these decisions are determine by designers in conjunction with

ergonomic specialist.

Since the last three classes are related to the user interaction and activities with the

application’s interface, and they are also directly involved with Web Accessibility, we

ensure their inclusion in our approach. As an example, consider decisions involving

Accessibility requirements in the case of playing a song’s track at a music Web site. The

Dialog decision class must describe a sequence of commands for turn-on / turn-off the

song’s track. While in the Presentation decision class, the designer chooses the

appropriate vocabulary and widgets for individualizing these two commands clearly to

the user. Finally, in the Pragmatic decision class, the designer chooses the hardware,

such as a mouse or a touchscreen, for selecting these commands.

Larson's framework [27] gives us a comprehensive and general view that can be

instantiated with different conceptual models, such as the approach proposed eleven

years later by Baxley in [3]. This proposal describes a universal model of a user

interface that can be applied to any interactive medium or product based on the

established model of structure-behavior-presentation.

Table 3.1 shows how this early proposal, can be easily mapped to design decision

classes introduced by the Larson’s framework to add additional levels of granularity or

specificity. For example, Larson’s presentation class (corresponding to Baxley’s

presentation tire) can be specified in depth at layout, style and Baxley’s text layers. This

can be useful if the design for the user interface under development requires the explicit

identification of these components at the presentation model.

53

Table 3.1: Mapping between Larson’s framework [27] and Baxley’s model [3]

Baxley’s Universal Model of User Interface Larson’s User Interface Design Decision Framework
Tires Layers Classes
Structure Conceptual Model Structural & Functional

Task Flow
Organization Model

Behaviour Viewing & Navigational Dialog
Editing & Manipulation
User Assistance

Presentation Layout Presentation
Style
Text

3.3.2 An Ontology to share Abstract Interface Vocabulary

Any hypermedia Web application exchange information through its user interface with

its environment in order to fulfill a task. The most abstract level is called abstract user

interface and focuses on the various types of functionality that can be played by

interface widgets with respect to the information exchange between the user and the

application.

We applied the Abstract Widget Ontology [36], which provides an abstract interface

vocabulary to represent the various types of functionality that can be played by interface

widgets with respect to the activity carried out, or the information exchanged between

the user and the application. This ontology can be thought of as a set of classes whose

instances will comprise a given interface.

As shown in Figure 3.3, an abstract interface widget can be any of the following [36]:

! SimpleActivator widget, which represents elements capable of reacting to external

events, such as mouse clicks on links or action buttons.

! ElementExhibitor widget, which represent elements able to exhibit some type of

content, such as text or images.

! VariableCapture widget, which represent elements able to receive/capture, the value

of one or more variables. As we can see in Figure 3.3, the VariableCapture widget

generalizes two distinct (sub) concepts. The first one is the ontology (sub) concept

PredefinedVariable, which represents elements that allow the selection of a subset

from a set of predefined values, such as buttons and check boxes; often this

selection must be a singleton. The second ontology (sub) concept is the

54

IndefiniteVariable, which represents elements that allow the user to enter data

(previous unknown values) through the keyboard, such as text typed by the user in a

text box on a form.

! CompositeInterfaceElement widget, which is a composition of any of the abstract

interface widget represented by the ontology’s previous concepts.

Figure 3.3: Abstract Widget Ontology [36]

It becomes evident from this ontology the essential roles that interface elements play

with respect to the interaction --i.e. they exhibit information, or they react to external

events, or they accept information. Composite elements allow us to build more complex

interfaces out of simpler building blocks [36]. Once the abstract interface model has

been defined, each widget is mapped onto a concrete widget to specify the concrete

interface model. An abstract interface widget provides a type of functionality to the user

by using an interface element, while a concrete interface widget is the actual

implementation of that interface element in a given mark-up language or a runtime

environment.

Since HTML is the “lingua franca” --i.e. a means of communication between people of

different languages for publishing hypertext on the World Wide Web, in Sections 5.3.2

and 5.4 we map these ontology concepts onto HTML elements; this mapping is

presented when we describe our model for user interface concerns.

3.4 User Interaction Diagrams

A User Interaction Diagram (UID) [44] is a diagrammatic modeling technique focusing

exclusively on the information exchange between the application and the user. UIDs are

IndefiniteVariable

ContinuosGroup DiscreteGroup SingleChoices MultipleChoices

VariableCapture ElementExhibitor SimpleActivator

PredefinedVariable

AbstractInterfaceElement

CompositeInterfaceElement

55

an outstanding tool to support the communication between different stakeholders during

requirements specification and are particularly valuable considering the interactive

nature of Web applications. UIDs can be used to enrich the use case models but they are

also key graphical tools for linking requirements at later stages of a WE development

process to obtain conceptual, navigational and user interface diagrams [43].

Figure 3.4: A simple UID: Enrolling a Student in an Examination Board given a Course

UIDs are simple state machines, and at the same time an effective instrument to convey

the evolution of a Web application process and to support traceability from

requirements to later design steps, smoothing the way to implementation. In Figure 3.4

we show a simple UID to express the use case “Enrolling a Student in an Examination

Board given a Course” in the context of the SIU Guarani registration system.

To ease the comprehension of Figure 3.4, we include here some remarks about the

UID’s notation. The ellipse represents an interaction between the user and the system

and is assigned a number representing its order in the interaction sequence. An ellipse

< 1 >

[courseSelected]

[examinationOptionSelected]

Identified
Student

… InitialOptions(optionTitle)
Student X

Student X

< 3 >

[1]

[1]

< 4 >

… Courses(courseTitle)

Registration Completed !!!

[1]

[careerSelected]

 … Career(careerTitle)

Student X

< 2 >

 UID < Student’s Login >

Career X

print Registration()

56

with an arrow without a source particularly recognizes the initial interaction; the results

of each subsequence interaction, which cause processing in the system, should be

represented as a separate ellipse, connected to the preceding interaction by an arrow.

Each ellipse offers content to the user that depends on the interaction sequence of the

task represented by the UID. For example, an ellipse can provide the user with any of

the following widgets: (i) a data entry i.e-- data entered by the user and graphically

represented by a rectangle; (ii) text i.e--descriptive text represented by “XXXX”; (iii) a

structure with their data items or a set of structures with their data items i.e--selectable

elements represented by “element(data items)” or by “...element(data items)”

respectively. A more formal description of the original UID’s notation can be found in

[43] [44].

In the first interaction of Figure 3.4 (indicated by <1> and an incoming arrow), a student

already identified at the SIU Guarani system by a previous UID corresponding to the

use case “Login a Student given the Student’s ID and Password”, selects only the

examination option (represented by “[1]”) from an initial set of options (represented by

“...”). At interaction <2>, the response of the system is the set of careers in which a

student is enrolled. Notice that this set always has at least two elements and this is

because even if the student is enrolled in only one career, the SIU Guarani system offers

examination enrolling for admission’s courses or career’s courses. The student chooses

one of them and the system returns at interaction <3> a complete set of courses (related

to the selected career) in which the student is able to enroll. The student selects a course

and the system returns at interaction <4> the registration to an examination board for the

course. Additionally, the user can perform the operation “print Registration” (indicated

by a line with a black bullet) to get a receipt of the registration completed. The complete

syntax for UIDs can be found in [44].

3.5 Softgoal Interdependency Graphs

Softgoal Interdependency Graphs (SIGs) have been intensively used in software

engineering for modeling non-functional requirements [11] [12]. For example, a

framework for integrating non-functional requirements (NFRs) with functional ones in

the use case model is proposed in [12]. In this framework, NFRs are represented as

57

“softgoals” to be “satisfied”. To determine satisficeability, design alternatives or

decisions (called operationalizing softgoals) are considered; design tradeoffs are

analyzed, design rationale is recorded and design choices are made. The entire process

is recorded in a “Softgoal Interdependency Graph” (SIG) and then the selected design

decisions (operationalizing softgoals) can be used as a framework for architecture and

design [12].

Figure 3.5: Softgoal Interdependency Graph (SIG) for Student Friendliness NFR

In Figure 3.5 we partially depict a SIG for the Student Friendliness softgoal in the

context of the SIU Guaraní registration system. The light cloud indicates an NFR

softgoal, denoted with nomenclature Type[Topic] where Type is a non-functional aspect

--e.g. Student Friendliness, and Topic is the context for the softgoal --e.g. a Student

accessing the SIU Guaraní registration system. Either Type or Topic of each NFR

softgoals can be refined, one at a time, with either AND-decomposition (denoted with a

single arc) or OR-decomposition (denoted with a double arc). For example, as shown in

Figure 3.5, Student Friendliness[Student - SIU Guaraní system] is OR-decomposed into

Student Friendliness[Manifest Model] and Student Friendliness[Technical Model]. The

manifest model is the UI model through which the software represents its functioning to

the user and it is built around task, people and business objects; while the technical

model is the model with which developers feel most comfortable and it is built around

objects, method, algorithms and data structures [26].

[Technical Model]

UI Support Student Support

++
- -

Student Friendliness [Student - SIU Guaraní System]

[Manifest Model]

 !
!

Ad-hoc Development

Process

Information Gathering about
Students

Accurate
Response

Accurate
On-line Help

++

- -

++

++

 ++

++

! !

X

"

Custom Keypad
++

"

58

Since student friendliness is the NFR under evaluation, the focus is on the Manifest

Model token that is AND-decomposed into Student Support[Manifest Model] and UI

Support [Manifest Model]. The dark cloud indicates an operationalizing softgoal. For

example, in most development environments the developers agree on a basic framework

and the UI is constructed in an ad-hoc manner when the screens are coded. This kind of

practice has a highly negative contribution since a formal UI model is never constructed

and this is the reason why in Figure 3.5, the operationalizing softgoal Ad-hoc

Development Process is denied.

3.6 Web Content Accessibility Guidelines Documents

Since the WCAG has two documents (1.0 and 2.0), it is important to make clear at this

point why we chose the 1.0 document. WCAG 1.0 has been used worldwide since 1999

as a reference material or cited as a normative from many other Accessibility documents

in the world [34] [38] [40]. Many tools and approaches also have implemented it.

Although the WCAG 2.0 has been released in December 2008 and it is a fact that so far

the rate of adoption has been relatively slow. For example, though it appears that within

UK government departments there is a growing acceptance that websites under

development should conform to WCAG 2.0, the official government policy still remains

WCAG 1.0. As another example, in Germany, despite not using the WCAG, all public

websites are beginning to use the usability regulation which incorporates WCAG 1.0

and migration of the Accessibility national guideline to WCAG 2.0 is just beginning;

meanwhile in Spain, where any rule specified by legislation refers to a national standard

based on WCAG 1.0, as far as we know, there is no regulation oriented toward WCAG

2.0 yet. Finally, since Section 508 [38] is undergoing a revision over the next couple of

years [42], we have to wait approximately until 2011-2012 for the WCAG 2.0 to be

harmonized into this Accessibility standard. At this point we emphasize that we are pre-

supporting new issues addressed by W3C-WAI, but in light of how the migration of

Accessibility regulations toward WCAG 2.0 is evolving, we think that the WCAG 2.0 is

still in its infancy and therefore some time must pass before it is widespread adopted.

As we already mention in Section 2.1, the situation in Argentina is less developed, since

Web Accessibility is an issue that has been recently included in the State's agenda. The

59

legislation 26.653 called “Guía de Accesibilidad para Sitios Web del Sector Público

Nacional37”, which adheres to WCAG 1.0 document, was approved by Resolution

69/2011 on June 27th 2011. In August 2011, Argentina became a member of the

W3C38. As argentine citizens committed with Accessibility, we have much expectation

about this first steps towards an inclusive government Web for all.

In addition to the reasons stated above, we selected the WCAG 1.0 because it is a

mature, committed to all possible Accessibility barriers and stable document version

and part of a series of valuable and related Accessibility guidelines published by the

W3C-WAI [50] with which WCAG 1.0 can be applied in conjunction. We revisit this

discussion in Section 7.3.1 where we also provide some insights on how we upgraded

our approach to WCAG 2.0 [46].

37 Access to Public Information by Law 26.653 at

http://www.infoleg.gov.ar/infolegInternet/anexos/175000-179999/175694/norma.htm

38 Argentina became a member of the W3C at http://www.puntogov.com/nota.asp?nrc=2641

60

