

84

5. APPLYING OUR PROPOSAL

5.1 A Case Study

The SIU Guaraní student registration system is been used by a number of public

universities in Argentina. It offers online information and/or diverse registration

functionalities to their students. Since these kind of online systems give support to an

educational organization, Accessibility is a main factor for all users but plays a key role

for students with disabilities. In the spirit of such systems, we define the case study to

apply our Aspect-Oriented approach, reusing the Student’s login and the University

home page examples, shown in Figures 1.1 and 2.1, respectively.

As Figure 5.1 shows, we propose a case study of 3 (three) level-deep navigation and 2

(two) optional anchors to get some help for data inputs ID and Password at the login

Web page. The first level, shown in Figure 5.1 (a), is the student’s University home

page where the student selects the link to his/her respective Faculty site from a group of

consecutive and related links. We highlight that we have already presented and

explained this page example in Section 2.2.1 (as shown in Figure 2.1), since it is the one

used to exemplify the related work. The second level, shown in Figure 5.1 (b), is the

student’s Faculty page that provides information about this institution among other

functionalities and, offers a link to the SIU Guaraní student registration system. Finally,

the third level, shown in Figure 5.1 (c), is the student’s login page example, which we

also have already presented and described in Section 1.1 (as shown in Figure 1.1) and

then in Section 4.2 by the use case “Login a Student given the Student’s ID and

Password”. From this third level, the student has the ability to browse for getting help

to ID and/or Password if he/she fails to login to the system. These two pages, shown in

Figure 5.1 (d), provide students with some helpful information and the chance to return

to the login Web page.

To carry out the implementation of our approach clearly, in Section 5.2 we follow the

step-by-step process as we described in Chapter 4 and depicted in Figure 4.1.

85

Figure 5.1: A Case Study

(a)

(b)

(c)

(d)

86

5.2 Our Proposal Step-by-Step on the Field

STEP 1. As highlighted in Figure 4.1 (1), we propose to manage the requirements of

the case study to identify those that involve user-system interaction. Specifically, we

focus on those requirements at the user interface (UI) that let the students reach the

login Web page browsing through the three level-deep navigation, which we defined

above for the case study, as follow:

! Level 1 – The Student’s University home page. The corresponding UI design

provides the interface widgets43 that allow the student to choose the anchor to

his/her Faculty from a set of Faculty names, which make up the student’s

University. In this case, as Figure 5.1 (a) shows, the UI design must include at least,

for each link to Faculties, a widget of the type SimpleActivator at the abstract

interface model mapped to the concrete interface model on a widget of the type

HTML link. Also, as shown in Figure 5.1 (a), the UI design must include an extra

link to skip the navigation bar. All these widgets are grouped together into a

CompositeInterfaceElement at the abstract interface model and mapped to a

concrete interface model on HTML related links. To complete de understanding of

this mapping, refer to the association table for the HTML link and button group

introduced in Section 4.5.2 by Table 4.2.

! Level 2 – The Student’s Faculty page. Basically, as Figure 5.1 (b) shows, the UI

design must include, for the link to the SIU Guaraní registration system, a clear

widget of the type SimpleActivator at the abstract interface model mapped to the

concrete interface model on a widget of the type HTML link. To complete de

understanding of this mapping, refer to the association table for the HTML link and

button group introduced in Section 4.5.2 by Table 4.2.

! Level 3 – The Student’s Login page. The corresponding UI design provides the

interface widgets that allow the student to login the SIU Guarani registration system.

In this case, as Figure 5.1 (c) shows, the UI design must include at least, for the

student’s identification purpose, two widgets of the type IndefiniteVariable at the

43 To make this Step-by-Step explanation clearer, whenever we use “widgets” without specifying of

which type, we are referring to both, abstract and concrete ones.

87

abstract interface model mapped to the concrete interface model on two widgets of

the type HTML text field. The mission of these widgets is to receive the student’s

ID and Password values. Normally, these two widgets are grouped together into a

CompositeInterfaceElement at the abstract interface model and mapped to the

concrete interface model on HTML related controls to create a form. To complete

the understanding of this mapping, refer to the association table for the HTML

control group introduced in Section 4.3.2 by Table 4.1.

! Levels 1, 2 and 3. These three UI designs also provide text and images for student’s

information purpose. In this case, the UI designs must include three widgets of the

type ElementExhibitor at the abstract interface models mapped to the concrete

interface models on three widgets of the type HTML image. The mission of these

widgets is to include the University logo (as shown in Figure 5.1 (a)), the Faculty

picture (as shown in Figure 5.1 (b)), and the image of the key-lock (as shown in

Figure 5.1 (c)). To complete de understanding of this mapping, refer to the

association table for the HTML text and non-text group introduced in Section 4.5.2

by Table 4.3.

! Level 4 – Help pages (Optional). These two UI designs provide some instructive

text about the data inputs ID and Password. In this case, as Figure 5.1 (d) shows,

each UI design must include, for allowing the student to go back to the login page, a

clear widget of the type SimpleActivator at the abstract interface model mapped to

the concrete interface model on a widget of the type HTML link. To complete de

understanding of this mapping, refer to the association table for the HTML link and

button group introduced in Section 4.5.2 by Table 4.2.

It is important to highlight that browsing these pages is optional and therefore, if the

student follows these help links, his/her decision will produce a different navigation

path. At this point, we are focused on the UI models because, undoubtedly, is at the

UI level where Accessibility barrier finally show; but in Section 6.3, we will revisit

this argument to discuss the potential of our approach to deal with situations that

could affect the Accessibility of the navigational models.

! Levels 1, 2, 3 and 4. Also, these four UI designs must consider widgets of the type

ElementStyling at the abstract interface models mapped to the concrete interface

88

models on widgets of the type HTML formatting & positioning. The mission of

these widgets is to define the appearance of the content --i.e. the look-&-feel of the

UI. To complete de understanding of this mapping, refer to the association table for

the HTML frame and style sheet group introduced in Section 4.5.2 by Table 4.5.

Figure 5.2: UID with integration points for the Case Study

STEP 2. As highlighted in Figure 4.1 (2.1) and (2.2), for specifying Accessibility

concerns, we encourage the early capture of these Accessibility requirements by

applying the UID and SIG conceptual tools.

[INVALIDSTUDENTINPUTDATA]

Error in Input Data !!!

[VALIDSTUDENTINPUTDATA]

< 3 >

ID
Password

< 3.2 > IDForm
< 3.1 > KeyLockImage

SIU Guarani Registration System

 Accessibility integration point
HTML image

 Accessibility integration point
HTML link

 Accessibility integration point
HTML image

 Accessibility integration point
HTML related controls

 Accessibility integration point
HTML image

 Accessibility integration point
HTML related links

Unidentified
Student

< 1 >

< 1.1 > UniversityLogo
University(universityName, universityLogoImage)
 < 1.2 > … FacultyLinks(facultyName)

[SELECT1FACULTY]

< 2 >

< 2.1 > FacultyPicture
Faculty(facultyName, facultyPictureImage)

 < 2.2 > SIUGuaraniLink

 UID < Enrolling a Student … >

Identified
Student

 ID Help

 Password Help

< 4 >

89

STEP 2.1. We develop the UID diagram with integration points for the case study. As

shown in Figure 5.2, at the UID interactions <1>, <2>, <3> and <4>, we outline the

integration points that remain the Accessibility concerns that are crucial at each

navigation level described above, as follow:

! Level 1 – UID Interaction <1>. We set <1.2> integration point for the HTML

HTML related links corresponding to the links to Faculties.

! Level 2 – UID interaction <2>. We set <2.2> integration point for the HTML link

corresponding to the link to the SIU Guarani registration.

! Level 3 – UID interaction <3>. We set <3.2> integration point for the HTML

related controls corresponding to the form for the student’s identification. The

Accessibility concerns, which are required by the related HTML text fields that

make up the form, are relevant to a successful login information exchange between

the student and the application, during the execution of the identification function.

! Levels 1, 2 and 3 – UID interactions <1, 2, 3>. We set <1.1>, <2.1> and <3.1>

integrations points for the HTML images corresponding to the images of the

University logo, the Faculty picture and the key-lock, respectively.

! Level 4 – UID interactions <4> (Optional). As we already said before, from Level

3, it is possible to browse to get some help for data inputs ID and Password.

Although in Figure 5.2 we have not included details about the integration points

required for these pages, we can set them for the HTML text and the HTML link

corresponding to a helpful text and a link that clearly allows the student to return to

the login Web page, respectively.

! Levels 1, 2, 3 and 4 – UID interactions <1, 2, 3, 4>. In Figure 5.2 we have not set

integrations points for the HTML formatting & positioning to make simpler the

understanding of the diagram and because, as we will see in Step 2.2, these are

Accessibility concerns required in general for all Web pages.

STEP 2.2. We instantiate the SIG template for the Accessibility integration points

outlined by the UID interactions <1>, <2>, <3> and <4> in Step 2.1, to identify WCAG

1.0 Accessibility requirements. In Section 3.5, we presented the basis of the SIG’s

notation and vocabulary and then, in Section 4.3.2, we explained how we extended this

90

conceptual tool into a template to handle the Accessibility concerns. At this template,

the focus of the Accessibility softgoal is highlighted into the root light cloud. The user

technology support and the user layout support branches are specified into light clouds

and dark clouds respectively. The light clouds represent the refined Accessibility

softgoal --i.e. the required WCAG 1.0 guidelines; while the dark clouds represent

operationalizing goals --i.e. the required checkpoints to be satisfied. At this point, note

that the association tables presented in Sections 4.3.1 and 4.5.2 help to the SIG

instantiation process. Applying the SIG template for Accessibility, we develop the SIG

diagrams at each navigation level, as follow:

! Level 1 – SIG diagram at the UID interaction <1>. As shown in Figure 5.3, we

focus the main Accessibility softgoal on the UID interaction (U-UI) <1> called

HTML University home. From this root, we define an Accessibility softgoal for the

UID interaction component (U-UIc) <1.2> FacultyLinks, to help to accessible

related links for all the students, including those with disabilities. In this case, to

support the SIG instantiation process, we use Table 5.2 for the HTML link and

button group, since the Accessibility softgoal is defined for the HTML related links

element to Faculties. Next, we explain the refinement process for the SIG

instantiation at the UID interaction <1>.

Figure 5.3: SIG instantiation for the UID interaction <1>

USER TECHNOLOGY SUPPORT

USER LAYOUT SUPPORT

!

TECHNOLOGY DEPENDENCE TECHNOLOGY INDEPENDENCE

+

13.1

+ -
+

13.5 13.4 13.6 9.4

 U-UI
< 1 > HTML UNIVERSITY HOME

 U-UIC
< 1.2 > HTML RELATED LINKS U-UIC

< 1.1 > HTML IMAGE

10.5

USER LAYOUT SUPPORT

+ -

9.5

+ - + - + - +

+

2.2

++

2.1

++

1.1

91

Firstly, looking at the user technology support branch in Figure 5.3, a distinction

between “technology independence” and “technology dependence” is made in

concordance with the distinction made in Section 4.3.2. To help to the universal

access of devices to the HTML related links element, we chose an AND-

decomposition; but the choice for an AND/OR decomposition will depend on the

designer’s decisions and the application’s constraints. For “technology

independence”, satisfying goals related to guidelines 10 and 13 for checkpoints 10.5

and 13.6 compliance are required. Otherwise for “technology dependence”,

satisfying goals related to guidelines 9 and 13 for checkpoints 9.4 and 9.5; 13.5 and

13.4 compliance are required. Now looking at the user layout support, satisfying

goals related to guideline 13 for checkpoint 13.1, compliance is required for the

HTML related links element.

Figure 5.4: SIG instantiation for the UID interaction <2>

! Level 2 – SIG diagram at the UID interaction <2>. As shown in Figure 5.4, we

focus the main Accessibility softgoal on the UID interaction (U-UI) <1> called

HTML Faculty page. From this root, we define an Accessibility softgoal for the UID

interaction component (U-UIc) <2.2> SIUGuaraniLink, to help to an accessible link.

Here, to support the SIG instantiation process, we also use Table 5.3 for the HTML

USER TECHNOLOGY SUPPORT

USER LAYOUT SUPPORT

!

TECHNOLOGY DEPENDENCE

+

13.1 9.4

 U-UI
< 2 > HTML FACULTY PAGE

 U-UIC
< 2.2 > HTML LINK

 U-UIC
< 2.1 > HTML IMAGE

USER LAYOUT SUPPORT

9.5

+ - + -

+

2.2

++

2.1

++

1.1

92

link and button group, since the Accessibility softgoal is defined for the HTML link

element to the SIU Guarani registration system. Next, we explain the refinement

process for the SIG instantiation at the UID interaction <2>.

Firstly, looking at the user technology support branch in Figure 5.4, “technology

dependence”, for satisfying goals related to guideline 9 for checkpoints 9.4 and 9.5,

compliance are required for the HTML link element. Now looking at the user layout

support, for satisfying goal related to guideline 13 for checkpoint 13.1, compliance

is required for the HTML related links element.

Figure 5.5: SIG instantiation for the UID interaction <3>

! Level 3 – SIG diagram at the UID interaction <3>. As shown in Figure 5.5, we

focus the main Accessibility softgoal on the UID interaction (U-UI) <3> called

HTML SIU Guarani page. From this root, we define an Accessibility softgoal for

the UID interaction components (U-UIc) <3.2> IDForm, to help to accessible

related controls. In this case, to support the SIG instantiation process, we use Table

5.1 for the HTML control group, since the Accessibility softgoal is defined for the

HTML related controls element, which is a form composed of two HTML text

fields for student identification purpose. Next, we explain the refinement process for

the SIG instantiation at the UID interaction <3>.

USER TECHNOLOGY SUPPORT

USER LAYOUT SUPPORT

!

TECHNOLOGY DEPENDENCE TECHNOLOGY INDEPENDENCE

+

12.4 10.4 9.5

 U-UI
< 3 > HTML SIU GUARANÍ PAGE

 U-UIC
< 3.2 > HTML RELATED CONTROLS

 U-UIC
< 3.1 > HTML IMAGE

10.2

USER LAYOUT SUPPORT

9.4

+ + - + - + -

+

2.2

++

2.1

++

1.1

+

12.3

93

Firstly, looking at the user technology support branch in Figure 5.5, we chose an

AND-decomposition, as we already did at the SIG instantiation at UID interaction

<1> and for the same reasons. For “technology independence”, for satisfying goals

related to guideline 10 for checkpoints 10.2 and 10.4, compliance are required.

Otherwise for “technology dependence”, for satisfying goals related to guideline 9

for checkpoints 9.4 and 9.5, compliance are required. Now looking at the user layout

support, for satisfying goals related to guideline 12 for checkpoint 12.3 and 12.4,

compliance are required for the HTML related controls element.

! Levels 1, 2 and 3 – SIG diagrams at UID interactions <1, 2, 3>. As shown in

Figures 5.3, 5.4 and 5.5, we focus the main Accessibility softgoals on the UID

interactions (U-UI) <1, 2, 3>. From these roots, we define Accessibility softgoals

for the UID interaction components (U-UIc) <1.1> UniversityLogo, <2.1>

FacultyPicture and <3.1> KeyLockImage to help to accessible HTML image

elements at each page. In this case, to support the SIG instantiation process, we use

Table 5.3 for the HTML text and non-text group, since these Accessibility softgoals

are defined for the HTML image elements of the University logo, the Faculty

picture and the key-lock respectively. Next, we explain the refinement process for

the SIG instantiation at the UID interactions <1, 2, 3>.

Figure 5.6: SIG instantiation for the UID interactions <1, 2, 3, 4>

Looking at the user layout support branches in Figures 5.3, 5.4 and 5.5, for

satisfying goals related to guidelines 1 and 2 for checkpoints 1.1, 2.1 and 2.2,

USER LAYOUT SUPPORT

+ -

14.3

++

3.4 6.1 3.3

 U-UI
< 1, 2, 3, 4 > HTML STYLESHEETS

+ + + +

94

compliance are required for the HTML image elements. In Section 4.1, we have

already said, that there are situations in which we can develop artifacts once and

then reused them, as they are required; at Step 2 in Figure 4.1 (2.1) and (2.2), we

have indicated the reuse capability of our approach with input/output arrows.

Clearly, this is one of those situations, since the Accessibility softgoal for the

HTML image element can be modeled once and then applied for the SIG

instantiation, as they are required. As Figures 5.3, 5.4 and 5.5 show, we surrounded

with dotted lines the UID interaction components (U-UIc) <1.1>, <2.1> and <3.1>

for the HTML image elements to highlight the reusable artifact applied to the SIG

diagrams of the case study.

! Level 4 – SIG diagram at UID interactions <4> (Optional). At this level, we

proceed in the same way as for the previous levels. We do not give details about this

optional level, because we consider it doesn’t provide new knowledge about

developing the SIG diagrams for Accessibility concerns.

! Levels 1, 2, 3 and 4 – SIG diagram at UID interactions <1, 2, 3, 4>. As shown in

Figure 5.6, we focus the main Accessibility softgoal on the UID interactions (U-UI)

<1, 2, 3, 4> called HTML Stylesheets. Here, to help the SIG instantiation process,

we use Table 5.5 for the HTML frame and style sheet group, since the Accessibility

softgoals are defined for the HTML style sheet elements to provide formatting and

positioning support to the user layout. Next, we explain the refinement process for

the SIG instantiation at the UID interactions <1>, <2>, <3> and <4>.

Looking at the user layout support branch in Figure 5.6, for satisfying goals related

to guidelines 3, 6 and 14 for checkpoints 3.3 and 3.4, 6.1, 14.3, compliance are

required for the HTML style sheet element.

STEP 3. As highlighted in Figure 4.1 (3), for the user interface design activity, we

exploit the Accessibility knowledge captured and organized by SIG diagrams in Step

2.2. The purpose here is to find out how WCAG 1.0 Accessibility concerns “crosscut”

the user interface widgets (abstract and concrete ones). In order to make our discussion

clear, we focus on explaining how the SIG’s operationalizing goals --i.e. the required

WCAG 1.0 checkpoints to be satisfied for an accessible student’s login -- “crosscut” the

components of each HTML element corresponding to an abstract interface ontology

95

widget. Since applying the required WCAG 1.0 checkpoints to be satisfied at the user

interface causes typical crosscutting symptoms --i.e. “scattering” and “tangling”

problems -- it is clear that aspect-orientation is the natural approach to solve these

crosscutting symptoms. The SIG diagrams not only provide Accessibility technology

and layout support respectively for any of the HTML elements at the user interface, but

also allow Aspects to be modeled and instantiated appropriately to avoid “scattering”

and “tangling” problems. Then Aspects can be seamless injected by the “weaving”

mechanism into the core --i.e. user interface models, to achieve the Accessibility

softgoal and as a consequence an HTML code with the desired conformance to the

WCAG 1.0. As shown in Figure 4.1 (3.1), we work on the abstract user interface

required at each navigation level, as follow:

Figure 5.7: SIG’s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

related links element (Concrete Interface Widget) corresponding to a

CompositeInterfaceElement (Abstract Interface Widget)

! Level 1 – UI model at UID interaction <1>. As shown in Figure 5.7 through a

diagram similar to UML, whenever there is an HTML related links element at the

user interface model, Aspect I “TSRelatedLink” and Aspect II “LSRelatedLinks”,

focused on solving technology and layout Accessibility issues respectively, are

injected to avoid the “scattered” and “tangling” nature of Accessibility checkpoints

9.4 and 9.5, 10.5, 13.4 and 13.5, 13.6 and 13.1 over HTML related links classes.

HTMLRELATEDLINKS (COMPOSITEINTERFACEELEMENT)

HTMLLINKTEXT

Scattering

Tangling

ASPECT I - ASPECT II
AVOIDING

SCATTERING & TANGLING
SYMPTOMS

II. LSRELATEDLINKS 13.1 identifyTarget()

HTMLLINK
(SIMPLEACTIVATOR)

I. TSRELATEDLINKS 9.4 tabOrderLink() 9.5 keyAccessLink()
 10.5 nonAdjacentLinks()
 13.4 consistentNavigation()
 13.5 navigationBar()
 13.6 groupRelatedLinks()

96

Figure 5.8: Accessible HTML code as a result of a “seamless” injection of Aspects I and II in

the UI model at UID interaction <1>

The addition of Aspect I “TSRelatedLinks” and Aspect II “LSRelatedLinks” reminds

later, at the implementation of the concrete interface model (as shown by Figure 4.1

(4.1), conformance to the following Accessibility concerns for each HTML related links

element: (i) creating a logical tab order and/or providing keyboard shortcuts for links,

(ii) including non-link, printable characters (surrounded by spaces) between adjacent

links, (iii) using navigation mechanisms in a consistent manner and providing

navigation bars to highlight and give access to the navigation mechanism, (iv) grouping

related links, identifying the group and providing a way to bypass the group and, (v)

clearly identifying the target of each link. Figure 5.8 shows the accessible HTML

corresponding to the student’s University home example, whose screenshot is shown in

Figures 2.1 and 5.1 (a).

! Level 2 – UI model at UID interaction <2>. As shown in Figure 5.9 through a

diagram similar to UML, whenever there is an HTML link element at the user

interface model, Aspect I “TSLink” and Aspect II “LSLink”, focused on solving

technology and layout Accessibility issues respectively, are injected to avoid the

CONFORMANCE TO WCAG 1.0
CHECKPOINTS 9.5, 10.5, 13.4, 13.5, 13.6

AND 13.1
ASPECT I - ASPECT II

AVOIDING
SCATTERING & TANGLING SYMPTOMS

97

“scattered” and “tangling” nature of Accessibility checkpoints 9.4 and 9.5, and 13.1

over HTML link classes.

Figure 5.9: SIG’s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML link

element (Concrete Interface Widget) corresponding to a SimpleActivator (Abstract Interface

Widget)

The addition off Aspect I “TSLink” and Aspect II “LSLink” reminds later, at the

implementation of the concrete interface model (as shown by Figure 4.1 (4.1)),

conformance to the following Accessibility concerns for each HTML link element: (i)

creating a logical tab order and/or providing keyboard shortcuts for links and, (ii)

clearly identifying the target of each link.

Figure 5.10: Accessible HTML code as a result of a “seamless” injection of Aspects I and II in

the UI model at UID interaction <2>

Scattering

Tangling

ASPECT I - ASPECT II
AVOIDING

SCATTERING & TANGLING
SYMPTOMS

II. LSLINK 13.1 identifyTarget()

HTMLLINK
(SIMPLEACTIVATOR)

HTMLLINKTEXT

I. TSLINK 9.4 tabOrderLink() 9.5 keyAccessLink()

CONFORMANCE TO WCAG 1.0

CHECKPOINTS 9.5 AND 13.1
ASPECT I - ASPECT II

AVOIDING
SCATTERING & TANGLING SYMPTOMS

98

Figure 5.10 shows the accessible HTML code corresponding to the student’s Faculty

page example, whose screenshot is shown in 5.1 (b).

! Level 3 – UI model at UID interaction <3>. As shown in Figure 5.11 through a

diagram similar to UML, whenever there is an HTML related controls element,

which in this case comprises two HTML text field elements at the user interface

model, Aspect I “TSRelatedControls” and Aspect II “LSRelatedControls”, focused

on solving technology and layout Accessibility issues respectively, are injected to

avoid the “scattered” and “tangling” nature of Accessibility checkpoints 9.4 and 9.5,

10.2 and 12.4, 10.4 and 12.3 and over HTML related controls classes.

Figure 5.11: SIG’s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

related controls element (Concrete Interface Widget) corresponding to a

CompositeInterfaceElement (Abstract Interface Widget)

The addition off Aspect I “TSRelatedControls” and Aspect II “LSRelatedControls”

reminds later, at the implementation of the concrete interface model (as shown by

Figure 4.1 (4.1)), conformance to the following Accessibility concerns for each

HTML related controls element: (i) creating a logical tab order and/or providing

keyboard shortcuts for controls, (ii) supporting explicit association between HTML

label elements and controls, (iii) handling empty controls correctly by including

default, place-holding characters and, (iv) grouping related controls with HTML

fieldset and legend elements. Figure 5.12 shows the accessible HTML code

corresponding to the student’s login page example, whose screenshot is shown in

Figures 1.1 and 5.1 (c).

HTMLRELATEDCONTROLS (COMPOSITEINTERFACEELEMENT)

HTMLLABEL

Scattering

Tangling

ASPECT I - ASPECT II
AVOIDING

SCATTERING & TANGLING
SYMPTOMS

II. LSRELATEDCONTROLS 12.4 explicitAssociation()

HTMLTEXTFIELD
(INDEFINITIVEVARIABLE)

I. TSRELATEDCONTROLS 9.5 keyAccessControl() 9.4 tabOrderControl()
 10.2 promptPosition() 10.4 defaultCharacters()

 12.3 groupRelatedControls()

99

Figure 5.12: Accessible HTML code as a result of a “seamless” injection of Aspects I and II in

the UI model at UID interaction <3>

! Level 1, 2 and 3 – UI models at UID interactions <1, 2, 3>. As shown in Figure

5.13 through a diagram similar to UML, whenever there is an HTML image

element, Aspect II “LSImage”, focused on solving layout Accessibility issues, is

injected to avoid the “scattered” nature of Accessibility checkpoints 1.1, 1.2 and 2.2

over HTML image classes.

The addition of Aspect II “LSImage” reminds later, at the implementation of the

concrete interface models (as shown by Figure 4.1 (4.1)), conformance to the

following Accessibility concerns for each HTML image element: (i) adding a text

equivalent for every image with a HTML alt-text element and, (ii) not relying on

images’ color alone to convey information. Figures 5.8, 5.10 and 5.12 show the

CONFORMANCE TO WCAG 1.0
CHECKPOINTS 9.4, 9.5, 10.2, 10.4, 12.3

AND 12.4
ASPECT I - ASPECT II

AVOIDING
SCATTERING & TANGLING SYMPTOMS

100

accessible HTML corresponding to the student’s University home page, the Faculty

page and the login page examples, whose screenshot are shown in Figures 5.1 (a),

5.1 (b) and 5.1 (c), respectively. As we can see in these HTML files, all the HTML

image elements have their corresponding text equivalent.

Figure 5.13: SIG’s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

image element (Concrete Interface Widget) corresponding to an ElementExhibitor (Abstract

Interface Widget)

! Level 4 – UI models at UID interaction <4> (Optional). At this level, we proceed

in the same way as for the previous levels. We do not give details about this optional

level, because we consider it doesn’t provide new knowledge about developing the

user interface models.

! Level 1, 2, 3 and 4 – UI models at UID interactions <1, 2, 3, 4>. As shown in

Figure 5.14 through a diagram similar to UML, whenever there is an HTML style

sheet element, Aspect II “LSStylesheet” focused on solving layout Accessibility

issues, is injected to avoid the “scattered” nature of Accessibility checkpoints 3.3,

3.4, 6.1 and 14.3 over HTML style sheet classes.

Figure 5.14: SIG’s operationalizing goals (WCAG 1.0 checkpoints) crosscutting an HTML

style sheet element (Concrete Interface Widget) corresponding to a

CompositeInterfaceElement (Abstract Interface Widget)

Scattering

ASPECT II
AVOIDING

SCATTERING SYMPTOMS HTMLIMAGE
(ELEMENTEXHIBITOR)

HTMLALT-TEXT

II. LSIMAGE 1.1 textEquivalent() 2.1 infoWithoutColor()
 2.2 useConstrastColors()

Scattering

ASPECT II
AVOIDING

SCATTERING SYMPTOMS HTMLSTYLESHEET
(COMPOSITEINTERFACEELEMENT)

II. LSSTYLESHEET 3.3 useStylesheetLayout&Presentation()
 3.4 useRelativeUnitsPositioning()
 6.1 makeAvailableWithoutStlysheet()
 14.3 useConsistentStylePages()

101

The addition of Aspect II “LSStylesheet” reminds later, at the implementation of the

concrete interface models (as shown by Figure 4.1 (4.1)), conformance to the

following Accessibility concerns for each HTML style sheet element: (i) using style

sheets to control page layout and presentation, (ii) using relative rather than absolute

units in markup language attribute values and style sheet property values, (iii)

organizing documents so they may be read without style sheets and, (iv) creating a

style of presentation that is consistent across pages. The HTML pages

corresponding to the student’s University home page, the Faculty page, the login

page and the help pages examples, whose screenshot are shown in Figures 5.1 (a),

5.1 (b), 5.1 (c) and 5.1 (d) respectively, keep a consistent styling across pages. As

we can see in Figures 5.8, 5.10 and 5.12, for formatting and positioning purpose,

these pages use an HTML style sheet element.

STEP 4. As highlighted in Figure 4.1 (4), for the user interface developing activity we

exploit the aspects applied for solving Accessibility crosscutting concerns discovered in

Step 3. As another way of illustrating how these aspects were seamless injected in an

abstract user interface to obtain a concrete user interface (at the design level) and then

an accessible and well formed HTML at the implementation level, we can express the

Accessibility concerns conveyed by aspects using a pseudo-code language. We provide

some examples for each level defined for the case study in Figure 5.1, as follow:

! Level 1 – Aspect I and Aspect II in the UI model at UID interaction <1>.

ASPECT I. TSRELATEDLINKS
POINTCUT ALL INTERFACE WIDGETS WITH CompositeInterfaceElement.SimpleActivator == HTML related links

PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

9.4 tabOrderLink == HTML tabindex element ! 9.5 keyAccessLink == HTML accesskey element !

10.5 nonAdjacentLinks == HTML printable characters as “[“ and “]” !

13.4 consistentNavigation == W3C Core Techniques for navigation !

13.5 navigationBar AND 13.6groupRelatedLinks == HTML map element.

ASPECT II. LSRELATEDLINKS
POINTCUT ALL INTERFACE WIDGETS WITH CompositeInterfaceElement.SimpleActivator == HTML related links

PROPERTY ADVICE ADD ACCESSIBILITY CONDITION 13.1 identifyTarget == HTML clear link text OR HTML tittle

element.

102

! Level 2 – Aspect I and Aspect II in the UI model at UID interaction <2>.

ASPECT I. TSLINK
POINTCUT ALL INTERFACE WIDGETS WITH SimpleActivator == HTML link

PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

9.4 tabOrderLink == HTML tabindex element ∧ 9.5 keyAccessLink == HTML accesskey element.

ASPECT II. LSLINK
POINTCUT ALL INTERFACE WIDGETS WITH SimpleActivator == HTML link PROPERTY ADVICE ADD ACCESSIBILITY

CONDITION 13.1 identifyTarget == HTML clear link text OR HTML tittle element.

! Level 3 – Aspect I and Aspect II in the UI model at UID interaction <3>.

ASPECT I. TSRELATEDCONTROLS
POINTCUT ALL INTERFACE WIDGETS WITH CompositeInterfaceElement.IndefiniteVariable == HTML related controls

PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

9.4 tabOrderControl == HTML tabindex element ∧ 9.5 keyAccessControl == HTML accesskey element ∧

10.2 promptPosition == HTML for element ∧

10.4 defaultCharacters == HTML value element ∧

12.3 groupRelatedControls == HTML fieldset element AND HTML legend element.

ASPECT II. LSRELATEDCONTROLS

POINTCUT ALL INTERFACE WIDGETS WITH CompositeInterfaceElement.IndefiniteVariable == HTML related controls

PROPERTY ADVICE ADD ACCESSIBILITY CONDITION 12.4 explicitAssociation == HTML for element.

! Level 1, 2 and 3 – Aspect II in UI models at UID interactions <1, 2, 3>.

ASPECT II. LSIMAGE

POINTCUT ALL INTERFACE WIDGETS WITH ElementExhibitor == HTML image

PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

1.1 textEquivalent == HTML alt element OR HTML longdesc element ∧

2.1 infoWithoutColor AND 2.2 useContrastColor == W3C HTML, Core AND CSS Techniques for color.

! Level 4 – Aspects in UI models at UID interaction <4> (Optional). At this level,

we proceed in the same way as for the previous levels. We do not give details about

this optional level, because we consider it doesn’t provide new knowledge about

injecting aspects in UI models.

! Level 1, 2, 3 and 4 – Aspect II in UI models at UID interactions <1, 2, 3, 4>.

ASPECT II. LSSTYLESHEET

POINTCUT ALL INTERFACE WIDGETS WITH ElementStyling.Formating&Positioning == HTML stylesheet

103

PROPERTY ADVICE ADD ACCESSIBILITY CONDITIONS

3.3 useStyleSheetLayout&Presentation AND 3.4 useRelativeUnitsPositioning AND

6.1 makeAvailableWithoutStylesheet AND 14.3 useConsistentStylePages == W3C HTML, Core AND CSS

Techniques for controlling layout and presentation.

These are high-level specifications to avoid “scattering” and/or “tangling” symptoms

caused by Accessibility concerns. The pointcut/advice pair specifies that, for all HTML

widget of a specific kind (the pointcut specification), conditions satisfying Accessibility

requirements are added (the advice specification).

As a result of modeling these aspects (using SIGs prescriptions for WCAG 1.0

checkpoints) and the addition of these aspects to deal with the targeted interface

widgets, Figures 5.8, 5.10 and 5.12 show the accessible implementations for the

concrete user interface models for the 3 (three) level-deep navigation case study in

Figure 5.1, in terms of “well formed” HTML like W3C document [45].

Figure 5.15: The supporting tool within our Aspect-Oriented design process

104

5.3 A Supporting Tool for Our Approach

Today, no one can deny the significance of having a supporting tool. The supporting

tool and the kind of support given and features covered by the tool is relevant,

especially to a design proposal. Related to this issue, our approach provides an initiative

for a supporting tool to assist developers in the implementation of cases, and on the

creation of their corresponding models by using reusable components. Currently, as

Figure 5.15 shows, the tool provides assistance at Step 3 of the design process for

applying the Accessibility aspects (prescribed by the SIGs diagrams) to user interface

models --i.e. abstract and concrete user interface models.

To achieve with its main purpose, the tool must deal with the concepts previously

described, such as SIG diagrams, association tables and abstract user interface models.

Also, the tool should be at the user’s fingertips --i.e. the tool should be part of the users’

development environment. To solve the second issue, the tool was developed as an

Eclipse44 plug-in, integrating an XML45 editor in combination with the necessary views

to inform the user about the missing information required for an accessible user

interface --i.e. tags and attributes for a well-formed and accessible markup, as we

describe in Section 5.3.2, and also to provide options to fix these missing information.

At this point, we introduce a brief explanation for the rational of choosing XML as the

markup language to support resources and their future development as the tool evolves.

Since XML allows writing our own markup language, we are not restricted to a limited

set of tags defined by proprietary vendors. Custom tags are used to bring meaning to the

data being displayed and when stored this way, data becomes extremely portable

because it carry with their description rather than their display. In this way, XML allows

the display to be extracted from the data and incorporated into a style sheet. Some of the

benefits of this important XML characteristic are: (i) changes to display do not require

futzing with the data, since a style sheet will specify the display, (ii) searching the data

is easy and efficient, since tags provide the search engines with the intelligence they

lack, (iii) complex relationships like trees and inheritance can be communicated and,

44 The Eclipse Foundation at http://www.eclipse.org/
45 W3C Extensible Markup Language (XML) at http://www.w3.org/XML/

105

(iv) the XML code is much more legible to a person coming into the environment with

no prior knowledge. Other XML properties are: (i) it has stricter grammar rules than

HTML that helps to develop well-formed documents --e.g. forgetting a label in an XML

document makes the file unusable, (ii) it is a platform independent language and widely

distributed and, (iii) it was developed by the W3C that also keeps its specification. The

design goals of XML emphasize simplicity, generality, and usability over the Internet.

Following we introduce the proposed tool, describing the basis of its architecture, layers

and classes, and also the resources and interfaces through which developers interact for

designing accessible user interfaces.

5.3.1 Architecture’s Overview: Layers and Classes

Figure 5.16 shows the tool’s architecture and its three main layers, which are:

Presentation, Object Storage and Core.

Figure 5.16: Main components of Our supporting tool

The Presentation layer represents the user interface for designers and developers. The

main classes in the Presentation layer are:

106

! AccessibilityTool class, which represents the XML editor.

! InterfaceParser class, which includes the functionality of identifying and

highlighting syntax errors.

! WCAConsole class, which provides functionality to show the non-commitment to

the WCAG in a structured way. The name of this view stands for Web Content

Accessibility Console, as a general view to include all the Accessibility issues.

The Object Storage layer represents an abstraction for the different underlying resource

structures. Then, requests for information about WCAG 1.0 checkpoints [45], present in

the SIG structure or in the tool database, are solved using the services of this layer. The

main classes for the Object Storage layer are:

! SIGHandler class, which provides the necessary functionality to access the

contained information in SIG structure file --i.e. the checkpoints to commit for a

specified tag present in the abstract user interface.

! GuidelinesHandler class, which as the previous class, provides the needed

functionality to access the contained information in the Guidelines file.

! CheckpointManager class, which provides the needed functionality to access

information of different checkpoints. This class uses CheckpointManager to retrieve

information about a checkpoint from the database file and maintain a pool of

previously retrieved checkpoints.

! Checkpoint, CheckpointTag and SuggestedAttribute classes, which represent the

models for accessing information about the element that each one represents.

Specifically, SuggestedAttribute represents an attribute that needs to be added (or

deleted) in a tag --i.e. CheckpointTag, to meet a specific Checkpoint.

Finally, the Core layer includes those classes that play a central role for the tool’s

functionality. Those classes are:

! CheckpointCommiter class, whose functionality includes the analysis and

determination of commitment of an HTML tag to the WCAG recommendations.

Also, it provides the functionality to generate the element code --i.e. HTML tag or

attribute, to fix the non-commitment.

107

! InterfaceAnalizer class, which provides the functionality of coordination for the

analysis of the abstract user interface model. This class has an aspect-based

implementation done in AspectJ46, which is the central feature that will allow the

completion of the analysis in a transparent manner --i.e. solving Accessibility

crosscutting problems by injecting aspects smoothly.

Particularly, in Figure 5.16, we focus on the Presentation layer, which is isolated from

the other layers and it is only related to the Core layer by a dotted line, meaning that

there is no straight interaction between these two layers. Thus, the interaction between

these two layers, which includes reading and analyzing the abstract user interface model

under treatment, takes place in a transparent manner. This abstract user interface model

is an XML file, as we following see in Section 5.3.2. To reproduce this behavior, the

tool uses the Observer pattern47 and their classes Subject and Observer; each instance of

the Subject class maintains a list of instances of the Observer class that are notified of

the changes that occur in their respective instance of the Subject class. By applying

these design concepts, the AccessibilityTool class plays the role of Subject, while the

InterfaceAnalizer class plays the role of Observer. Then, the aspects environment --i.e.

the AspectJ capabilities, manages the update notifications. Thus, when the developer

saves the XML document edited for the abstract user interface model, this automatically

triggers this aspect-oriented functionality, which is not explicitly invoked by some

element of the Presentation layer. As shown in Figure 5.15, the consequence at Step 4.1

is the deliverable of a concrete HTML user interface model that improves conformance

to WCAG 1.0 Accessibility requirements.

5.3.2 Tool’s Resources: XML Schemas and Specifications

Figure 5.16 shows three XML files representing the input/output resources of the tool,

which are AbstractInterface, SIG, and Guidelines. Following, we explain the

relationship of these resources with our design proposal and we also provide their

46 The AspectJ Development Tool at http://www.eclipse.org/ajdt/
47 Object-Oriented Design and Programming: Observer Pattern at http://www.oodesign.com/observer-

pattern.html

108

respective XML schema. Using examples, we show how to instantiate these XML

schema for specifying the XML files.

Figure 5.17: Model-driven principles applied to UI model development

The AbstractInterface XML file represents the abstract user interface model. As we

have explained in previous chapters, our design approach uses the model-driven

paradigm to develop high-level descriptions of the user interface structure and behavior

and, from these declarative models to obtain the end-user interface. Figure 5.17

illustrates these design concepts, which are implemented by WE methods [31], such as

OOHDM [36], which we have applied to develop our approach and supporting tool.

Figure 5.18 shows, the AbstractInterface XML schema48 that we develop for

specifying machine-understandable abstract user interface models. The most important

tags of this XML schema are Interface, Component, Composite and Attribute.

Figure 5.18: XML schema for the Abstract User Interface model

The specification of documents based on this schema begins with an Interface element,

which can comprise Composite and Component elements. Also, a Composite element

48 W3C XML Schema at http://www.w3.org/XML/Schema

 Level 1 Level 2 Level 3

 Concrete UI model

specification

 Abstract UI model

specification

Requirement

Model End-User Interface

109

can comprise Component elements resulting in a hierarchy of elements. Each tag has a

modeling function within the AbstractInterface XML schema and its own descriptive

attributes, as follow:

! The Interface tag is the container for the structure of an abstract user interface. The

Interface tag has two descriptive attributes: (i) name, which identifies the Interface

element under develop and, (ii) description, which states the purpose of the

Interface element and the Composite and Component elements that are comprised

within the Interface element.

! The Component tag represents the widgets that make up the abstract user interface.

The Component tag has three descriptive attributes: (i) id, which identifies the

Component element under development, (ii) type, which assign to the Component

element a simple ontology widget and, (iii) maps-to, which links the Component

element to a simple HTML element --e.g. an HTML text field element which is

usually codified by using an HTML input element.

! The Composite tag is a container within an Interface element that comprises

Component elements. The Composite tag has two descriptive attributes: (i) id, which

identifies the Composite element under development and, (ii) maps-to, which links

the Composite element to a composite HTML element --e.g. an HTML related

controls element which is usually codified by using an HTML fieldset element.

! The Attribute tag represents the attributes that will be part of a concrete HTML

element conveyed by “map-to” attributes. To complete the user interface design, the

user adds some of these attributes, while the tool suggests others to solve

Accesibility concerns.

Figure 5.19 shows the XML file specified applying the AbstractInterface XML schema

to part of the case study shown in Figure 5.1 (c). As we can see in this specification, a

Composite element is included at line 4 to represent the student identification FORM,

which is a composite HTML element comprising two Component elements. These two

INPUTs are Component elements included at lines 5 and 7 respectively, to represent the

HTML text field elements required for the student’s name and password. The pair of

attributes type and maps-to allow the association between ontology widget-HTML

110

element --e.g. the Component elements at lines 5 and 7 are of the ontology type

indefiniteVariable and maps-to HTML input elements.

Figure 5.19: XML specification of an abstract user interface model

The SIG XML file represents the Softgoal Interdependency Graph (SIG) template for

Accessibility and, as shown in Figure 5.20, we develop the SIG XML schema for

specifying machine-understandable SIG diagrams. The most important tags of this SIG

XML schema are SIG, Node and Relation.

Figure 5.20: XML schema for the SIG template for Accessibility

The specification of documents based on this SIG XML schema begins with a SIG

element linked to a main Node element, which in turn can comprises one or more Node

elements through a Relation element. Thus, the Relation element allows a hierarchy

specification for a SIG element. Each tag has a modeling function within the SIG XML

schema and its own descriptive attributes, as follow:

1. <interface name="student’s login" description="An interface for

the student’s login at the SIU Guarani registration system">

2. <component id="guaraniLogo" type="elementExhibitor" maps-to="IMG">

3. </component>

4. <composite id="studentID" maps-to="FORM">

5. <component id="studentName" type="indefiniteVariable" maps-

to="INPUT">

6. </component>

7. <component id="studentPassword" type="indefiniteVariable" maps-

to="INPUT">

8. </component>

9. </composite>

10. </interface>

111

! The SIG tag is the container for the structure of a SIG diagram for Accessibility.

The SIG tag has two descriptive attributes: (i) name, which identifies the SIG

element under develop and, (ii) description, which focus on the Accessibility

softgoal of the SIG element through its main Node element --i.e. which, as we

already explained in Section 5.2, is called the root light cloud of the SIG diagram

applying the SIG terminology.

! The Node tag represents a node, which, as we have already explained in Section 5.2,

is called a cloud of the SIG diagram applying the SIG terminology. Thus, a Node

element can represent a root or a refined Accessibility softgoal –i.e. a white cloud of

the SIG diagram applying the SIG terminology, or an operationalizing goal for the

required checkpoints to be satisfied –i.e. a dark cloud of the SIG diagram applying

the SIG terminology. The Node tag has two descriptive attributes: (i) type, which

specifies the type of a Node element depending on its Accessibility softgoal and, (ii)

topic, which describes the Accessibility softgoal to be satisfied. While, the type of

the Node attribute can be one of the following:

- U-UI type, if the softgoal comprises Accessibility requirements to be

satisfied at an interaction level in the UID diagram. We can use the U-UI

type for a Node element representing a root Accessibility softgoal in the SIG

diagram --e.g. in Figure 5.5, the U-UI root cloud for the SIU Guarani home

page.

- U-UIc type, if the softgoal represents Accessibility requirements to be

satisfied at a component level in the UID interaction. We can use the U-UIc

type for a Node element representing a refined or an operationalizing goal of

the SIG diagram --i.e. in Figure 5.5, the U-UIc refined cloud for the HTML

related controls element representing the student’s identification form.

- Decomposition type, if the Node element represents an Accessibility

softgoal refinement by decomposition –i.e. in Figure 5.5, the Decomposition

cloud at the User Technology Support branch for the HTML related controls

element.

! Operationalizing type, if the Node element represents an Accessibility

operationalizing goal –i.e. in Figure 5.5, the Operationalizing dark clouds

representing Accessibility requirements to be satisfied.

112

! The Relation tag applies for a parent Node element and its children, allowing a

hierarchy specification for a SIG element. The Relation tag has only one descriptive

attribute, type, which specifies the type of the relationship established between the

parent Node element and its children. While, the type of the Relation attribute can

be one of the following:

- AND type, which represents the conjunction relationship, where all the

children representing Accessibility softgoals must be satisfied to satisfy its

parent Node element.

- OR type, which represents the disjunction relationship, where satisfying

some of the children representing Accessibility softgoals satisfied the parent

Node element.

- OPERATIONALIZING type, which represents the Accessibility

operationalizing goal of the parent Node element. These operationalizing

goals implement concrete Accessibility requirements on which a validation

can be performed to establish conformance. For the instantiation of the

Accessibility requirements, our tool applies the WCAG 1.0 checkpoint [45],

but as we will explain in Chapter 6, our design proposal can work also with

the WCAG 2.0 success criteria [46].

! The NodeList tag is a container for a list of Node elements within a Relation

element. Therefore, the NodeList tag can comprise one or more Node elements that

are children of a parent Node element.

Figure 5.21 shows the XML file specified applying the SIG XML schema to part of the

XML specification of the abstract user interface model in Figure 5.20. As shown at line

1, the softgoal to be satisfied --i.e. the Accessibility concern of the SIG diagram, is set

in order to improve the Accessibility for all the students accessing the SIU Guarani

registration system. The root Node element at line 2 is of the type U-UI because its

Accessibility softgoal targets the UID interaction representing the home page of the

system. This root Node element is decomposed into two refined Node elements at lines

5 and 19 by a Relation element of the type AND at line 3. These two Node elements are

of the type U-UIc because their Accessibility softgoals target the IMG and FORM

components at the UID interaction representing the home page of the system. The

softgoal refinement process continues over the tree to develop the SIG diagram for

113

Accessibility, until specific operationalizing goals are met. For example, at line 11 the

Node element is of the type operationalizing and in consequence instantiates the topic

attribute with the checkpoint 1.1 to establish a concrete Accessibility requirement to be

satisfied.

Figure 5.21: XML specification of a SIG diagram for Accessibility

The Guidelines XML file represents the Accessibility guidelines from the WCAG 1.0

recommendations [45], which are stored accordingly to a structured language we

especially develop. As we have already seen in previous chapters, there is a gap

between the abstract knowledge transmitted by guidelines, which are expressed in

natural language, and their implementation using a markup language such as HTML,

1. <sig name="student’s login" description="SIG instantiation for

an accessible user interface for the student’s login at the SIU

Guarani registration system">

2. <node type=”U-UI” topic="HTML SIU Guarani Page">

3. <relation type="AND">

4. <nodeList>

5. <node type="U-UIc" topic="IMG">

6. <relation type="AND">

7. <nodeList>

8. <node type="decomposition" topic="USER LAYOUT SUPPORT">

9. <relation type="OPERATIONALIZING">

10. <nodeList>

11. <node type="operationalizing" topic="1.1" />

12. ...

13. </nodeList>

14. </relation>

15. </node>

16. </nodeList>

17. </reation>

18. </node>

19. <node type=”U-UIc” topic=”FORM”>

20. <relation type=”AND”>

21. <nodeList>

22. <node type=”decomposition” topic=”USER TECHNOLOGY LAYOUT”>

23. ...

114

which is based on a technical specification49. Trying to reduce this gap, we propose a

structured language for guidelines, which we called in Spanish LEP (Lenguaje de

Estructura de Pautas). As Figure 5.22 shows, LEP is positioned between natural

language and HTML, simplifying not only the human comprehension of guidelines but

also their storage as structures specified by a XML schema. Therefore, LEP is a

specification language to adapt the structure of the Accessibility guidelines from

WCAG 1.0 recommendations and make them possible to be managed by our tool.

Figure 5.22: Levels of expressiveness to Accessibility Guidelines comprehension

The W3C-WAI [50] has specified systematically the 14 (fourteen) guidelines of the

WCAG 1.0 recommendations (see the complete document at Appendix I). Each

guideline within the WCAG 1.0 recommendations [45] includes: (i) the guideline

number, (ii) the statement of the guideline (iii) the rationale behind the guideline and

some groups of users who benefit from it and, (iv) a list of checkpoint definitions. The

checkpoint definitions in each guideline explain how the guideline applies in typical

content development scenarios. Each checkpoint definition includes: (i) the checkpoint

number, (ii) the statement of the checkpoint, (iii) the priority of the checkpoint (the

priority levels are 1, 2, 3), (iv) optional informative notes, clarifying examples, and

cross references to related guidelines or checkpoints and, (v) a list of techniques where

implementations and examples of the checkpoint are discussed to facilitate the

checkpoint evaluation and conformance.

49 W3C HTML 4 Specification at http://dev.w3.org/html5/spec/Overview.html

NATURAL LANGUAGE

STRUCTURED LANGUAGE
FOR GUIDELINES (LEP)

HTML MARKUP LANGUAGE

LEVEL OF
ABSTRACTION

GUIDELINES
COMPREHENSION

Medium

High

Low

Easy

Moderate

Complex

115

Now, to adapt this Accessibility information provided by WCAG 1.0 recommendations,

we consider the formalization of those elements that are relevant to the expressiveness

of the stored structures for providing the proper support required by the tool. Figure

5.23 shows the Guidelines XML schema we develop based on LEP --i.e. our

supporting language, to allow the adaptation of the Accessibility guidelines and to store

their structures as machine-understandable representations. The most important tags of

the Guidelines XML schema are Guidelines, Guideline, Checkpoint, Tag and Attribute.

Figure 5.23: XML schema for the Accessibility guidelines from WCAG 1.0

As we can see in Figure 5.23, each Guideline element has a list of Checkpoint elements

and each Checkpoint element has a list of Tag elements --i.e. HTML tags, which are the

target of the Checkpoint element. For example, if a Checkpoint element establishes that

an HTML table element must summary its content --i.e. checkpoint 5.5 from WCAG

1.0, the Checkpoint element will include a Tag element for the HTML table element

and, the Tag element will include an Attribute element for the HTML summary element.

[GUIDELINE NUMBER] – [STATEMENT OF THE GUIDELINE]

[CHECKPOINT NUMBER] – [STATEMENT OF THE CHECKPOINT] – [PRIORITY OF THE CHECKPOINT]

PRESCRIPTION OF THE CHECKPOINT APPLIANCE

Provides an explanation of the checkpoint and its foundations to compliance. [SEMI-AUTOMATIC]
Requires the developer’s
manual intervention with
the tool’s support.

OR

[MANUAL]
Requires the developer’s
manual intervention
without the tool’s
support.

SAMPLE: Provides topics on how to implement the checkpoint using well-formed and accessible HTML.

SAMPLE IN LEP SPECIFICATION: Provides examples of how the checkpoints are specified in LEP.

Figure 5.24: Adapting the WCAG 1.0 checkpoints to the schema based on LEP

116

The Guidelines XML schema based on LEP, convey information through the following

tags:

! The Guidelines, which allow beginning a new file and containing its structure.

! The Guideline, which provides id, title and description of a specific WCAG 1.0

guideline; also includes a list of its checkpoints.

GUIDELINE 1. PROVIDE EQUIVALENT ALTERNATIVES TO AUDITORY AND VISUAL CONTENT

CHECKPOINT 1.1 Provide a text equivalent for every non-text element (e.g., via "alt", "longdesc", or in element content).
This includes: images, graphical representations of text (including symbols), image map regions, animations (e.g.,
animated GIFs), applets and programmatic objects, ascii art, frames, scripts, images used as list bullets, spacers,
graphical buttons, sounds (played with or without user interaction), stand-alone audio files, audio tracks of video, and
video. [PRIORITY 1]

PRESCRIPTION OF THE CHECKPOINT APPLIANCE

• Use "alt" for the IMG, INPUT, and APPLET elements, or provide a text equivalent in the
content of the OBJECT and APPLET elements.

• For complex content (e.g., a chart) where the "alt" text does not provide a complete text
equivalent, provide an additional description using, for example, "longdesc" with IMG or
FRAME, a link inside an OBJECT element, or a description link.

• For image maps, either use the "alt" attribute with AREA, or use the MAP element with A
elements (and other text) as content.

[SEMI-AUTOMATIC]

SAMPLE:
<img src="guarani3w.jpg"
alt=""
longdesc="../descrip/decor.htm#guarani3w">

SAMPLE IN LEP SPECIFICATION:
<tagList>
<tag id=”1” name=”IMG” type=”” condition-type=””>

<attributes>
<attribute name=”ALT” sample”img src="guarani3w.jpg" alt="*"
action=”add” type=”HTMLAttribute” condition=”mandatory”/>

</attributes>
</tag>

</tagList>

Figure 5.25: Adapting checkpoints 1.1 to the schema based on LEP

! The Checkpoint, which provides id, priority (1, 2, 3) and description of a specific

WCAG 1.0 checkpoint; also includes the appliance, which is “semi-automatic”

when the checkpoint requires the developer’s manual intervention with the tool’s

support or is “manual” when requires the developer’s manual intervention without

the tool’s support, and a list of the HTML tags concerning to the checkpoint.

! The Tag, which provides id, which is a number assigned for identification purpose

and is not related with WCAG 1.0 guidelines and checkpoints numbers, name (the

117

HTML tag name), and type/condition-type, which allow to specify the tag use case/s

where the guideline/checkpoint applies to the tag; also includes a list of its

attributes.

! The Attribute, which provides name (the HTML attribute or tag name), action (add,

modify, update or delete), type (HTML tag, HTML attribute, text attributes, etc.),

condition, which allows specifying if the attribute is mandatory or optional, and

sample, which provides an application example.

The preservation of the WCAG philosophy was our goal when we worked on the

Accessibility guidelines seeking for a specification manageable by the tool. Figure 5.24

summarizes the basis for analyzing and adapting the WCAG 1.0 checkpoints to the

Guidelines XML schema based on LEP, while Figure 5.25 shows part of the analysis

and adaptation for checkpoint 1.1. For example, this specification applies to satisfy the

operationalizing softgoal in the SIG diagram shown in Figure 5.21, line 11.

Figure 5.26: Basis of the Aspect-Oriented design cycle

5.3.3 Tool’s User Interfaces

From the user’s point of view the interaction with the tool applies an “open-save-close”

cycle to the document under develop. The developer designs an abstract user interface

Modeling Abstract User Interface

Showing Accessibility Crosscutting
Concerns

Solving Accessibility Symptoms
Applying Aspects

118

for a given Web page by editing and saving changes in an XML-based document. This

mode for developing documents is usually known as document-centered work schema.

Figure 5.26 shows the basis of the aspect-oriented design cycle in the interaction

between the developer and our tool, where we can identify the following steps:

! Modeling Abstract User Interface, the developer designs the abstract user

interface model choosing widgets from the abstract widget ontology.

! Showing Accessibility Crosscutting Concerns, the tool shows how the

Accessibility concerns crosscut the interface widgets selected to compose the user

interface by the developer.

! Solving Accessibility Symptoms Applying Aspects, the developer decides, based

on the information provided by the tool and the tool wraps, these Accessibility

crosscutting concerns into Accessibility aspects for their modularization and

transparent injection in the user interface under design.

Figure 5.27: The components integrated in the Eclipse platform

For this reason, one of the main components of the tool’s UI is the XMLEditor, which is

complemented with the view WCAConsole for showing, and allow solving the non-

119

commitment to the Accessibility guidelines. Figure 5.27 shows a screenshot of these

tool components integrated in the Eclipse platform. The XMLEditor is shown in the

upper box of screen in Figure 5.27 and is used by the developer to edit the abstract user

interface model. When the developer saves the XML file and its changes, the analysis of

the structure and commitment to the Accessibility guidelines is launched. The analysis

result is shown in a structured manner using the view WCAConsole, which is shown in

the lower box of the screen in Figure 5.27 and also and also in Figure 5.28. The

WCAConsole comprises two other components. The one on the left side of the

WCAConsole is a tree view, which shows to the developer the missing elements and/or

errors in the implementation of elements for every tag present in the abstract user

interface. This tree view is based on the SIG diagram for Accessibility and also shows

related tags that should be in an accessible a well-formed user interface.

Figure 5.28: The WCAConsole component

The other component on the right side of the WCAConsole is a read-only description

view, which shows to the developer the following information, for each selected

element of the component on the left side:

! Attribute/Tag condition (Mandatory/Optional): Indicates to the developer

whether the selected element (tag or attribute), is mandatory, as shown in Figure

5.28, or optional, as shown in Figure 5.27, to satisfy the guideline/checkpoint.

! Action (Add/Remove): Indicates to the developer the action to perform with the

selected element (tag or attribute), if the element should be added (or must be added

if the condition is mandatory) to the abstract user interface or removed.

120

! Sample usage: Provides to the developer an example on how to properly use in

HTML the element (tag or attribute).

! Correct code: Shows to the developer the necessary XML code to insert the

element (tag or attribute) in the abstract interface model to commit to the

Accessibility guidelines.

5.3.4 Some Insights about the Tool

Our supporting tool, which was conceived prioritizing early Accessibility design, helps

developers on the application of our Aspect-Oriented proposal to create user interfaces.

The tool provides support at Step 3 of the design process to discover crosscutting

concerns and apply aspects from the knowledge captured about Accessibility

requirements in previous stages. Following the approach’s basis, the type of support

and features covered by the tool can be described as those that usually provide a

Computer-Aided Software Engineering (CASE) tool with model-driven properties. As a

CASE tool, our supporting tool results helpful in creating models of cases. These

models can be developed using reusable components and this is possible because of two

reasons. On one hand, the Accessibility guidelines are quite independent from the Web

application under development, so there are many cases to which the same Accessibility

solution can be applied. Then, recording such recurrent situations (e.g., using patterns)

enables to reuse them, which contribute to reduce the development effort when

implementing our proposal. On the other hand, the Accessibility aspects as we

proposed, could be developed once and be reused in different Web projects. For

example, returning to the student’s login Web page example in Figure 5.1 (c),

establishing a logical tab order for accessing the HTML text field elements for the

student ID and password, is an Accessibility concern that forces crosscutting in the

implementation. The early identification of this situation allows modeling a reusable

Accessibility aspect that is going to be in charge of providing an HTML tabindex

element for each text field element at the user’s layout. Currently, since the function for

reusing components is not fully implemented, our tool provides assistance for applying

the Accessibility aspects (prescribed by some predefined and stored SIG diagrams) to

an abstract user interface model loaded by the designer.

121

As visible disadvantages of our supporting tool, we believe it is important to highlight

the following issues: (i) although the part of the approach that is supported by the tool is

completely documented and self-contained within a well-known Web engineering

approach, its comprehension requires a prior knowledge of the WCAG 1.0 (or 2.0)

guidelines and their specific terminology and also of the AOSD basis; (ii) although the

tool helps to transfer Accessibility concerns, the engineering staff members should not

be ruled by ad hoc practices, or used to apply approaches, which have not incorporated

the design and documentation of the application under development as an standard

discipline. These two issues demand changes in the development process that must be

supported by the organizations.

As a final note, we provide our supporting tool aiming to help and, as a consequence,

encourage, Web development in designing user interfaces with the Accessibility quality

factor in mind.

122

