
Implementation and Evaluation of Protocols Translating

Methods for IPv4 to IPv6 Transition

Cristian Pérez Monte, María Inés Robles, Gustavo Mercado, Carlos Taffernaberry,

Marcela Orbiscay, Sebastián Tobar, Raúl Moralejo y Santiago Pérez

Grupo UTN Gridtics - Departamento de Electrónica,

Universidad Tecnológica Nacional – Facultad Regional Mendoza

Mendoza, 5500, Argentina

{cristian.perez, ines.robles, gustavo.mercado, carlos.taffernaberry,

marcela.orbiscay, sebastian.tobar, raul.moralejo}@gridtics.frm.utn.edu.ar

www.gridtics.frm.utn.edu.ar

ABSTRACT

Today millions of computers are interconnected

using the Internet Protocol version 4 (IPv4) and can

not switch to the new version, IPv6,

simultaneously. For this reason the IETF has

defined a number of mechanisms for transitioning

to the new protocol in a progressively and

controlled manner. On the other hand, Internet

Service Providers (ISP) will not have new IPv4

global addresses to offer in the near future due to

the fact that these addresses will be exhausted [1].

A very interesting alternative for ISPs is to use IPv6

global addresses and, by some transitional method,

access the current IPv4 backbone. This study aims

to compare two methods of transparent access to

the IPv4 Internet backbone, from networks that are

"IPv6 only". To make the comparison, a software

was developed, implementing an Application Layer

Gateway (ALG), and Ecdysis was used to

implement NAT64. Both trials used a network IPv6

Test Bed. This paper details the design principles

and fundamental aspects of the ALG

implementation, as well as the implementation of

NAT64. Finally, we present the tests performed and

conclusions drawn on the test platform.

Keywords: Internet, IPv6 Protocol, Transition

Methods, ALG, NAT64, ISP.

1. INTRODUCTION

After 25 years, IPv4 begins to show signs of

weakness. It can no longer provide adequate

answers, especially regarding to the gradual

exhaustion of IP addresses available, as measured

in our region, will succeed half of 2014 [1]. The

necessity of environments, like “Internet of Things”

[2], expands nowadays the requirements of

addresses. In 1992 the Internet Engineering Task

Force (IETF), called the research community to

study alternatives for IPv4. The result arose in 1995

and was called Internet Protocol version 6 (IPv6)

[3].

One of the most important steps, in the adoption of

IPv6, is the "Transition" from IPv4 to IPv6. Jordi

Palet said "Since IPv6 is a new protocol, it is not

compatible with IPv4, and therefore IPv6 has been

designed considering a long period of transition and

co-existence between them" [4]. Although for a

complete transition is necessary that the current

backbone switch to IPv6, it is also true that end

users and ISPs can begin to implement the protocol.

In this aspect the present work is developed,

allowing a final network "IPv6 only" connects to

Internet IPv4 and IPv6 using transition techniques.

This will provide experience and training in the

transition from IPv4 to IPv6.

The following section details some of the most used

transition mechanisms. Section 3 presents the

scenario and the problem to solve through these

mechanisms. Section 4 discusses which one is best

technique for this scenario. Throughout Section 5 is

developed and tested an ALG. Section 6 shows

details of the implementation of a NAT64, while

Section 7 makes an evaluation and comparison of

both methods. Finally, in section 8, valuable

conclusions are obtained.

2. TRANSITION MECHANISM

OVERVIEW

IPv6 is now widely available for most operating

systems in hosts and routers, and not only in the

ISP networks [5]. To communicate with other IPv6

systems, is essential to have access to the global

IPv6 Internet. The practical facts show a co-existent

between IPv4 and IPv6, in an intermediate

transition state. Expanding IPv6 functionality from

a small to a large network infrastructure can be a

difficult and complex adventure. For a large site,

the different requirements and conditions make it

necessary to employ various mechanisms

depending on the specific transition.

Two widely used methods are "mechanism of dual

stack" and "tunnelling techniques", but in this work

we will implement and evaluate methods of

"translation". We will do a brief introduction in the

following paragraphs about that.

Translating Protocols

Translation methods were developed to achieve

communication between IPv4-only and IPv6-only;

JCS&T Vol. 12 No. 2 August 2012

64

such as:

- Stateless IP/ICMP Translator (SIIT) [6] and

Network Address Translation - Protocol Translation

(NAT-PT) [7] are mechanisms, unlike the tunnels,

which translate IPv4 headers to IPv6 and vice

versa. These techniques share the same problems of

NAT and must deal with the semantics of

converting the fields successfully. In some cases,

during the conversion process, header information

is lost. For this reason, the IETF recommends these

methods only as a last resort.

- Bump In the Stack (BIS) [8] is an approach

similar to the previous SIIT, but implemented

directly in the operating system on each host

(between the TCP/IP and network driver). It is only

available for IPv4 applications and IPv6 networks.

It is a complex implementation and rarely used.

- Bump in the API (BIA) [9] adds an API

translation between the Socket API and TCP/IP

stack, allowing an upgrade to BIS method in terms

of the dependence of the network driver, but has the

same limitations as BIS.

-Transport Relay Translator (TRT) [10] is a

protocol conversion at the transport layer level

based on a DNS proxy. It receives queries from

IPv6 hosts and if the required name is associated

with IPv4 address, it returns an IPv6 address

composed with a prefix IPv6 format (64 bits) +

zeros (32 bits) + “IPv4address” (32 bits). This

method was replaced by NAT64.

 - NAT 64 [11] consists of a server with at least one

public IPv4 address and an IPv6 segment with a /96

prefix (eg 64: ff9b :: / 96). In the case of connecting

to an IPv6 address, the client builds the IPv6

destination address using the previous range of 96

bits plus 32 bits of the IPv4 address wich want

communicate to, sending packets to the resulting

address. The NAT 64 server then creates a NAT

mapping between IPv6 and IPv4 addresses,

enabling communication. It is also necessary to use

DNS 64.

- DNS 64: [12] When a DNS server, with DNS64

functionality, receives a request for domain AAAA

record, but only has A records, create a AAAA

records from these A records. The first portion of

the IPv6 address created points to a IPv6/IPv4

translator, and the second includes the IPv4 address

of the A register. The translator usually is a

NAT64 server.

- ALG is a translation made in the application layer.

There is no specific RFC for that, therefore its

implementation depends on the application layer

protocol that will be supported.

3. TEST SCENARIO

Figure 1 shows the scenario implemented to

evaluate the transition methods.

.

Figure 1. Common scenario for ISPs today

The proposed topology consists of several "home

clients" hosts that constitute a network of customers

of an ISP, configured using only native IPv6. The

ISP has both IPv4 and IPv6 connectivity. The aim

is to enable “home clients” to access servers and

services available in Internet v4 without requiring

changes in their hosts; either by installing dual

stack, tunneling or by configuring protocol

translation. Notice that the ISP has no more new

IPv4 addresses, so only IPv6 addresses can be

delivered on the customers.

4. TRANSITION METHODS

EVALUATION

First, to achieve the objective should be to

implement some of the techniques listed in

paragraph 2.3, since communication is exclusively

between IPv4 only hosts and IPv6 hosts only, ruling

out dual-stack techniques or tunneling.

The following alternatives were analyzed:

- The application of SIIT and NAT-PT is discarded

due to the normal problems of NAT and the

possible loss of header information [13].

 - To use BIS or BIA is necessary to modify the

client's operating systems. Problems will be found

for operating systems that do not have the source

code available.

- The alternative of a TRT is feasible, but is

obsolete.

- NAT64 is heavily used, even was find a free

implementation available for testing. One drawback

is that requires a DNS Proxy (DNS64) specially

configured to work properly.

- The implementation of ALG is also viable, if it is

not taken into account the decline in performance,

by doing all the conversion in the application layer.

Taking into account the considered aspects, we

chose NAT64 and ALG for evaluation of

functionality and performance [14].

JCS&T Vol. 12 No. 2 August 2012

65

5. APPLICATION LAYER GATEWAY

An ALG for HTTP/HTTPS protocols was

implemented. It justified by the ease of

implementation of ALG and they are not necessary

additional elements, such as a DNS Proxy or the

source code of the OS. Due there is almost no

difference between a proxy and an ALG

application, initially was tried to use the known

HTTP/HTTPS proxy called Squid. But at that

moment it didn’t have support IPv6, so finally we

decided to perform our own application to meet the

target.

Design Proposal

A proposal of the ALG method is shown in Figure

2.

Figure 2. Architecture Diagram of ALG

The basic idea of an ALG is to allow the ISP router

be the responsible for exchanging information

between the two extremes. It needs to have dual

stack and run the application ALG.

The home clients initiate communication using an

INET6 socket, and make a HTTP solicitation to the

ALG, which will be stored in a buffer. The ALG,

using an INET socket, starts a new connection as a

client, to the requested site, forwarding the original

HTTP request previously stored. The response of

the service requested will be forwarded by the ALG

to the home client. The application should resolve

the domain name applied for, before sending the

request to Internet v4.

Implementation

It was performed a prototype to evaluate the proper

functionality of this mechanism. The programming

was done using Python. Below, the most relevant

portions of code are shown:

#Main

 def listen (self):

 escucha = socket(AF_INET6,SOCK_STREAM)#IPv6

Only

 escucha.bind(self.ADDR6,self.PORT)

 escucha.listen(10) #hasta 10 a la

espera

 while True:

 interno,cliente = escucha.accept()

 pid = os.fork()

 if pid != 0 : #proceso hijo

 self.servicio()

 else: #proceso padre

 interno.close()

 def servicio (self):

 Pedido = interno.recv(self.buffer)

 externo = socket(AF_INET,SOCK_STREAM)# a

InternetV4

 externo.connect(res[0][4][:2])

 externo.send(Pedido) #reenvio requerimiento

 RespInternet = ''

 while RespInternet <> '' #lee IPv4 ->

escribe IPv6

 RespInternet =

externo.recv(self.buffer)

 interno.send(RespInternet)

 interno.close() #Termino el envio

de IPV4

 externo.close()

 sys.exit()

The "listen" function, creates an AF_INET6 (IPv6)

socket and waits for a home client to connect, using

the escucha.accept() method. Once connected, by

calling os.fork(), a children is created, serving each

home client, using the self.servicio() method. The

"service" function stores in a local variable

“Pedido” the client's original request. Then, using

the socket API creates an AF_INET(IPv4) socket

and connects as a client with the server which the

request was for, by calling externo.send (Pedido).

Once the response arrives, using the

externo.recv(self.buffer) method, is forwarded to

the IPv6 socket used by the original home client.

The router on which the method was tested was a

GNU / Linux distribution Ubuntu 9.04. Windows

XP was chosen as home client with IPv6 support

only, being the most widespread operating system.

However it can be used other operating systems like

GNU / Linux, Solaris, Mac OS or Win Vista.

Successful tests were also done with a cell phone

Nokia N95 with Symbian OS. In all cases, the IPv4

stack was disabled. It was set the proxy in the

HTTP client application (browser), the IPv6

address of local router and the port where the ALG

was listening the home clients.

Because this method only allows access to

transition IPv4 Internet servers, an improvement

was made to give access to Internet servers also

IPv6, transparently to the end user. In this work it

was only evaluated the IPv6/IPv4 translation, so

this feature is not used, even though the Figure 3

shows it.

Figure 3. Final diagram of ALG

JCS&T Vol. 12 No. 2 August 2012

66

6. IMPLEMENTATION OF NAT64

The NAT64 was installed on the ISP dual stack

router with access to Internet v6 and Internet v4. In

addition, there were configured two LAN links. The

first, with both IPv4 and IPv6 connectivity, was

used by the server that performs the task NAT64 +

DNS64. The second LAN link, with IPv6 only

addresses, was located in the home clients. It was

set a default route to the server NAT64 + DNS64

for the /96 network assigned to the NAT64. It was

elected a public range for the /96, not acording with

RFC 6146, for their use as public NAT64 in remote

networks.

The DNS64 + NAT64 server was implemented on

Fedora 14 Linux operating system. The Ecdysis-nf-

NAT64[15] was installed to work as a NAT64

server and Ecdysis-unbound, to implement the

DNS64 server. Static IPv4 and IPv6 addresses were

assigned to the interfaces. Also the default routes

and the default route to the NAT64 interface for the

NAT64's network. Finally, the client’s addresses a

default route was assigned by autoconfiguration.

Through DHCPv6, the DNS server corresponding

to the IPv6 server DNS64 + NAT64 was assigned.

The Figure 4 shows the topology of the

implementation performed.

Figure 4. NAT64 topology

7. EVALUATION OF TRANSLATION

METHODS

The important thing for home clients is the ability

to access Internet services, in a transparent and

secure way. The "IPv6 only" home clients must

have at least the same functionality as IPv4 clients.

The evaluation of the mechanisms examined in this

paper, aims to verify if the majority of services

have a right functionality and performance.

Evaluation of ALG

First of all, it was checked the validity of the

transition method, capturing network traffic. Figure

5 shows the traces captured both the IPv6 LAN and

the IPv4 WAN interfaces.

 1 fe80::16fc:eeff:fe7f:a2ff -> ff02::1 ICMPv6 Router advertisement

 2 2001:1938:110:23:213:d3ff:fe78:c33d -> 2001:1938:110:23:21b:9eff:fe2d:668

TCP 1093 > 8080 [SYN] Seq=0 Win=16384 Len=0 MSS=1440

 3 2001:1938:110:23:21b:9eff:fe2d:668 -> ff02::1:ff78:c33d ICMPv6 Neighbor

solicitation

 4 2001:1938:110:23:213:d3ff:fe78:c33d -> 2001:1938:110:23:21b:9eff:fe2d:668

ICMPv6 Neighbor advertisement

 5 2001:1938:110:23:21b:9eff:fe2d:668 -> 2001:1938:110:23:213:d3ff:fe78:c33d

TCP 8080 > 1093 [SYN, ACK] Seq=0 Ack=1 Win=5760 Len=0

 6 2001:1938:110:23:213:d3ff:fe78:c33d -> 2001:1938:110:23:21b:9eff:fe2d:668

TCP 1093 > 8080 [ACK] Seq=1 Ack=1 Win=17280 Len=0

 7 2001:1938:110:23:213:d3ff:fe78:c33d -> 2001:1938:110:23:21b:9eff:fe2d:668

HTTP GET

http://sitecheck2.opera.com/?host=www.altavista.com&hdn=nubrKnkzLB7qxAS86ab

tMw== HTTP/1.0

 8 2001:1938:110:23:21b:9eff:fe2d:668 -> 2001:1938:110:23:213:d3ff:fe78:c33d

TCP 8080 > 1093 [ACK] Seq=1 Ack=498 Win=6432 Len=0

 9 2001:1938:110:23:213:d3ff:fe78:c33d -> 2001:1938:110:23:21b:9eff:fe2d:668

HTTP GET http://www.altavista.com/ HTTP/1.0

 10 2001:1938:110:23:21b:9eff:fe2d:668 -> 2001:1938:110:23:213:d3ff:fe78:c33d

TCP 8080 > 1094 [ACK] Seq=1 Ack=539 Win=6456 Len=0

 11 192.168.1.223 -> 192.168.1.1 DNS Standard query AAAA www.altavista.com

 12 192.168.1.223 -> 192.168.1.1 DNS Standard query AAAA sitecheck2.opera.com

 13 192.168.1.1 -> 192.168.1.223 DNS Standard query response CNAME

avatw.search.a00.yahoodns.net

 14 192.168.1.223 -> 192.168.1.1 DNS Standard query A www.altavista.com

 15 192.168.1.1 -> 192.168.1.223 DNS Standard query response CNAME

avatw.search.a00.yahoodns.net A 72.30.186.25

 16 192.168.1.223 -> 72.30.186.25 TCP 43019 > 80 [SYN] Seq=0 Win=5840 Len=0

MSS=1460 TSV=2203659 TSER=0 WS=6

 17 1.731010 72.30.186.25 -> 192.168.1.223 TCP 80 > 43019 [SYN, ACK] Seq=0

Ack=1 Win=8712 Len=0 MSS=1452 WS=0 TSER=2203659

 18 1.731031 192.168.1.223 -> 72.30.186.25 TCP 43019 > 80 [ACK] Seq=1 Ack=1

Win=5888 Len=0 TSV=2203661 TSER=3240479415

 19 1.731092 192.168.1.223 -> 72.30.186.25 HTTP GET

http://www.altavista.com/ HTTP/1.0

 20 1.749107 72.30.186.25 -> 192.168.1.223 TCP 80 > 43019 [ACK] Seq=1

Ack=539 Win=15846 Len=0 TSV=3240479417 TSER=2203661

 21 2.188310 72.30.186.25 -> 192.168.1.223 HTTP HTTP/1.0 200 OK (text/html)

 22 2.188401 192.168.1.223 -> 72.30.186.25 TCP 43019 > 80 [ACK] Seq=539

Ack=1441 Win=8768 Len=0 TSV=2203775 TSER=3240479460

 23 2.188462 2001:1938:110:23:21b:9eff:fe2d:668 ->

2001:1938:110:23:213:d3ff:fe78:c33d HTTP HTTP/1.0 200 OK (text/html)

 24 2.198668 2001:1938:110:23:213:d3ff:fe78:c33d ->

2001:1938:110:23:21b:9eff:fe2d:668 TCP 1096 > 8080 [SYN] Seq=0 Win=16384

Len=0

 25 2.198693 2001:1938:110:23:21b:9eff:fe2d:668 ->

2001:1938:110:23:213:d3ff:fe78:c33d TCP 8080 > 1096 [SYN, ACK] Seq=0 Ack=1

Win=5760

Figure 5. Capturing traffic using ALG

Afterwards, measures were made for connection

time and full access time to various sites via IPv4,

using Apache Benchmark [16]. Finally, functional

assessments were made, bearing in mind that this

method only allows translation of HTTP/HTTPS. It

was possible to successfully use this method even

in relatively old operating systems like Windows

XP. It was necessary to set the name of the router as

a proxy in the HTTP client (browser) and was

added in Win XP hosts's file the IPv6 address of the

router. Also, ALG worked correctly in the mobile

operating system Symbian and all operating

systems that prefer IPv4 to IPv6 for navigation.

Evaluation of NAT64

NAT64's performance was satisfactory as a solution

for network connectivity to IPv4 from "IPv6 only"

networks provided that the NAT64 device is

located close to the network service networks. It

can be observed almost complete compatibility with

all application layer protocols based on TCP, UDP

or ICMP. To evaluate the performance were

measured for connection times and different places

full access to IPv4. However, regarding the

functional assessment, to analyze the NAT64

within a range of public address translation and use

it remotely over the Internet IPv6 many problems

could be seen problems when accessing certain

HTTP IPv4, which were solved by making changes

to the MTU of the interface end nodes. In the

JCS&T Vol. 12 No. 2 August 2012

67

specific case of access to other services such as

SSH was not observed any problems. It could be

some inconsistencies in the network hosts "IPv6

only" that prevented their use when they had

relatively old operating systems, as the case of Win

XP. The problem occurs because Windows XP's

inability to perform DNS queries over IPv6. Could

be observed in new operating systems like

Windows 7 and later versions of Linux complete

compatibility and configuration automatically and

transparently to the end user. For updated versions

of Linux unless required only DNS64 server

settings in the configuration file (/etc/resolv.conf),

besides making sure that network manager does not

modify the change.

Referred to the communication with IPv6 sites, it is

direct without the intervention of any intermediate

device which imposes an advantage to other

methods. Figure 6 shows the captured traffic traces

NAT64 with access to IPv4.

 1 0.000000 2001:1938:110:23:32::4 ->

2001:1291:217:23:250:56ff:feae:27 DNS Standard query AAAA

www.yahoo.com

 2 0.999437 2001:1938:110:23:32::4 ->

2001:1291:217:23:250:56ff:feae:27 DNS Standard query AAAA

www.yahoo.com

 3 1.532224 2001:1938:110:23:32::4 ->

2001:1291:217:64:9b:0:43c3:a04c TCP 54826 > 80 [SYN] Seq=0

Win=8192 Len=0 MSS=1440 WS=2

 4 2.346770 2001:1291:217:64:9b:0:43c3:a04c ->

2001:1938:110:23:32::4 TCP 80 > 54826 [SYN, ACK] Seq=0

Ack=1 Win=5840 Len=0 MSS=1440 WS=8

 5 2.346898 2001:1938:110:23:32::4 ->

2001:1291:217:64:9b:0:43c3:a04c TCP 54826 > 80 [ACK] Seq=1

Ack=1 Win=17280 Len=0

 6 2.347022 2001:1938:110:23:32::4 ->

2001:1291:217:64:9b:0:43c3:a04c HTTP GET / HTTP/1.1

 7 3.151339 2001:1291:217:64:9b:0:43c3:a04c ->

2001:1938:110:23:32::4 TCP 80 > 54826 [ACK] Seq=1 Ack=602

Win=7168 Len=0

 8 3.159450 2001:1291:217:64:9b:0:43c3:a04c ->

2001:1938:110:23:32::4 HTTP HTTP/1.1 302 Found

(text/html)

 9 3.162587 2001:1938:110:23:32::4 ->

2001:1291:217:23:250:56ff:feae:27 DNS Standard query AAAA

ar.yahoo.com

 10 3.359405 2001:1938:110:23:32::4 ->

2001:1291:217:64:9b:0:43c3:a04c TCP 54826 > 80 [ACK]

Seq=602 Ack=666 Win=16612 Len=0

 11 3.993892 2001:1938:110:23:32::4 ->

2001:1291:217:64:9b:0:43c3:a04c TCP 54827 > 80 [SYN] Seq=0

Win=8192 Len=0 MSS=1440 WS=2

 12 4.958166 2001:1291:217:64:9b:0:43c3:a04c ->

2001:1938:110:23:32::4 TCP 80 > 54827 [SYN, ACK] Seq=0

Ack=1 Win=5840 Len=0 MSS=1440 WS=8

 13 4.958303 2001:1938:110:23:32::4 ->

2001:1291:217:64:9b:0:43c3:a04c TCP 54827 > 80 [ACK] Seq=1

Ack=1 Win=17280 Len=0

 14 4.958430 2001:1938:110:23:32::4 ->

2001:1291:217:64:9b:0:43c3:a04c HTTP GET /?p=us HTTP/1.1

 15 5.654285 2001:1291:217:64:9b:0:43c3:a04c ->

2001:1938:110:23:32::4 TCP 80 > 54827 [ACK] Seq=1 Ack=774

Win=7424 Len=0

 16 6.286348 2001:1291:217:64:9b:0:43c3:a04c ->

2001:1938:110:23:32::4 TCP [TCP segment of a reassembled

PDU]

 17 6.485549 2001:1938:110:23:32::4 ->

2001:1291:217:64:9b:0:43c3:a04c TCP 54827 > 80 [ACK]

Seq=774 Ack=537 Win=16744 Len=0

 18 6.528961 2001:1938:110:23:32::4 ->

2001:1938:110:23::1 ICMPv6 Neighboradvertisement

Figure 6. Capture traffic using the NAT64

Comparison of ALG-NAT64 Accessing IPv4

Servers

Characteristics Comparison: The following table

shows the results of the evaluated parameters

applied to ALG and NAT64/DNS64 on a scale of

four levels:

● Nonexistent - Low - Medium - High

Table 1. Parameters comparison

Parameter ALG NAT64/DNS64

Complexity in

Service Setup
Low Medium

Maintainability Medium Medium

Response time

performance

Medium

(IPv6/IPv4)

High (IPv6)

Medium (IPv4)

Access issues
Nonexistent

(only HTTP/S)
Low

Supported protocols Low High

Scalability Medium High

Security Integration No tested No tested

Latency Low
Low (IPv6)

Medium(IPv4)

Complexity in Host

Setup
Medium

Low or

Nonexistent

Compatibility of
operating systems of

the client nodes

High

Medium

Installation Cost Medium Medium to High

Performance comparison: For performance tests,

were measured connections time and full access

connection time to various sites via IPv4, using

Apache Benchmark (http://ipv4.google.com and

http://www.mit.edu). The arguments supplied to

AB were -c100, indicating the number of requests

to perform for the benchmarking session and -c10,

indicating the number of multiple requests to

perform at a time. For the ALG tests also was

needed to supply another argument -X proxy:port ,

indicating the need to use a Proxy Server, in this

case the ALG application.

The ALG and the NAT64+DNS64 applications

where running in the same router, so no hardware

differences affected the comparison.

An additional configuration was needed in all the

cases, to complete successfully the tests, set the

MTU in the home clients to 1280. It was due the

use of tunnel mechanisms in the router (NAT64 or

ALG).

The performance tests of both methods are shown

in Figure 7 and 8. The first shows minimum,

average and maximum time to connect (ALG conn

and NAT64 conn) and the minimum, average and

maximum time to complete the requirement (ALG

total and NAT64 total) to http://ipv4.google.com.

The second displays the same values to access

http://www.mit.edu. It should be noted that were

compared only the HTTP/HTTPS protocols

accessing only IPv4 servers. Testing performance

time to access IPv6 servers is beyond the scope of

this work, as NAT64 does not intervene in it. ALG

does, so the performance would be slightly lower in

the second case due to the addition of middleware.

JCS&T Vol. 12 No. 2 August 2012

68

http://www.mit.edu/
http://www.mit.edu/
http://www.mit.edu/
http://www.mit.edu/
http://www.mit.edu/
http://www.mit.edu/
http://ipv4.google.com0/
http://ipv4.google.com0/
http://ipv4.google.com0/
http://ipv4.google.com0/
http://ipv4.google.com0/
http://ipv4.google.com0/
http://ipv4.google.com0/

Figure 7. Performance test from google.com

Figure 8. Performance test from mit.com

8. CONCLUSIONS

This paper is intended as an additional tool for ISPs

to evaluate alternatives when making the transition.

As long as the ISP does not obtain new IPv4

addresses from RIR, both techniques can gradually

be implemented in a small group of home clients.

This will be transparent to the rest of their

customers and it will allow to make the necessary

adjustments for proper deployment.

From the comparison made, it is determined that

the ALG method is suggested when the "home

clients" only access the Internet using HTTP /

HTTPS. NAT64 + DNS64 excels it in terms of the

amount of supported protocols. On the other hand,

we observed that ALG is a perfect complement

NAT64 + DNS64, due the hosts having operating

systems like Windows XP or Symbian prefer for

DNS queries, the A record over the AAAA. By

using ALG to IPv4 Servers navigation from

Networks "IPv6 only" is solved the inability to

resolve names using IPv6.

The main disadvantage of using ALG over DNS64

+ NAT64 is the lower performance in the HTTP

requests, as seen in Figure 8 and 9. Additionally

client applications (browsers) must be manually

configured to setup a proxy. This inconvenience

can be solved by setting the ALG as a transparent

proxy [17], leaving this task for future research.

We can say that with the use of any of these

mechanisms, end users will have a public address

(Global IPv6). The advantage is that it returns to the

initial strategy of an end to end Internet

communication, allowing the installation of servers

and services, as well as embedded devices with

visibility from all over the Internet.

We can highlight that both, the NAT64 and ALG,

where implemented in a way that can be used by

ISPs. In the case of NAT64 using a public IPv6

range (not the range set by default in the RFC 6146,

which no is routeable through Internet V6) so it can

be used by an ISP within their Autonomous System

(AS) or even outside their AS as a public service.

Future work is planned for implementation and

comparison of IPv4/IPv6 transition models.

Finally we believe that the present work and the

work performed GridTICS group contribute to the

promotion, dissemination and training of human

resources for the impending shift to Internet

Protocol version 6 in the region.

9. REFERENCES

[1] Informe LACNIC, “Distribuciones /

Asignaciones IPv4, espacio disponible y

pronósticos (Report March 2011 – updated April

2011)”, http://www.lacnic.net/sp/registro/espacio-

disponible-ipv4.html, [last visit: 14/07/2011]

[2] D. Giusto, A. Iera, G. Morabito, L. Atzori

(Eds.), The Internet of Things, Springer (2010)

ISBN: 978-1-4419-1673-0

[3] S. Deering y R. Hinden, "Internet Protocol,

Version 6 (IPv6) Specification," RFC 2460,

December 1998

[4] J. Palet, “Cómo es la transición?”,

http://portalipv6.lacnic.net/es/ipv6/novedades/ c-

mo-es-la-transición [last visit: 14/07/2011]

[5] ¿Quienes están implementando IPv6 en la

Región?, http://portalipv6.lacnic.net/es/quienes-est-

n-implementando-ipv6-en-la-regi-n [last visit:

12/11/2011]

[6] E. Nordmark Stateless IP/ICMP Translation

Algorithm (SIIT) RFC 2765, February 2000

[7] G. Tsirtsis, P. Srisuresh, “Network Address

Translation - Protocol Translation (NAT-PT)”,RFC

2766, February 2000

[8] K. Tsuchiya, H. Higuchi, Y. Atarashi, “Dual

Stack Hosts using the "Bump-In-the-Stack"

Technique (BIS)”, RFC 2767, February 2000

[9] S. Lee, M-K. Shin, Y-J. Kim, E. Nordmark, A.

Duran, “Dual Stack Hosts Using "Bump-in-the-

JCS&T Vol. 12 No. 2 August 2012

69

http://portalipv6.lacnic.net/es/quienes-est-n-implementando-ipv6-en-la-regi-n
http://portalipv6.lacnic.net/es/quienes-est-n-implementando-ipv6-en-la-regi-n

API" (BIA)”, RFC 3338, October 2002

[10] J. Hagino, K. Yamamoto, “An IPv6-to-IPv4

Transport Relay Translator”, RFC 3142, June 2001

[11] M. Bagnulo, P. Matthews, I. van Beijnum,

“Stateful NAT64: Network Address and Protocol

Translation from IPv6 Clients to IPv4 Servers”,

RFC 6146, April 2011

[12] M. Bagnulo, A. Sullivan, P. Matthews, I. van

Beijnum,” DNS64: DNS Extensions for Network

Address Translation from IPv6 Clients to IPv4

Servers”, RFC 6147, April 2011

[13] C. Aoun, E. Davies, "Reasons to Move the

Network Address Translator - Protocol Translator

(NAT-PT) to Historic Status", RFC 4966, July 2007

[14] C. Bao, C. Huitema, M. Bagnulo, M.

Boucadair, X. Li, "IPv6 Addressing of IPv4/IPv6

Translators", RFC 6052, October 2010

[15] Ecdysis: open-source implementation of a

NAT64 gateway - http://ecdysis.viagenie.ca/[last

visit: 14/07/2011]

[16] Apache HTTP server benchmarking tool -

http://httpd.apache.org/docs/2.0/ programs/ab.html

[last visit: 14/07/2011]

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.

Masinter, P. Leach, T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC: 2616, June

1999

JCS&T Vol. 12 No. 2 August 2012

70

http://httpd.apache.org/docs/2.0/programs/ab.html

