ESTUDIO ESPECTROFOTOMETRICO DE LA

ASOCIACION ESTELAR CARINA OB2

Por Beatriz García.

Trabajo de Tesis para optar al grado de Doctor en Astronomía.

Facultad de Ciencias Astronómicas y Geofísicas de la Universidad Nacional de La Plata.

- 1988-

Directores: Hugo Levato, y Juan José Clariá.

INDICE

CAPITULO I

OBJETIVOS E IMPORTANCIA DE LA PRESENTE INVESTIGACION.

	pâg.
I.1 Introducción	4
I.2 Importancia de la presente investigación	8
I.3 La Asociación Carina OB2: presentación y antecedentes	10
I.4 Objetivo del presente estudio	13
Referencias	15

CAPITULO II

FOTOMETRIA FOTOELECTRICA EN EL SISTEMA UBV.

pág.

II.1	Programa de Observación	19
11.2	Equipo utilizado y técnica de observación	20
11.3	Reducción de las observaciones	21
II.4	Calculo de errores	25
II.5	Estrellas variables detectadas fotoeléctricamente,	26
Refer	rencias	50

•

CAPITULO III

OBSERVACIONES ESPECTROSCOPICAS.

	pág.
III.1 Introducción	51
III.2 Descripción y objetivos de las observaciones	
espectroscópicas	51
III.3 Reducción de las observaciones	52
III.3.1 Clasificación espectral	52
III.3.2 Determinación de velocidades de rotación axial	53
III.3.3 Obtención de velocidades radiales	54
Referencias	84

CAPITULO IV

DISTRIBUCION ESPACIAL DE LAS ESTRELLAS EN LA REGION

p	â	a	

IV.1 Introducción	86
IV.2 Diagramas UBV observados	86
IV.3 Determinación fotométrica del enrojecimiento interestelar	87
IV.4 Determinación espectroscopica de colores intrinsecos y	90
enrojecimiento interestelar	91
IV.5 Determinación de magnitodes absolutas y distancias IV.6 Distribución espacial de las estrellas en la región Referencias	92 111

CAPITULO V

LA ASOCIACION CARINA OB2: ANALISIS Y DISCUSION DE LOS DATOS OBSERVACIONALES.

V.1 Introducción V.2 Análisis y discusión de los datos V.2.1 Selección de miembros de Carina OB2	112 112 112
 V.2.2 Diagramas UBV de Carina OB2 corregidos por absorción interestelar V.2.3 Determinación de la razón entre la absorción total y selectiva en la Asociación Carina OB2: Método de 	113
extinción variable	114
V.2.4 Distancia al sol de Carina OB2	117
V.2.5 Determinación de la edad de la Asociación	120
V.2.6 Función de luminosidad	122
V.2.7 Función de masa	123
V.2.8 Distribución de los excesos de color	124
V.2.9 Tratamiento estadístico de las velocidades radiales	125
V.2.10 Obtención de brbitas preliminares	128
V.2.11 Correlación entre porcentaje de binarias de corto período	
y rotación axial proyectada referida a la rotación de es-	
trellas de campo	129
V.2.12 Presencia de estrellas antmalas	131
Referencias	145

CAPITULO VI

	pág.
VI.1 Conclusiones	149
Referencias	157

			pág.
INDICE	DE	TABLAS	158
INDICE	DE	FIGURAS	161
INDICE	DE	CARTAS	164

CAPITULO I

OBJETIVOS E IMPORTANCIA DE LA PRESENTE INVESTIGACION.

I.1 INTRODUCCION.

La existència de grupos "disueltos" de estrellas O y B, denominados Asociaciones Estelares, se conoce desde que fue posible obtener la clasificacion espectral de sus miembros más brillantes.

La historia nos remonta al año 1914, época en la que Edington publicara su célebre trabajo "Stellar Movements and the Structure of the Universe". Desde entonces, se han llevado a cabo numerosas investigaciones relacionadas con la morfología y la dinámica de estos grupos de estrellas jóvenes.

Las pioneras investigaciones en el campo de la dinámica realizadas por Bok en 1934 y Mineur en 1939, permitieron demostrar que algunos cómulos ubicados en las vecindades del Sol, con densidades espaciales menores que 0.1 Ma/pc³, son claramente inestables. Para densidades un orden de magnitud menor, el campo gravitacional de la Galaxia como un todo gobierna el movimiento de los objetos. Dicho campo prevalece sobre la fuerza gravitatoria ejercida por los miembros del agragado.

Lo que habitualmente entendemos por Asociación Estelar es una concentración de algunas decenas de estrellas jóvenes de un tipo espectral dado, ubicadas dentro de un volumen de alrededor de 10⁶pc³, cuyas luminosidades, tipos espectrales y posiciones aparentes en el cielo, indican un origen común.

La gran mayoría de las Asociaciones OB tienen densidades espaciales menores que 0.1 Mø/pc³, siendo en consecuencia aplicable la teoria de las orbitas estelares individuales, desarrollada prmeramente por Lindblad (1941,1942).

Por lo general, no existen mayores dificultades para decidir si estamos ante la presencia de un cúmulo estelar o de una Asociación. En efecto, tanto los cómulos abiertos como los globulares se diferencian claramente del campo estelar circundante por la elevada densidad de estrellas por unidad de área. Algunos problemas se presentan, sin embargo, cuando se pretende decidir a ciencia cierta cuál es la verdadera extensión de una Asociación. Esta dificultad surge como consecuencia de las bajas concentraciones de estrellas que caracterizan a las Asociaciones Estelares y al hecho de que los miembros físicos sólo pueden ser reconocidos sin ambiguedad si se dispone de material observacional suficiente, tanto en calidad como en cantidad.

En algunas regiones del cielo (por ejemplo Carina) varias asociaciones se diponen a lo largo de la línea de la visual. En estos casos, el conocimiento de las distancias individuales de las estrellas resulta de fundamental importancia para poder decidir la pertenencia o no de una estrella a un determinado agregado.

En verdad, fue V.A. Ambartsumian (1947) quien primero introdujo el término "Asociación Estelar" para designar estos intrigantes grupos estelares. En sucesivos trabajos posteriores Ambartsumian (1949a, 1949b, 1950, 1954, 1955, 1959) amplió y desarrolló el concepto de Asociación Estelar. En particular, postuló que las Asociaciones son formaciones muy jóvenes, muchas de ellas en expansión y con una distribución esférica de sus miembros, cuyas vidas medias típicas son del orden de 10⁷ años. En verdad vidas medias de este orden habían sido previamente estimadas por Unsold (1944) para las estrellas de tipos O y B.

Una excelente revision del concepto de Asociación Estelar y su posterior desarrollo fue realizada por Blaaw (1964), en la cual este autor describe con detalle las propiedades generales, distribución espacial, estructura, cinemática, edades y origen de estos singulares conglomerados de estrellas.

En la actualidad se reconocen tres tipos diferentes de asociaciones, las denominadas Asociaciones OB, R y T. Estos tres grupos representan, respectivamente, concentraciones de estrellas de tipos espectrales O y B, nebulosas de reflexión y estrellas T Tauri, en determinadas regiones del cielo.

Las Asociaciones OB y T suelen ser reconocidas sobre placas tomadas con prisma objetivo, mientras que las Asociaciones R, descubiertas en 1966 por van den Bergh, pueden identificarse usando placas directas, tales como las del Palomar o ESO Sky Survey. Todas la asociaciones estan generalmente conectadas con estructuras detectadas ópticamente, como nubes oscuras, hoy reconocidas como "nubes moleculares".

Si bien con frecuencia los tres tipos de asociaciones coexisten dentro de un mismo complejo (por ejemplo, Mon OB1), existen Asociaciones T y R que no estan conectadas con Asociaciones OB conocidas.

Las estrellas de mayor masa de una Asociacion OB, tiene vidas medias alrededor de 10^+ años o aún menor. Por su parte, las estrellas T Tauri, al ser objetos de pre-secuencia, de aproximadamente 1 Mo, tienen vidas medias similares. En consecuencia, las Asociaciones OB y T representan regiones en las cuales la formación de estrellas ha tenido lugar a lo sumo durante los últimos 10^+ años.

Las Asociaciones R pueden ser de dos tipos. Algunas ocurren como resultado del encuentro de un cúmulo con una nube de polvo (por ejemplo las Pléyades). Más interesante, y tal vez más comunes, son aquellas que resultan cuando se forman estrellas de tipo B de masas intermedias (entre 3 y 10 Mo), dentro de la misma nube. Las jóvenes estrellas B son lo suficientemente luminosas y están intimamente relacionadas con la nube de la cual se formaron y por tal motivo, la nebulosidad es detectable. La presencia de estrellas O en el grupo, impediría la detección de la nebulosa de emisión contra la cual no es posible detectar la débil nebulosa de reflexión y, en segundo lugar, porque tienden a "romper" la nube original.

Probablemente, en las Asociaciones R también se están formando estrellas de masas menores que 3 Mo, pero éstas son muy débiles para crear nebulosas de reflexión. Resulta interesante destacar que algunas indicaciones de formación estelar inducida por explosiones de supernovas provienen precisamente del estudio específico de algunas Asociaciones R. Dos típicos ejemplos los constituyen las Asociaciones CMa R1 y Mon R1 (Herbst y Assousa, 1977; Herbst 1979).

Es evidente que gran parte de lo que hoy sabemos respecto de la estructura de la Galaxia, proviene de una manera directa o indirecta del estudio de los Cómulos y Asociaciones. Existen varias razones por las cuales la distribución de la componente estelar, tanto del plano como del disco galáctico, puede ser estudiada a partir de los Cómulos y las Asociaciones Estelares. Entre ellas, podríamos mencionar las siguientes:

1.- Los cúmulos jóvenes y Asociaciones OB contienen estrellas luminosas y pueden, por lo tanto, ser observados y estudiados aún cuando se encuentren a grandes distancias del Sol.

2.— Ciertas propiedades astrofísicas fundamentales, tales como las distancias, edades y metalicidades, pueden en general ser determinadas con mayor exactitud para agregados estelares que para estrellas individuales.

3.- Las Asociaciones OB y cómulos abiertos jóvenes son excelentes indicadores de brazos espirales de la Galaxia.

En este contexto, es particularmente interesante resaltar que, en el primer estudio extensivo de cómulos abiertos y su distribución en el cielo, realizado por Trumpler (1930), fue posible detectar claramente el brazo espiral de Perseo. Aproximadamente dos décadas más tarde Morgan, Sharpless y Osterbrok (1952), sugirieron que las regiones HII y las Asociaciones OB formaban estructuras similares a las observadas en los brazos espirales de Andrómeda. Mientras Trumpler había trabajado con todos los cómulos disponibles hasta esa época, era ahora la componente más joven la que estaba siendo considerada. A partir de este trabajo comenzó la discusión acerca de la existencia de tres brazos, a saber: Perseo, el brazo local y el brazo de Carina-Sagitario.

Como es fácil suponer, gran parte de las distancias de Cúmulos y Asociaciones OB han sido revisadas o redeterminadas desde los pioneros trabajos de Trumpler (1930) y Morgan, Sharpless y Osterbrok (1952).

Sin embargo, tal como ha sido puntualizado por Lynga (1979), las diferencias no son verdaderamente significativas y la imagen de la estructura galáctica que hoy tenemos a partir de los cúmulos y asociaciones no difiere mayormente de la que teníamos algunas décadas atrás.

En los últimos años, ha sido realmente fructífera la relación entre los estudios observacionales de Cúmulos y Asociaciones y los estudios de evolución estelar (ver por ejemplo, el Symposio No 105 de la UAI sobre "Observational Tests of the Stellar Evolution Theory", 1983). Las observaciones continúan aportando datos y parámetros fundamentales a los modelos estelares desarrollados por los teóricos y estos modelos, a su vez, contribuyen al mejor conocimiento de las edades y composiciones de los cúmulos, agregando nuevos e interesantes aspectos al estudio de sus propiedades. I.2 IMPORTANCIA DE LA PRESENTE INVESTIGACION

En general, los estudios de Asociaciones Estelares son importantes por su incidencia en varios campos de la Astrofísica, tales como estructura galáctica, formación de estrellas y evolución estelar.

Tal como ha sido mencionado, una de las primeras evidencias de la estructura espiral de la Galaxia surgió como consecuencia del estudio de Morgan, Sharpless y Osterbrok (1952) sobre la distribución espacial de regiones HII y Asociaciones OB. Este trabajo fue luego extendido, entre otros, por Becker y Fenkart (1963), Becker (1963, 1964) y Schmidt-Kaler (1964). En particular, numerosos estudios de la estructura y cinemática en la región de Carina, han mostrado que tanto la componente estelar como la gaseosa pueden ser observadas a grandes distancias del Sol (ver, por ejemplo, Bok, 1970 y referencias citadas en ese artículo). Las estrellas jóvenes definen claramente el brazo espiral observado a lo largo de la línea de la visual, entre 1.5 kpc. y 6°kpc. del Sol.

Por otra parte, cuanto más sepamos acerca de las Asociaciones OB, más y mejor podremos comprender los procesos de formacion estelar, puesto que se supone con fundamento que los miembros de una asociación estelar tienen un origen común. En este sentido, la región de Carina constituye, sin lugar a dudas, uno de los lugares más interesantes de reciente formacion estelar. Bok (1970) remarcó su importancia y numerosas investigaciones realizadas durante las últimas tres décadas, dedicadas a la distribucion de las estrellas jóvenes, al estudio óptico y radiastronómico de las regiones HI y HII, así lo demuestran.

lln n da los rasgos más destacados en la región de Carina es 1 a 3372 que rodea a la variable irregular χ Carinae. nebulosa NGC Esta nebulosa, juntamente con los cúmulos y Asociaciones vinculados a ella, son fundamentales para intentar el análisis de diversos problemas astrofísicos. La literatura astronómica es rica en traba ios Feinstein y otros (1973) relacionados con el complejo de Carina. estudiaron fotométricamente Tr 14 y Tr 16, en tanto que Walborn (1973) clasificó las estrellas más brillantes de estos dos cúmulos, así como las de Tr 15 y Cr 228. Feinstein y otros (1976) llevaron à cabo Un estudio fotométrico del complejo de Carina y de Cr 228. Más recientemente, Feinstein (1982, 1983) observ6 las estrellas débiles en la región de los cúmulos abiertos Trumpler 14 y Trumpler 16. Turner y Moffat (1980), analizaron integramente la región y discutieron la ley de extinción. Herbst (1976) y Forte (1978) aportaron datos ópticos al estudio y análisis del enrojecimiento en la zona. The y colaboradores (1980a, 1980b), utilizando fotometría infrarroja determinaros un valor de R≡Av/E(B-V) en la dirección de las estrellas más brillantes

8

pertenecientes a Tr 14, Tr 15, Tr 16 y Cr 228. Por otra parte, nuevas determinaciones del valor de R fueron llevadas a cabo por Smith (1987) utilizando fotometría infrarroja y por Drissent y colaboradores (1987) y Tapia y colaboradores (1988), a partir de datos polarimétricos. Una investigación espectrofotométrica de Trumpler 15 fue también llevada a cabo por Feinstein, Fitzgerald y Moffat (1980).

En lo que se refiere a trabajos espectroscópicos, existen varios relacionados con la morfología espectral, con la estimación de velocidades de rotación axial y con la determinación de velocidades radiales. Estos trabajos han sido desarrolados por Levato y colaboradores y están vinculados a los siguientes cúmulos: Cr 228 (Levato y Malaroda, 1982; Levato y otros, 1988b), Tr 16 (Levato y Malaroda, 1983; Levato y otros, 1988a), Tr 14 (Levato y otros, 1988c)y Tr14 y Tr 15 (Levato y otros, 1988d).

La región adyacente a NGC 3372, rica en cúmulos abiertos, ha sido también objeto de estudio de numerosos investigadores del cielo austral.

En la Carta I, reproducción de una de las cartas del ESO Sky Survey, hemos indicado los distintos agregados estelares presentes en la región próxima a la Asociación Carina OB2. Las Cartas II y III constituyen ampliaciones de la región correspondiente a Carina OB2. En particular, en la Carta III hemos indicado los tipos espectrales de las estrellas más luminosas reconocidas como miembros en el presente estudio (ver Capítulos III y IV).

A continuación se mencionan los cómulos indicados en la Carta I, juntamente con los trabajos más relevantes relacionados con cada uno de ellos: NGC 3532 (Koelbloed, 1959; King, 1978; Fernández y Salgado, 1980; Eggen, 1981; Gisseking, 1981; Wizinowich y Garrison, 1982; Clariá y Lapasset, 1988); Tr 18 (Feinstein, 1969; Steppe, 1977); Hogg 10 (Clariá, 1976); NGC 3572 (Walborn, 1971, 1973; Steppe, 1977); NGC 3590 (Clariá, 1976; Steppe, 1977); NGC 3603 (Feast, 1970; Moffat, 1974, 1983; van den Bergh, 1978; Someville, 1980); NGC 3576 (Melnick y Grosbl, 1982; Rosa y otros, 1984; Moffat y Niemela 1984; Moffat y otros, 1985). I.3 LA ASOCIACION CARINA OB2 : PRESENTACION Y ANTECEDENTES

La región de la Vía Lactea comprendida entre las siguientes coordenadas ecuatoriales absolutas:

11h 02m $\leq \propto \leq$ 11h 04m -59 42.5 $\leq \leq \leq -59$ 19.5 (1950.0)

constituye una zona poco observada, la cual incluye un elevado número de estrellas brillantes azules, distribuídas en una elipse cuyos ejes mayor y menor tienen aproximadamente 50 y 40 minutos de arco, respectivamente.

De acuerdo a la nomenclatura propuesta por la IAU (IAU Transactions, Vol XIIB) en 1964, esta zona es conocida con el nombre de Carina OB2 y constituye el objeto de la presente investigacion.

En lo que respecta a su ubicación en el cielo, el centro de Car OB2 yace a medio grado por encima del plano galáctico, aproximadamente en la longitud galáctica 1=290%

Esta Asociación fue descubierta como tal por Bok y van Wijk en 1952, quienes observaron en el sitema fotométrico PV las siguientes cuatro estrellas: HD 96638, HD 96446, HD 96622 y HD 96670 (Ns. 248, 393, 180 y 193 en la Carta IV). Haciendo uso de estas observaciones fotométricas y de los tipos espectrales disponibles en el catálogo Henry Draper, Bok y van Wijk derivaron una distancia preliminar de 1.4 kpcs.

Cuatro años más tarde, Dorrit Hoffleit (1956) haciendo uso de espectros obtenidos en 100 Å/mm, clasificó espectralmente en el sistema MK las cuatro estrellas antes mencionadas y una quinta (No. 248= HD 96248). En la Tabla I-1 se muestran los tipos espectrales MK, magnitudes y distancias asignadas a estas cinco estrellas por Hoffleit.

TA	BL	A	I	1
----	----	---	---	---

			*** **** **** **** **** ****
HD	my	TE	d
96248	6.51	BII	1950
96446 96622	6.59	82V ng stu	700
96638	8,52	08	2200
96670	7,34	08	1600

Magnitudes, tipos MK y distancias asignados

A partir de los datos de la Tabla I-1 se desprende que la distancia al grupo de estas cinco estrellas es d = (1.7 ± 0.3) kpc. Sin embargo, si se excluye la estrella HD 96446 cuya distancia no concuerda con la de los otros "probables miembros" del grupo, 1a distancia resultante es de 2.0 kpc. Puede resultar interesante destacar que en el análisis final de los miembros y no miembros de Car OB2 realizado en el Capítulo IV de este trabajo, la estrella HD 96446 resulto efectivamente no miembro del grupo. A propósito de esta estrella, Feinstein (1964) observ6 fotoel**éc**tricamente 105 en alrededores de la misma un total de 27 objetos en el sistema UBV.

A partir de sus observaciones, este autor pudo distinguir dos grupos de estrellas denominados "a" y "b", formados por estrellas O y B muy tempranas, y B intermedias y tardías y A tempranas, respectivamente. Dichos grupos, caracterizados respectivamente por excesos de color E(B-V) de 0.4 mag. y 0.15 magnitudes, se ubican a 1200 pc y 400 pc del Sol. Es evidente que la distancia inferida por Feinstein para el "grupo a" es considerablemente menor que la obtenida anteriormente por Hoffleit (1956).

Seggewiss (1969), haciendo uso del telescopio de 1.0m del Observatorio de La Silla (Chile), completó la observación fotoeléctrica en el sistema UBV de una secuencia standard hasta la magnitud visual V=14.2.

Un año más tarde, el mismo autor (Seggewiss, 1970), midió con el fotómetro a iris del Observatorio Hoher 480 estrellas sobre placas fotográficas tomadas por H. Haffner en el Observatorio de Boyden en el

Si bien los errores involucrados en la año 1958. fotometría fotográfica de Seggewiss son relativamente grandes, los diagramas UBV (color-magnitud y color-color) confeccionados a partir de los mismos, parecen sugerir que, de existir realmente Carina OB2, dicha asociación estaría probablemente formada no sólo por estrellas O y B muy tempranas, sino también por estrellas B intermedias y tardías, e incluso por estrellas A tempranas. A partir de sus datos fotográficos, Seggewiss (1970) estimó en 0.38 mag, el exceso de color E(B-V) medio y en 2.10 kpc la distancia de la asociacion. Si bien este autor llegó a la conclusión de que el "grupo" b", propuesto por Feinstein (1964), no existía como tal, sino que se trataba de estrellas de campo, sugirió en cambio la existencia de un "grupo c", algo más enrojecido [E(B-v)=0.68] y más distante (d=2.5 kpc) que la Asociación Carina OB2.

Tal como ha sido puntualizado por Walborn (1973), entre otros, la región de Car OB2-NGC 3572 es verdaderamente compleja, con una estructura difícil de desentrañar. Numerosas observaciones parecen demostrar la existencia de grupos compuestos por poblaciones estelares inhomogéneas, distribuídas dentro de rangos relativamente ámplios de distancias estelares. El mismo Walborn (1973) sugirió la posibilidad de que algunos de los miembros de Car OB2 estén espacialmente asociados con los miembros de NGC 3572, tal el caso de la estrella HD 96622 y posiblemente HD 96638 y HD 96670 (pertenecientes a Car OB2) y y las estrellas HD 96715, HD 96946, HD 97166, HD 97253 y HD 97434 (pertenecientes a NGC 3572).

Por otra parte, a partir de un estudio fotométrico de varios cómulos abiertos inmersos en la region adyacente a Carina OB2, Clariá (1976) propuso la existencia del cúmulo Cr 240 como una asociación OB, tal vez extensión de Carina OB2, cuyo núcleo sería el cúmulo abierto NGC 3572. De acuerdo con el estudio de Clariá, los cúmulos abiertos NGC 3590, Hogg 11 y algunas de las estrellas más brillantes de Tr 18, así como las regiones HII G 37 (Gum 1955), An 2 y An 3 (Georgelin y Georgelin, 1970), formarían parte del complejo, para el cual el mencionado autor calculó una distancia de 2.42 kpc.

I.4 OBJETIVOS DEL PRESENTE ESTUDIO.

En la década del 70, Humphreys (1970, 1971, 1972) y Humphreys y Kerr (1974), llevaron a cabo un estudio de la distribución y cinemática de las estrellas luminosas en el brazo espiral de Carina (282(1(305). Al comparar sus resultados ópticos con los radioastronómicos existentes a partir del hidrógeno neutro, mostraron que existe buen acuerdo entre la velocidad de las estrellas y la del gas, sugiriendo esto que tanto la componente estelar como la gaseosa del brazo espiral de Carina presentan movientos similares.

Humphreys not6, sin embargo, que en la dirección correspondiente a longitud galáctica 1=290°, los contornos de hidrógeno neutro la "desplazados" hacia velocidades positivas, con respecto a aparecen la velocidad de las estrellas y hacia ambos lados con respecto a los mapas de la linea de 21 cm., es decir para 1=285° y 1=295°. La discrepancia entre 10 y 20 km/s existente entre la velocidad residual para las estrelllas y para las regiones HII, constituyen una evidencia adicional de la diferencia cinemática entre las estrellas jóvenes y el gas. Esta región de velocidad anómala es particularmente interesante puesto que 1=290 sería el eje óptico del brazo de Carina; su inmejorable orientación y el comportamiento peculiar de la velocidad del hidrógeno, podrian contribuir al conociniento de la estructura del brazo, de onda de especialmente en lo que respecta respecta a la teoría 1972 densidad en la estructura espiral, propuesta por Roberts en Carina OB2 se encuentra exactamente en la dirección 1=290° y Humphreys seleccion6 varios de los "probables miembros" de la Asociación para concretar su investigación. Es, por lo tanto, de gran importancia determinar con exactitud la distancia a la que se encuentra este grupo y la velocidad de los objetos que la componen, para examinar su vinculación con las nubes de Hidrógeno neutro, con regiones HII y con los cúmulos abiertos presentes en la zona.

Después del trabajo realizado por Seggewiss (1970) no se ha llevado a cabo ningún otro estudio detallado de Car OB2 y los acá mencionados no han permitido demostrar con absoluta claridad ni la existencia de la asociación, ni su relación, si es que existe, con los demás objetos presentes en la misma región del cielo. Este es precisamente uno de los principales objetivos del presente estudio.

Ante el panorama descripto, es fácil comprender nuestra intensión de emprender un estudio detallado de Carina OB2.

Son propósitos fundamentales de este estudio comprobar la existencia de Car OB2 como entidad física, individualizar sus pricipales miembros, estimar su edad, la distancia al Sol y otras propiedades astrofísicas relevantes.

Este estudio es eminentemente observacional, siendo la fotometría, en bandas ancha y la espectroscopía, las dos principales técnicas astronômicas empleadas. Es nuestro propósito encarar esta investigación de la siguiente manera:

1) Estudio fotométrico de la Región.

Este estudio nos permitirá básicamente:

- Obtener magnitudes y colores en el sistema UBV.
- Distinguir miembros de Car OB2 de estrellas del campo galáctico,
- Calcular distancia y edad de la Asociacion.

 Determinar la razón entre la absorción total y selectiva (R=Av/E(b-V)) en la región.

2) Estudio Espectroscópico.

A partir de los espectrogramas de las estrellas presentes en la región nos proponemos básicamente:

- Clasificar espectralmente a las estrellas ,
- Segregar miembros en base a los datos espectroscópicos.
- Medir velocidades radiales y de rotación axial.
- Detectar binarias y objetos anómalos.

Bibliografía correspondiente al Capítulo I.

- Ambartsumian, V.A., 1947, "Stellar Evolution and Astophysics" (Armenian Acad. of Sci.), versión alemana, Abhandl. Sowjetischen Astron., Ser. 1, 9 (1951).
- Ambartsumian, V.A., 1949a, Astron. J. USSR 26, 3.
- Ambartsumian, V.A., 1949b, Doklady Akad. Nauk USSR 68, 21.
- Ambartsumian, V.A., 1950, Izv. Akad. Nauk. USSR, Phys. Ser. 14, 15.
- Ambartsumian, V.A., 1954, Trans. Inter. Astron. Union 8, 665.
- Ambartsumian, V.A., 1955, Observatory 75, 72.
- Ambartsumian, V.A., 1959, Endeavour 18, 45.
- Becker, W., 1963, Z. Astrophys. 57, 117.
- Becker, W., 1964, Z. Astrophys. 58, 202.
- Becker, W. y Fenkart, R., 1963, Z. Astrophys. 56, 257.
- Bergh, S. van den, 1966, Astron. J., 71, 990.
- Bergh, S. van den 1978, Astron. & Astrophys. 63, 275.
- Blaaw, A. 1964, Ann. Rev. Astron. & Astrophys. 2, 213.
- Bok, B.J. 1934, Harvard Cir. No 384.
- Bok, B.J. 1970, en IAU Symp. No 38 sobre "The Spiral Structure of our Galaxy". Eds. W. Becker and G. Contopoulos, Reidel Publ. Co. Dordrecht, Hollad, p. 246.
- Bok, B.J. y van Wijk, U. 1952, Astron. J. 57, 213.
- Clariá, J.J. 1976, Astron. J. 81, 155.
- Clariá, J.J. y Lapasset, E. 1988, Mont. Not. Royal Astro. Soc., en prensa.
- Drissent, L., Saint-Louis, N., Moffat, A.F.J. y Bastien, P. 1987, Astrophys. J. 322, 888.

Eggen, O.J. 1981, Astrophys. J. 246, 817.

Feast, M.W. 1970, Observatory 90, 200.

- Feinstein, A. 1964. Observatory 84, 111.
- Feinstein, A. 1969, Mon. Not. R.A.S. 143, 273
- Feinstein, A., Fitzzgerald, P. y Moffat, A.W.J. 1980, Astron. J. 85, 93.
- Feinstein, A., Marraco, H. y Forte, J.C. 1976, Astron. & Astrophys. Supp. 24, 389.
- Feinstein, A., Marraco, H. y Muzzio, J.C. 1973, Astron. & Astrophys. Supp. 12, 231.
- Feinstein, A. 1982, Astron. J. 87, 1012.
- Feinstein, A. 1983, Astrop. & Space Science Vol. 196, No. 2, 293.
- Fernández, J.A. y Salgado, C.W. 1980, Astron. & Astrophys. Suppl. 39, 11.
- Forte, J.C. 1978, Astron. J. 83, 1199.
- Georgelin, Y.P. y Georgelin, Y.M. 1970, Astron. & Astrophys. 7, 133.
- Giesseking, 1981, Astron. & Astrophys. 99, 155.
- Gum, C.S. 1955, Mem. Roy. Astron. Soc. 67, 155.
- Herbst, W. 1976, Astrophys. J. 208, 923.
- Herbst, W. 1979, en IAU Symp. No 85 sobre "Star Clusters", Ed. J.E. Hesser, Reidel Publ. Co., Dordrech, Holland, p. 33.
- Herbst, W. y Assousa, . 1977, Astrophys. J. 217, 473.
- Hoffleit, D. 1956, Astrophys. J. 124, 61.
- Humphreys, R.M. 1970, Astron. J. 75, 602.
- Humphreys, R.M. 1971, Astrophys. J. Lett. 163, L111.
- Humphreys, R.M. 1972, Astron. & Astrophys. 20, 29.
- Humphreys, R.M. y Kerr, F.J. 1974, Astrophys. J. 194, 301.
- King, D.S. 1978, Sydney Obs. Papers, No. 79.
- Koelbloed, D. 1959, Bull. Astron. Inst. Netherland, 14, 265.
- Levato, H. y Malaroda, S. 1982, Publ. Astron. Soc. Pacif. 93, 714.
- Levato, H. y Malaroda, S. 1983, Publ. Astron. Soc. Pacif. 94, 807.

- Levato, H., Hernández, C., García, B. y Morrell, N., 1988a, env. al Astrophys. & Space Sciences.
- Levato, H., Malaroda, S., Morrell, N. y García, B. 1988b, en preparación.
- Levato, H., Malaroda, S., Morrell, N., García, B. y Solivella, G., 1988c, en preparación.
- Levato, H., Morrell, N. y García, B. 1988d, enviado al P.A.S.P.
- Lindblad, B. 1941, Ann. Stockholm Obs. 13, No 10.
- Lindblad, B. 1942, Ann. Stockholm Obs. 14, No 1.
- Lynga, G. 1979, en IAU Symp. No 85 sobre "Star Clusters", Ed. J.E. Hesser, Reidel Publ. Col, Dordrecht, Holland, p. 13.
- Melnick, J. y Grosbol, P. 1982, Astron. & Astophys. 107, 23.
- Mineur, H. 1939, Ann. Astrophys. 2, 1.
- Moffat, A.W.J. 1974, Astron. & Astrophys. 35, 315.
- Moffat, A.W.J. 1983, Astron. & Astrophys. 124, 273.
- Moffat, A.W.J. y Niemela, V. 1984, Astrophys. J. (284, 631.
- Moffat, A.W.J., Seggewiss, W. y Shara, M.M. 1985, Astrophys. J. 295, 109.
- Morgan, W.W., Sharpless, S. y Osterbrock, D. 1952, Astron. J. 57, 3.
- Roberts, W.W. 1972, Astrophys. J. 173, 259.
- Rosa, M., Melnick, J. y Grosbol, P. 1984, en IAU Symp. No 108 sobre "Structure and Evolution of the Magellanic Clouds",
- Ed. , p. 257.
- Schmidt-Kaler, T. 1964, Z. Astrophys. 58, 217.
- Seggewiss, W. 1969, no publicado.
- Seggewiss, W. 1970, en IAU Symp. No 38, sobre "The Spiral Structure of our Galaxy", Eds. W. Becker y G. Contopoulos, Reidel Publ. Co., Dordrech, Holland, P. 265.
- Smith, R.G. 1987, Mont. Not. R.A.S. 227, 943.
- Someville, W.B. y Blades J.G. 1980, Mon. Not. Roy. Astron Soc. 192, 719.

Steppe, H. 1977, Astron. & Astrophys. Supp. 27, 415.

- Tapia, M., Roth, M., Marraco, H. y Ruiz, M.T. 1988,
- The, P.S., Bakker, R. y Antalova, A. 1980a, Astro. & Astrophys. Supp. 41, 93.
- The, P.S., Bakker, R. y Tjin A Djie, H.R.E. 1980b, Astron. & Astrophys. 89, 209.
- Trumpler, R.J. 1930, Lick Obs. Bull, No 420.
- Turner, D.G. y Moffat, A.W.J. 1980, Mon. Not. Roy. Astro. Soc. 192, 283.
- Unsold, A. 1944, Z. Astrophys. 24, 278.
- Walborn, N. 1971, Astrophys. J. Supp. 23, 257.
- Walborn, N. 1973, Astrophys. J. 179, 517.
- Wizinowich, P. y Garrison, R.F. 1982, Astron. J. 87, 1390.

CAPITULO II

FOTOMETRIA FOTOELECTRICA EN EL SISTEMA UBV

II.1 PROGRAMA DE OBSERVACION.

Las estrellas seleccionadas para ser medidas fotoeléctricamente en el sistema UBV fueron aquellas medidas antes fotográficamente por Seggewiss (1970). Todos estos objetos tienen coordenadas ecuatoriales absolutas comprendidas dentro de los límites mencionados en la sección I.3. En total se observaron en el sistema UBV 475 estrellas, cuyas magnitudes escilan entre 6 y 14.5.

Un histograma representativo del número de estrellas observadas fotoeléctricamente en función de la magnitud aparente visual, se muestra en la Figura II-1. El dominio de esta distribución se ha dividido en intervalos de media magnitud. Como se aprecia en la figura, la mayoría de las observaciones corresponden a estrellas con magnitudes comprendidas en el intervalo 12.0 (V< 14.0, con un máximo absoluto entre V = 13.5 y 14.0.

En la Carta IV se ilustra, en forma aproximada, los límites correspondientes a la región investigada. Dicha imagen fue obtenida de una placa fotográfica (Kodak 103a-O, 20 minutos) tomada con el Astrográfico doble de la Estación de Altura El Leoncito, perteneciente al Observatorio Astronómico Félix Aguilar, en la provincia de San Juan.

En las Cartas V a VIII, se identifican las estrellas observadas según la numeración asignada originalmente por Seggewiss.

estrellas seleccionadas para fotometría UBV fueron medidas Las fotoeléctricamente utilizando los telescopios de 0.61 m (Lowell) y 0.91 m del Observatorio Interamericano de Cerro Tololo (Chile). Este último instrumento fue usado para medir estrellas más débiles que V=13.0. Las observaciones fueron realizadas durante los meses de abril-mayo de 1983, marzo-abril de 1984 y marzo-abril de 1985. Sobre un total de 31 noches concedidas para desarrollar el programa fotométrico, 19 resultaron total o parcialmente fotométricas, mientras que en las restantes el cielo estuvo nublado o seminublado y no se realizaron observaciones.

II.2 EQUIPO UTILIZADO Y TECNICA DE OBSERVACION.

mediciones UBV correspondientes al turno de 1983, fueron Las realizadas empleando un fotómetro de un solo canal ubicado en el foco Cassegrain del telescopio de 0.61 m. El equipo incluy6 una fotomultiplicadora RCA 1P21 alimentada con una tensión anódica de 800 volta y refrigerada con hielo seco. La señal procedente de 1a fotomultiplicadora, fue integrada durante durante un intervalo de tiempo constante para todas las estrellas e igual a 10 segundos. Todas las mediciones realizadas con este telescopio fueron hechas a través de un diafragma circular de 1mm de abertura, equivalente a 25.0 segundos de arco en el cielo. Conviene destacar que se usó siempre el mismo conjunto de filtros UBV, tanto para el turno de 1983, como para los de 1984 y 1985.

Durante la comisión de observación correspondiente a 1984, se empleo el telescopio de 0.61m en combinación con una fotomultiplicadora S-20 refrigerada con hielo seco. La señal procedente de la fotomultiplicadora fue en general integrada durante 10 segundos, y en algunos casos durante 20 segundos, para los objetos mas débiles. Las mediciones fueron realizadas empleando el diafragma de 0.65 mm (16.5") y, en el caso de los objetos más debiles, el de 0.46 mm (11.5").

Finalmente, las observaciones UBV correspondientes a 1985 se llevaron a cabo con el telescopio de 0.91 m. y un fotocátodo S-20.

Si bien la señal recogida de cada estrella fue integrada, en todos los casos, durante 10 segundos, el diafragma utilizado en esta oportunidad fue de 0.70 mm de abertura, equivalente a 11.55 segundos de arco en el cielo.

En general, la secuencia de deflexiones seguida para cada estrella se realizó en el siguiente orden: UUUUBBVV para la estrella, UUBBVV para el fondo del cielo, y nuevamente VVBBUUUU para la estrella. Esta secuencia general fue levemente modificada cuando se midieron estrellas muy brillantes o muy débiles. Además, a lo largo de cada noche, se efectuaron mediciones de la corriente oscura.

20

II.3 REDUCCION DE LAS OBSERVACIONES.

La reducción de las mediciones UBV fue llevada a cabo integramente con la computadora HP 1000 que se encuentra en la Facultad de Ciencias Astronômicas y Geofísicas de la Universidad Nacional de La Plata, utilizando el programa UBV3 confeccionado en esa Facultad.

El procedimiento seguido para la reducción de los datos es similar al utilizado por la mayoría de los fotometristas, por lo que no incluiremos aquí una justificación matemática rigurosa del mismo. Con relación a este punto, sin embargo, pueden consultarse, entre otros, los siguientes autores: Mitchell (1960), Schulte y Crawford (1961), Hardie (1962), Clariá (1974, 1979).

Una de las pocas desventajas que presenta un fotómetro de pulsos con relación al clasico fotómetro con registrador, es la necesidad de efectuar correcciones debidas al "tiempo finito de resolucion del sistema". Como es bien sabido, después de ser estimulado por un pulso y registrarlo, el contador del fotómetro de pulsos permanece insensible a pulsos posteriores durante un tiempo muy pequeno denominado "tiempo muerto del sistema". Este efecto ocasiona perdidas de pulsos y se manifiesta de una manera mas notable cuando mayor es la frecuencia de pulsos recibida.

Haciendo uso de la ley de distribucion de Poisson, Clariá (1979) dedujo la siguiente expresion:

$$N = n [1 - n g - 1/2 (n g)^{2}]^{2}$$
(II-1)

en la cual N y n representan los números de cuentas por segundo recibidas y observadas, respectivamente, y S es el tiempo muerto del sistema. Esta expresión permite calcular con todo rigor el número real de fotones por segundo recibidos de una estrella, usando un determinado filtro. Dado que es una cantidad muy pequena, la expresión (II-1) puede reemplazarse en una buena aproximación por la siguiente:

$$N \approx n \left(1 - n \right)^{-1}$$
 (III-2)

o bien:

 $N \simeq n(1+n)$ (II-3)

La fórmula (II-3), obtenida originariamente por Evans (1955), ha sido y es ampliamente usada por los fotometristas. La aproximación resulta bastante buena para N g^{∞} n (0.05, siendo usable hasta N g^{∞} 0.20.

A título ilustrativo podemos decir que si se adopta un valor típico de 30x10 segundos para , el error correspondiente a un conteo observado de 3x10 cuentas/segundo, por ejemplo, es aproximadamente del 1%.

El primer paso en el proceso de reducción de datos UBV consistió precisamente en calcular las magnitudes instrumentales u, b y v, corregidas por tiempo muerto. Teniendo en cuenta la ley de Pogson y la ecuacion (II-3), dichas magnitudes se obtuvieron de las siguientes expresiones;

> $v = 12.5 - 2.5 \log [nv (1+ g nv)-Cv]$ (II-4) $b = 12.5 - 2.5 \log [nb (1+ g nb)-Cb]$ (II-5) $v = 12.5 - 2.5 \log [nv (1+ g nv)-Cv]$ (II-6)

en las cuales nu,nb,nv representan los números de cuentas por segundo observados de una estrella en cada filtro y Cu,Cb,Cv son las cuentas correspondientes al fondo de cielo.

La constante 12.5 a sido arbitrariamente introducida para que los valores numéricos u, b y v de una estrella no difieran mayormente de sus correspondientes valores en el sistema standard.

Cada estrella ubicada a una distancia cenital Z fue observada con una masa de aire X = sec Z - Δ X, en la cual Δ X es un factor que ha sido obtenido por Schulte y Crawford (1961) como ajuste polinômico de las tablas de Bemporad (Shoenberg 1935). Las expresiones usadas para sec Z y Δ X son las siguientes:

sec Z = (sen δ sen φ + cos δ cos φ cos H)⁻¹(II-7)

$$\Delta X = 0.0018167 (\sec z - 1) + 0.002875 (\sec z - 1)^{2} + 0.0008083 (\sec z - 1)^{2}$$
(II-8)

en las cuales δ es la declinación de la estrella, H su ángulo horario y Q la latitud del observatorio.

La obtención de la magnitud y colores instrumentales, corregidos por extinción atmosférica, resulta a partir de las expresiones:

$$vo = v - k'v X$$
, (II-9)

$$(b-v)_0 = \frac{(b-v) - k'bv, X}{1 + k''bv, X}$$
, (II-10)

$$(u-b)_0 = (u-b) - k'ub.X,$$
 (II-11)
1 + k"ub.X

donde vo, (b-v)o, (u-b)o, indican la magnitud y los colores fuera de la atmósfera, y k' y k" son los coeficientes de extinción atmosférica de primer y segundo orden, respectivamente. En los cálculos se usaron siempre coeficientes medios de extinción UBV correspondientes al Observatorio de Cerro Tololo, extraídos del "CTIO Facilities Manual". Los valores adoptados son los siguientes:

k'v= 0.172k'v= 0.0k'bv= 0.111k"bv= -0.026k'ub= 0.318k"ub= -0.020

Conviene hacer notar que valores más recientes de los coeficientes de extinción obtenidos para Cerro Tololo, difieren ligeramente de los antes mencionados. Pruebas efectuadas utilizando los valores actualizados de dichos coeficientes, demuestran que los parámetros UBV resultantes permanecen prácticamente inalterados.

Para llevar a cabo la transformación al sistema UBV standard, se observaron durante cada noche estrellas de las regiones E (Cousins 1973, 1974) y/o standards de Landolt (1973). Estos objetos fueron elegidos no sólo porque son fácilmente observables desde Cerro Tololo, sino principalmente porque sus parámetros UBV standard han sido determinados con mucha precisión. En el turno de observación del año 1985 se observaron, además, dos estrellas del cúmulo abierto NGC 2362, recomendadas como standards secundarias por Johnson y Morgan (1953). La transformación al sistema standard UBV se efectuó resolviendo por cuadrados mínimos las siguientes ecuaciones lineales:

•

$$V = V_0 + A (b-v)_0 + B,$$
 (11-12)

$$(B-V) = C (b-v)o + D,$$
 (II-13)

$$(U-B) = E (u-b)o + F,$$
 (II-14)

en las cuales V, (B-V) y (U-B) representan la magnitud y colores en el sistema standard y A,B,C,D,E,F son las seis constantes de transformación.

Una vez conocidas las seis constantes de transformación para una determinada noche, se calcularon para cada estrella de programa la magnitud y colores en el sistema standard.

En la Tabla II-1, se consignan las estrellas de las regiones E observadas en Cerro Tololo. En las columnas (4) a (9) se presentan la magnitud y colores publicados por Cousins (1973, 1974) y los correspondientes valores medios obtenidos de nuestras observaciones; n representa el número total de observaciones realizadas de cada estrella.

En la Tabla II-2 se muestran los datos referidos a las standards de Landolt (1973). En esta Tabla el subindice "L" se refiere al valor publicado por Landolt. En la Tabla II-3, se detallan los valores obtenidos para las standard secundarias pertenecientes al cúmulo abierto NGC 2362. En este caso, el subíndice "JM" se refiere a los valores publicados por Johnson y Morgan (1953). Finalmente, en la Tabla II-4 se presentan los coeficientes de transformación para cada noche, obtenidos por mínimos cuadrados, juntamente con las correspondientes desviaciones standard.

Los resultados finalmente obtenidos a partir de la fotometría en tres colores de 475 estrellas de la región, se presentan en la Tabla II-5. Las sucesivas columnas indican:

(1)- Número de Seggewiss (1969) de identificación de la estrella .
 (2)- Número HD o HDE, cuando existe.

(3)-(4)- Ascención recta y declinación para el equinoccio 2000.0.

(5)- Magnitud aparente visual, en el sistema standard.

(6)-(7)- Indices de color B-V y U-B en el sistema standard.

- (8)- Tipo espectral del catalogo Henry Draper.
- (9)- Nómero de observaciones fotoeléctricas realizadas en noches diferentes.

Cabe consignar que, en virtud de los períodos limitados durante los cuales se efectuaron las mediciones, sólo el 18% de las estrellas de programa cuentan con 3 6 más observaciones en noches diferentes; el 24% registra 2 observaciones y el 58% sólo una medición.

II.4 CALCULO DE ERRORES

Para tener una idea de la precisión obtenida con una determinada técnica fotoeléctrica suelen por lo general, calcularse los errores medios externos e internos involucrados. Los primeros resultan de comparar los valores obtenidos para las estrellas standard durante cada noche, con los correspondientes valores publicados. Si Xi representa la magnitud (o el color) medido de una estrella standard, y Xpi indica la magnitud (o el color) standard, se denomina error medio externo de la mgnitud (o el color) considerada, el error cuadrático medio definido por·la expresión:

$$\nabla e = \left[\sum_{i} \frac{(X_{i} - X_{pi})^{2}}{n} \right]^{\frac{1}{2}}$$
 (II-15)

en donde n indica el número de estrellas standard en la muestra.

Los Ve en la magnitud y los índices (B-V) y (U-B) fueron calculados separadamente para cada noche. Estos valores se consignan en la Tabla II-6, juntamente con el promedio de dichos errores sobre todas la noches de observación. Las cantidades que aparecen en la Tabla II-6 demuestran que, independientemente del telescopio usado, tanto la magnitud como los colores instrumentales han sido satisfactoriamente transformados al sistema standard.

Los errores internos Vi se determinaron comparando los valores medios observados para cada' estrella del programa, con las respectivas mediciones individuales. Para cada objeto se calculó entonces el error cuadrático medio Vi, definido como:

$$V_{i} = \left[\sum_{i}^{2} \frac{(X_{i} - \overline{X})^{2}}{n}\right]^{2}$$
 (II-16)

donde X representa el valor medio del parámetro considerado, Xi una observación individual y n el número de observaciones realizadas.

En la Tabla II-7 se presentan los errores medios internos obtenidos promediando los Vi en diferentes intervalos de magnitud V. Conviene aclarar que en la determinación de estos errores se han excluido del cálculo aquellas estrellas consideradas variables o sospechosas de variabilidad (ver seccion II.5). Puede apreciarse en la Tabla II-7 que los √i obtenidos con el telescopio de 0.91 m aumentan ligeramente con la magnitud observada.

II.5 ESTRELLAS VARIABLES DETECTADAS FOTOELECTRICAMENTE

Muchas de las estrellas observadas en la región presentan discrepancias apreciables en las mediciones individuales de la magnitud y/o los colores.

Si bien algunas de estas discrepancias pueden deberse a diferentes factores (cambios bruscos de la extición atmosférica, fluctuaciones del "seeing", errores de lectura o de reducción, efectos de contaminación por estrellas cercanas, defectuosas mediciones del fondo de cielo, errores de centraje o calaje, etc.) existen razones como para sospechar que la mayor parte de dichas discrepancias estén reflejando variaciones intrínsecas de los objetos considerados. Teniendo en cuenta los errores externos e internos calculados (Tablas II-6 y II-7), nos parece razonable considerar una estrella como sospechosa de variabilidad cuando la magnitud y/o los colores medidos en noches diferentes, presentan oscilaciones mayores que 0.1 magnitud. Para tales objetos (50 en total) se indican los valores medios (entre paréntesis) en la Tabla II-5, mientras que en la Tabla II-8 se consignan, para cada uno de ellos, las respectivas amplitudes de oscilación.

Estrellas standard de las regiones E de Cousins observadas en el presente trabajo

Q	ЦIJ	TE	v c	C BA	U-B C	V	B-A	U B	n
E3-46	49942	B8	7,34	-0.11	-0.39	7.34	-0.10	-0.38	2
E4-81	78616	B5	6.77	0.00	-0.75	6.78	0.01	-0,75	9
E4-91	79039	B 8	6.82	-0.12	-0.55	6.83	-0.13	-0.55	11
E4-93	79275	83	5.78	-0.21	-0.85	5.77	-0.22	-0.84	7
E4-39	79403	F5	6.66	0,43	-0.00	6.68	0.44	0.01	3
E4-94	79621	89	5.91	-0.05	-0.10	5.90	-0.05	-0.12	9
E.497	81347	B5	6.27	-0.14	-0.61	6.27	0.14	-0.60	10
E4-46	82578	FO	6.53	0.26	0.04	6.53	0.27	0.04	10
E5-53	103281	G5	7.22	1.04	0.83	7.22	1,03	0.84	7
E537	103746	F2	6.26	0.40	0.04	6.26	0.41	0.05	8
E539	104138	F8	6.66	0.56	0.09	6.66	0.56	0.11	12
E5-41	105313	A0	7.31	0,01	-0.06	7.33	0.01	-0.09	1
E5-50	105919	F5	6.58	0.46	-0.03	6.58	0,46	-0.02	9
E5-79	107392	A3	7.11	0.25	0.13	7.11	0.26	0.12	6
E6-82	127864	B9	6,89	-0.02	-0.13	6.89	-0.02	-0.13	19
E6-33	128413	KO	6.83	1.17	1.21	6.84	1.17	1.21	7
E6-88	128775	AOp	6.63	-0.12	-0.37	6.61	-0.12	-0.38	2
E6-44	130073	G5	6.30	1.08	0,89	6,30	1.06	0.91	4
E6-90	130697	A2	6.83	0.13	0.15	6,82	0.13	0.10	3
E6-52	130904	GO	7.20	0.54	0,04	7.19	0.53	0.03	6
E7-82	155985	B2	6.46	0.27	0.68	6.46	0.25	0.66	8
E7-45	156398	A0	6.65	0.20	0.05	6.64	0,21	0.05	15
E7-46	156623	A 0	7.25	0.09	0.07	7,26	0.09	0.05	13
E7-48	157316	F 0	6.66	0,38	0.01	6.65	0,39	-0.01	15
E7-16	157477	A3	8,10	0.25	0.20	8.11	0.24	0.20	6
E765	159656	G5	7.17	0.65	0.17	7.17	0.64	0.19	5
E7-90	160715	B9	6.92	-0.03	-0.15	6.91	-0.03	-0.16	9
E8-20	188815	F8	7.48	0.48	0,09	7,48	0.48	-0,08	5
E8-13	189247	F2	7.65	0.43	-0.01	7.65	0.43	-0.01	4
E828	189563	K 0	6.57	1.22	1.22	6.57	1,23	1,21	3
E89	189951	A5	7.82	0.30	0.07	7.81	0.31	0.07	2
E88	191273	A3	7.83	0.25	0.13	7.82	0.27	0,13	3

Estrellas standard seleccionadas de la lista de Landolt observadas en el presente trabajo.

No Landolt	TE	V L	B∩ "	UB L	V	BA	UB	n
99-172	A1	8.81	0.05	0.04	8.80	0.06	0,06	
99-438	B7	9.40	-0.15	-0.71	9,41	-0.15	-0.68	6
101-282	F2	10,00	0.42	0.01	10.00	0,43	-0.01	4
101-308	GO	10.54	0,56	0.00	10.55	0.56	-0.01	3
101-311	A3	8.23	0.26	0.01	8.22	0.27	0.00	4
04-461	F7	9.72	0.48	-0.03	9.73	0.47	-0.03	6
104-654	F3	10.01	0,41	-0,02	10.03	0.41	-0.02	4
06-841	G 0	11.04	0.57	0.02	11.05	0.57	0.00	6
106-1024	A6	11.56	0.31	0.04	11.61	0.32	0,08	5
08-551	A0	10.72	0.17	0.16	10.70	0.17	0.17	6
108-702	F6	8.21	0.56	0.05	8.21	0.56	0.02	6
08-1332	A9	9.20	0.39	0.07	9.20	0.38	0.08	6
109-375	F8	11.33	0,83	0.26	11:34	0,83	0.24	6
09-747	B9	8.48	0.30	0.22	8.47	0.30	0.23	6
110-248	A2	10.86	0,68	0.50	10.86	0.68	0.50	6
10-340	A5	10.04	0.30	0,10	10.04	0.30	0.15	2

Estrellas standard secundarias pertenecientes al cómulo abierto NGC 2362.

••••	**** **** *1** ·1** ·*** · *** ****				*** **** **** **** **** **** ****	*** **** **** **** **** ****		, beför miss adar pång ange stat stat -ter bådt nåda adas stat gan, sv		
	N(JM)	TE	V JM	B-V JM	U-B JM	V	BA	U-B	n	
	**** **** **** **** **** **** **** ****	*** **** **** **** **** **** *			** **** **** **** **** **** **** ****	ang ang		144 4947 4948 4647 9666 4669 4669 4769 4769	**** **** **** **** ****	
	30	82V	8.21	0.17	-0,91	8.21	-0.17	0,93	6	
	31	B1V	9.32	-0.12	-0.76	9.35	-0,13	-0.76	5	

~

29

Coeficientes medios de transformación en el sistema UBV.

1985			
	A	B	C
	-0,10974+0.0059	0,96351+0.00587	0,27067+0,00526
	D	E	F
	0.92747+0.00308	9.65535+0.0309	-0.06473+0.02213
1984	*** ***		
	A	B	C
	0.01715+0.00394	0.91141+0.0211	-0.87121+0.03857
	D	E	F
	0.81836+0.04163	9.93522+0.32699	0.24757+0.02699
1983	11 		
	A	B	C
	1.12367+0.00457	1.05726+0.00945	-0.61664+0.00468
	D	E	ات
	0.95853+0.00589	8.32561+0.03191,	0,07106+0.00519

Resultados obtenidos a partir de la fotometría UBV de 475 estrellas en la región investigada.

No	HD/HDE	A.R.	DEC.	V	₿…V	U-B	TE	n	Coment.
#001	96261	11:05:04	-59:42:50	7.73	0,24	-0.62	BIID	3	(Comps)
帯UU2 手0072		11:05:01		9,69 17 00	0.27	0.74		3	
#003		11:04:07		10.02	0.20			1 7	
#004 #005		11:04:57		10 73	0.42			্য স	
#006		11:04:50	-59:40:47	11.54	0.92	(0, 43)		2	
#007		11:04:54	-59:41:59	10.55	0.59	0.20		2	
#008		11:04:48	-59:42:15	10,50	0,13	-0.66		3	
#009		11:04:44	-59:42:18	12.95	1.35	1.14		1	
#010		11:04:39	-59:42:13	13,20	0.22	-0.20		2	
#011		11:04:37	-59:41:53	13.15	0.67	0.34		1	
#012		11:04:38	59:41:45	14.16	0.23	-0.10		1	
帯U1.3		11:04:31	-57:42:25	11.09	0.99	(0.88)		చ ,	
帯U14 本O15		11:04:38		11.03	0.00	0.20		. ১ ন	
ましてい あしてい		11:04:42		17 69	0.20			ر. ۱	
#010		11:04:37	-59:43:54	14.38	0.36	0.17		1	
#018		11:04:34	-59:43:56	14.17	0.54	0.21		î	
#019		11:04:31	-59:43:53	13.17	0.44	0.32		2	Comp
#020		11:04:24	-59:42:58	14.11	0.70	0.18		1	Сомр
#021	305938	11:04:26	-59:45:33	9,48	0.12	-0.73	в	3	·
#022	305937	11:04:35	-59:45:00	10.64	0.21	-0.44	B 8	3	Сомр
#023		11:04:40	-59:45:17	14.41	0.60	0.37		1	
#024		11:04:48	-59:45:20	14,90	0.28	0.21		1	
#025		11:04:58	-59:44:46	13.48	0.60	0.06		2	
帯しどら		11:05:02	-59:44:55	13.83	0.31	0.15		1	
事り出て、		11:00:03	-07:44:06	14,03	0.33			1	
事じごび 事れつの		11:00:00		10 74	0.23			1	
#0237 #10730		11:04:00		173 51	0,24	0.15 0.15		ວ ວ	Comp
#0.31		11:04:59	-59.47.14	12 11	0 40	015		۰۰ ۲	comp
#032		11:05:08	-59:42:37	11.55	0.22	-0.48		à	
#033		11:05:12	-59:42:06	13.58	0.28	-0.06		1	
#034		11:05:13	-59:42:42	11.20	0.24	-0,40		3	
#035		11:05:14	-59:43:11	(12.65)	0.29	-0.22		2	

•

No	HD/HDE	A.R.	DEC.	V	BV	U-B	TE	n	Coment,
#036	*** **** **** **** **** ***	11:05:14	-59:43:39	13.95	0.31	-0.01	** **** **** **** **** ****	1	
#U37 #0.20			-59:43:52	12.13	0.23	-0.38		చ ం	
4070		11:00:14		11.63	0,18			2	
#037 #040		11:00:11		13.20	0,27	~~U. <i>ZZ</i> 0 10		1 1	
#040 #141		11:05:17	-59:44:24	14.49	0.77	0.12		1	
# 042		11:05:18	-59:43:58	13.67	1.16	0.70		1	Comp
#043		11:05:22	-59:43:58	14,36	0.55	0.35		i	ta o mp
#044		11:05:27	-59:44:44	14.43	0.76	0.24		1	
#045		11:05:31	-59:44:59	12.45	0.34	-0.19		2	
#046		11:05:30	-59:45:33	14.28	0.35	0.12		1	
#047		11:05:26	-59:43:23	14.01	0,82	0,20		1	
#048		11:05:21	-59:43:13	13.39	0.40	-0.02		2	
#049		11:05:20	-59:43:16	14.22	0.63	0,40		1	
#050		11:05:25	-59:42:27	(12.38)	(1.44))(1,76)		3	
#051		11:05:28	-59:41:44	11.25	0.22	-0.50		1	Сомр
#052		11:05:32	-59:41:47	12.88	0.26	-0.06	.	2	
#053	305936	11:05:41	-59:42:14	10,18	0.13		83	4	
#U34		11:00:42		10 76	ປຸລ% ດັບຂ	0.107		ು ಕ	
事Uつつ ありにと		11:00:00		171,00	0,70	0,30		л 1	
4000 4057		11:00:00		13,02	0.77				
*******		11:00:40		173 04	0.20	-0.27		Š.	
#0000 #050		11:05:53	-59:40:46	13.95	n.44	0.23		1	
#067 #060		11:05:58	-59:39:57	13.09	0.54	0.02		ê	
#061	305934	11:05:46	-59:40:00	10.74	0.11	-0.54	B8	3	
#062		11:05:41	-59:40:17	13.65	0.37	0.18		1	
#063		11:05:34	-59:40:32	14,28	0.79	0,34		1	
#064		11:05:30	-59:40:13	13.17	0.18	-0.22		2	
#065		11:05:28	59:40:30	13.45	0,30	0.18		2	
#066		11:05:22	-59:40:54	(12.54)	0.48	0.17		2	
#067		11:05:21	-59:41:23	13.74	0.31	-0.03		1	
#0 68		11:05:21	-59:41:45	13.49	0.59	0,05		1	
#069		11:05:19	-59:40:32	(12,90)	0.36	0.15		2	
#070		11:05:16	-59:40:33	13.79	0.29	-0.26		1	
#071		11:05:21	-59:39:19	13.21	0.42	0.01		2	

TABLA II-5 (Cont.)

No	HD/HDE	A.R.	DEC.	V	B√	UB	TE	n	Comen
072		11:05:27	-59:39:05	13.76	0.25	0.08		1	
07.0		11:00:20		10 00	0,10	~~U,4C) 0 0 0		<u>~</u>	
075		11:05:34		14.07	0.28	0.15		1	
076		11:05:50	-59:38:31	(12, 23)	0.57	(0,20)		ź	
077		11:05:52	-59:38:16	13.94	0.75	0,05		1	
078		11:05:32	-59:36:49	14.00	0.50	0.02		1	
079		11:05:30	-59:36:52	11.94	0,99	1.14		1	
080		11:05:28	-59:36:59	14.04	0,49	0.21		1	
081		11:05:30	-59:37:41	11.80	0.19	0.11		3	
082		11:05:32	-59:38:03	13.88	0.37	0.24		1	
003 007		11:00:21			0,17	U.LU 0.291		یت ۲	•
004		11:00:22		144,00 (12) 45)	0.10			2	Comp
000		11:05:18	-59:39:13	14.13	0.42	0.16		1	womp
087		11:05:18	-59:39:23	13.75	0.29	0.08		1	
088		11:05:19	-59:39:32	13.85	0.23	0.11		1	
089	305932	11:05:04	-59:39:47	9.30	0.07	-0,76	BЗ	4	
090		11:05:01	-59:39:19	14,18	0.63	0.46		1	
091		11:05:01	-59:38:55	12.00	0.16	-0,45		2	
092		11:05:03	-59:38:58	(12,94)	(0.54)	(0,06)		2	Compl
093		11:05:08	-59:38:29	13.86	0.75	0,26		1	
094		11:05:04	-59:38:25	14.00	0.27	0.04		1	
095		11:04:55	-59:38:09	13.69	0.50	0.14		1	
096		11:04:45	-59:39:07	11.96	0.24	-0.05		3	
077				13.70	0.23	0.02		1	
078 080		11:04:01		14.20	0.34	U.3∠ 0.17		1	
1077		11:04:47		172 20	0,01	0,13		<i>i</i>	
101		11:04:00	-59.40.39	סיד ידי	0.07	0.00		2	Сомп
102		11:04:25	-59:40:32	(11 82)	1.30	(2.00)		2	womp
103	305930	11:04:21	-59:40:52	10.69	0.16	-0.61	B 5		
104	and we want to ber ber	11:04:20	-59:41:39	13.91	1.40	1.09	an- 145	1	
105		11:04:19	-59:42:06	13.73	0,68	0,18		ì	
106	96586	11:06:48	-59:42:56	9.05	0.08	-0.03	A0	3	
107		11:06:50	-59:42:29	13.78	0.52	0,09		1	Comp

TABLA II-5 (Cont.)

Νo	HD/HDE	A.R.	DEC.	V	BV	UB	TE	n	Coment.
#108		11:06:48	-59:41:33	14.31	0.61	0.27		1	
#118		11:06:37	-59:43:02	13.67	0.36	-0.06		2	
#111		11:05:35	-59:43:03	13.97	0,35	-0,09		1	
#112		11:06:33	-59:42:50	12.94	0.26	-0.25		2	
#113		11:06:40	-59:42:11	12,58	0.44	0.06		2	
#114		11:06:25	-59:41:59	13.93	0.55	0.06		1	
#115		11:06:29	-59:41:58	11.48	0.19			3	
モノノロ キョイワ		11:06:31	-57:41:21	14.37	0.12	U.28		1 2	
#118		11:06:33	-59:41:08	(12.23)	0,10	~~U.47 (0.70)		<u>م</u>	
#119		11:06:38	-59:40:03	11.37	1.34	(1.37)		3	
#121		11:06:14	-59:41:19	12.95	0.32	0.89		1	
#122		11:06:04	-59:40:59	13.66	0.52	0,001		1	(Comp)
#123		11:06:02	-59:40:46	(12,70)	0.37	0.17		2	
#124		11:06:02	-59:40:03	14.21	0.39	0.37		1	
#125		11:06:00	-59:40:03	13.87	0.56	0.28		1	
#120		11:00:07		14 28	0.00	0.01		1	
#128		11:06:02	-59:39:08	13.91	0.26	0.17		1	
#129		11:06:08	-59:38:20	(12,39)	0,19	-0.38		3	
#130		11:06:18	-59:39:22	12.95	1.02	0.58		1	
#131		11:06:22	-59:39:22	12.38	0.92	0.57		3	
#132	96523	11:06:24	-59:38:30	9.33	0.24	-0.11	B9	3	
#133		11:06:20	59:38:27	14.14	0.56	0.10		1	
#1.34		11:06:21		13.67	0.00	0,30		1	
平1300 サイズム		11:00:22		10.04	0.01			1	
#130		11:06:23	-59:37:33	13.82	0.69	0.33		1	
#138		11:06:29	-59:37:39	14.20	0,49	0.25		1	
#139		11:06:29	-59:37:27	12.65	0.19	-0.45		1	
#140		11:06:28	-59:36:55	11.17	0.57	0.14		2	
#141		11:06:27	-59:36:46	(12.92)	0.52	0.05		2	Comp
#142		11:06:23	-59:36:42	14.27	0.69	0.07		1	
#143		11:06:15	-59:36:21	14,07	0.54			1	
#144		11:06:08	-07:34:04	10,70	1.45	(1,73)		5	
No	HD/HDE	A.R.	DEC.	V	₿Ų	U-B	TE	n	Coment.
--------------	--------	----------	-----------	-----------------------	-------------------	--	---------	----------	----------
#145		11:06:12	-59:34:39	13.66	0.82	0.26		1	
#146	0/E /	11:06:30	-59:35:16	(11.27))(1.44))(2.46)	• 0	3	
#147	96546	11:06:32		9.37	0.01		AU	<u>ර</u>	
Ŧ140 ま140		11:00:40		13,00	1,18	U,/00 001		1 2	Compe
****** 	306027	11,06,40		- (12,01) - (0 95)	/ 0.00 (/1 76)	······································	K III	ية. ح	Comps
#151	303027	11:06:50	-59:34:01	13.90	0.50	0.24	K G	ີ 1	u u mp a
#152		11:07:00	-59:34:03	13.84	0.90	0.41		1	
#153		11:07:01	-59:34:31	12.63	0,99	0.65		1	
#154		11:06:51	-59:35:15	13,28	0.66	0.16		1	
#155		11:06:40	-59:35:43	13.44	0,65	0.50		1	
#156		11:06:37	-59:35:23	13.93	0.44	0.28		1	
#157		11:06:34	-59:36:11	12.67	2.06	1.71		1	
#1 58		11:06:38	-59:36:47	14.12	0.79	0.35		1	
#159		11:06:42	-59:37:21	13.04	0.82	0,35		1	
#160		11:06:47	-59:36:04	14.03	0.63	0.07		1	
#161		11:06:53	-59:36:01	11.71	0,53	0.01		- 5	
事162 エリノフ		11:07:01	-59:36:05	13.33	1.29			1	
不しい。		11:07:11		14 34	0 76			ം ച	
事まの性		11:07:12		10 50	1 22	0,23 7,00		1 1	
*100		11,07,17		14 24	0 77	0,07		رت 1	
*160		11:07:13		12 83	0.22	0.31		2	
#168		11:07:24	-59:37:00	1.3.04	0.56	-0.02		1	
#169		11:07:25	-59:37:25	13.53	0.58	0.29		î	
#170		11:07:32	-59:38:20	13,67	0.58	0.03		1	
#171		11:07:29	-59:38:50	13.73	0.54	0,30		1	
#172		11:07:32	-59:39:40	14.19	0.56	0.40		1	
#173		11:07:15	-59:39:34	14.35	0.64	0.51		1	
#174		11:07:15	-59:39:44	13.31	0.43	0.04		2	
#175		11:07:04	-59:38:57	(10,88)	(1.62)	(2.42)		3	
#176		11:07:05	-59:38:36	13.33	0.38	0.10		2	
#177		11:07:00	-59:39:36	13,78	0.56	0.19		1	
#178		11:06:58	-59:39:46	13.52	0.32	-0.25		2	
#179		11:06:57	-59:40:10	13.94	0.45	-0.07		1	
#180	96622	11:07:00	-59:40:05	8.94	0.19	-0.72	09.5IV	3	

No	HD/HDE	A.R.	DEC.	V	BV	UB	TE	n	Coment,
#181		11:06:52	-59:40:30	12.82	0.62	0.11		2	Сомр
#182		11:06:49	59 : 40 : 19	13.61	0.50	0.12		2	
#183		11:06:50	-59:39:51	(12,06)) 0.57	0.12		3	
〒184 ▲10町		11:06:48		17 40	0,20			<u>د</u> ۲	
4100	306033	11:00:40		10.60	0.40	U, C.O 0 A D	<u>^0</u>	2 1	
#100	306032	11:07:04		17,00	0.00	0,42. 0,100.	HU	2	
*188		11:07:18	-59:41:47	13.24	0.69	0.51		1	
#189		11:07:14	-59:41:39	14.05	0.69	8.25		1	
#190		11:07:03	-59:41:55	12.67	1,33	0,88		1	
#191		11:06:56	-59:41:48	14.26	0.37	0.23		1	Comp
#192		11:06:52	-59:41:55	14.21	0.64	0.09		1	·
#193	96670	11:07:14	-59:52:24	7,45	0.17	-0.73	80	4	
#194		11:07:15	59:51:54	13.40	0,38	-0.15		2	
#195		11:07:15	-59:52:51	11.79	(1.05)	(0.76)		4	
#196		11:07:11	-59:53:07	12.12	0.22	-0,42		3	
#197		11:07:03	-59:53:25	12.82	0.60	0.21		2	
#198		11:07:16	-59:53:56	13,99	0.38	0,15		1	
#199		11:07:18	-59:54:07		0,23			చ •	
#200		11:07:26		13,05	1,02	0.74		1	(Cours)
非常にして		11:07:23		12,00	1./4	1.24		2	COOMPA
#202 #2077		11:07:17		12.00	0.20	0.27		2	
#203 #204		11,07,07		14 40	0.40	0,20		1	
1204 1205		11:07:05		12 47	0.37	0.06		ź	
#200		11:06:47		13.05	0.52	0.15		2	
#207		11:06:49	-59:54:02	14.62	0.66	0.19		1	
#208		11:06:45	-59:54:04	13.21	1.45	0.80		1	
#209		11:06:43	-59:53:55	12,40	0,47	0.25		2	
#210		11:06:39	-59:53:33	13.53	0,48	0.29		2	
#211		11:06:30	-59:54:22	(12.39)	-0.22	-0.30		2	
#212		11:06:26	-59:53:03	11.65	0.23	-0.33		3	
#213		11:06:23	-59:52:29	11,80	0.30	-0.27		3	
#214		11:06:33	-59:51:47	(13,14)	0.20	-0.28		2	
#215		11:06:46	-59:52:00	13.88	0.33	0.17		1	
#216		11:06:45	-59:52:12	13.15	0.71	0.41		1	

Νo	HD/HDE	A.R.	DEC.	V	B√	U-B	TE	n	Coment.
#217	**** **** **** **** **** **** ****	11:06:43	-59:52:43	14.19	0,60	0.04	,	1	. . .
#218		11:06:46	-59:53:09	13,49	0.39	0.28		2	
#219		11:06:47	-59:53:03	14.05	0.39	0.31		1	
#220		11:06:49	-59:52:47	13.58	1.21	0.70		1	
#221		11:06:56	-59:52:42	13.26	0.59	0.03		2	Сомр
#222		11:06:52	-59:51:43	14.13	0.72	0,09		1	
#223		11:06:55	-59:51:41	14.27	0.44	0.24		1	
<i>Ŧごご</i> 4		11:06:08		14.14	0.36	0.18		1	
帯だだい。		11:06:57	-37:30:27	14.20	0.40	0.22		1	()
*220	306075	11:00:00		14,42	0.07	0,30 0 6/35	00	1 7	Comps
#228	000000	11,06,50		12 64	0,100		50	0 0	Comp
#229		11:04:39	-59:50:21	(12 98)	0 28			<u>,</u>	to o rup a
#230		11:06:41	-59:49:41	13.86	0.35	-0.01		<u>د</u> ۱	
#231		11:06:42	-59:49:12	11.21	0,47	-0.51		4	
#232		11:06:33	-59:49:35	13.67	0.60	0.05		1	
#233		11:06:28	-59:49:54	12,52	0.36	0.32		2	
#234		11:06:29	-59:49:20	(13, 11)	0.35	-0.26		2	
#235	305943	11:06:27	-59:49:09	10.94	0.37	0,43	B9	4	
#236		11:06:25	-59:48:05	13.26	0.67	0.09		1	
#237		11:06:32	-59:48:42	14.33	0.77	0.20		1	
#238		11:06:51	-59:48:32	10.62	0.41	-0,49		4	
#239		11:06:55	-59:48:57	13,47	0.52	(0,33)		2	
#240		11:06:53	-59:47:52	(13,08)	0.41	-0.31		2	
#241		11:06:46	-59:47:10	(11.67)	(0.71)	0.34		3	
#242		11:06:42	-59:47:09	14,14	0.72	0,09		1	
#243		11:06:42	-59:46:40	11.48	0.42	-0.45		2	
#244		11:06:46	-59:46:20	11.69	0.39	0,43		3	
#245		11:06:54	-59:46:32	11.05	0.48	-0.35		3	
#246		11:06:55	-59:46:01	10.82	0,48	-0.43		- 3	
#247	0//70	11:07:02	-59:45:11	13.82	0,73	0.05	00	1	
重点分び。	70008	11:07:00		8.07	0.28	-0.67	UB	4	
事べイソ		11:00:08	-57:47:29	(12,86)	0.42	-0.20		2	

ι

No	HD/HDE	A.R.	DEC.	V	BV	UB	TE	n	Coment,
#250 #251		11:07:00	-59:47:39	13,52	0.65	0.03		1	
非たした。		11:00:07		10 07	0.33	U, 1/ 0 E0		l A	
#25X		11:07:02		17 47	0,20	0.18		- 4	
#254		11:07:15	-59:47:30	14.07	0.52	0,10		1	
#255		11:07:17	-59:47:31	13.28	0.49	0.40		ż	
#256		11:07:20	59 : 46 : 38	13.11	0.31	-0.21		2	
#257		11:07:30	-59:46:57	13,93	1,04	0.46		1	
#258	306033	11:07:36	-59:46:48	9.34	1.13	1.14	K2	4	
#259		11:07:38	-59:46:15	10,98	0,96	(0.70)		3	
#260	306034	11:07:52	-59:46:47	10,38	0.43	0.17	A2	3	
#261		11:07:37	-59:47:16	11.49	0.37	0.14		3	
#262		11:07:35	-59:47:47	13.26	0.41	0.24		2	
#263		11:07:27	-59:47:44	14.30	0.38	0.04		1	
書記64		11:07:37	-59:47:56	14.45	0.52	0.18		1	
事ごもつ。		11:07:36		12.81	1,04			1	
香心ひひ。		11:07:37		13,20	1 0 7	0,00		<u>ت</u> ۱	Comp
#607 #960		11:07:07		10,00	1 04	0,47		1	Comp
#269		11:07:31	-59:48:34	11.10	0.37	0.25		1	
#270		11:07:31	59:49:19	14.42	0.37	0.12		1	
#271		11:07:35	-59:49:52	12.98	0.82	0.48		1	
#272		11:07:29	-59:49:50	13,72	0.54	0.08		1	
#273		11:07:29	-59:49:25	13,39	0,48	0.11		1	(Comp)
#274		11:07:21	-59:49:17	12.71	0.22	-0,34		2	Comps
#275	96669	11:07:19	-59:49:03	8.58	0,23	-0.67	OB	4	Сомр
#276		11:07:19	-59:48:51	11.68	0,36	-0.37		3	Сомра
#277		11:07:16	-59:49:10	13,56	0.54	0.01		1	
#278		11:07:11	-59:49:30	13,47	0.42	0.11		2	
#279		11:07:10	-59;50:11	14.68	0.64	0.01		1	
#280		11:07:04	-59:50:22	14.18	0.69	0.06		1	
#281		11:07:22	-59:50:52	14.26	0.64	0,42		1	
#282		11:07:25	-59:51:15	13.61	1.38	1.01		1	
#283	~ ~ ~ ~ ~ ~	11:07:27	-59:52:25	12.30	1.14	1.31	W10 44 441	2	
#284	96248	11:04:58	-59:51:32	6.55	0.24		BII	5	
#285		11:04:56	-37:52:08	13,36	0.59	(0.02)		2	

No	HD/HDE	A.R.	DEC.	V	BA	U-B	TE	n	Coment.
#286		11:05:00	-59:52:19	13.75	0.35	0.25		1	
#287		11:05:03	-59:52:24	13.33	0.40	0.05		2	_
#288 #000		11:05:07	-59:52:20	11,30	0.15	0.49		4	Comp
#287 #200		11:00:00		11 00	0.27	0,08		1 7	Сомр
#2201		11,05,00		1 / 30	0,13			ر ۲	
14000		11,05,00		14 05	0,47	0,37		1	
#293		11:05:04	-59:54:15	14.33	-0.01	0.28		1	Сомп
#294		11:05:06	-59:54:28	12.67	0.53	0.01		ò	oonp
#295		11:05:06	-59:55:23	12.87	0.49	0.03		2	
#296		11:05:09	-59:56:54	14,22	0.55	0.29		1	
#297	96286	11:05:07	-59:57:23	8.41	0.12	-0.77	OB	4	
#298		11:04:56	-59:56:58	13,91	0.25	-0.24		1	
#299		11:04:49	-59:57:12	14,25	0.48	0.35		1	
#300		11:04:55	-59:56:14	14.18	0.89	0.37		1	
#301		11:04:52	-59:56:00	14.32	0.29	0.17		1	
#302		11:04:55	-59:55:54	14.15	0.50	0.28		1	
#303		11:04:57	-59:55:28	12.53	0.71	0.14		1	
#304	305946	11:04:48	-59:55:22	10,28	0.32	0.13	A3	4	
#305		11:04:47	-59:54:30	14.21	0.63	0.40		1	
#306	96176	11:04:32	-59:56:21	9.05	0.22	0.08	A2	4	
#307		11:04:32	-59:55:29	14.26	0.03	0.04		1	Сомр
#308		11:04:34	-59:54:31	14.38	0.37	0.20		1	
#309	305945	11:04:40	59:53:39	10.71	0.12	-0.66	B2	3	
#310		11:04:41	-59:53:29	13.91	0,78	0.25		1	
#311		11:04:20	-59:54:24	13.87	0.70	0.13		1	
車3122 まですで		11:04:16	-37:53:11	13.27	0.31			2	
手つしつ ニー・	0/150	11:04:19		13.43	0.34		T 10	<u>د.</u> ۳۳	
₩314 ₩774E	AQ12A	11:04:20		1 7 7 7	0,10		B 0	ີ ວ	()
#010 #747		11:04:30		12.00	0.07	0,10		<u>د</u>	երափ
#310 #717		11:04:43		17 00	0,07	0.30		1	
472400		11104140 11107		177 277	0.71	0,02 0 94		4	
#310 #7(10		11:04:20		13 67	0,00	U . 2. 1 		1	
#3200 #3200		11:04:24		10,04	0,60	0,0%		1	
まてつこう		11 - 0.4 - 10		172 85	0,00	0,00		1	Comp
ът.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		* * + O * + + A O		10100	0.04	v i ta o		I	oonp

No	HD/HDE	A.R.	DEC.	V	₿V	UB	TE	п	Coment.
#322	**** **** **** **** **** ****	11:04:15	-59:50:02	12.47	0.55	0.03		1	
#323	305940	11:04:07	-59:48:59	10.84	0.51	0.04	F8	1	Comps
#324		11:04:08	-59:48:53	10.36	(1.24)	(1.55)		3	Сомра
#325		11:04:04	-59:48:00	11.18	1.51	1.23		1	
#326		11:04:10	-59:46:44	12.35	0.18	-0,43		2	
#327		11:04:21	-59:46:22	13.97	0.67	0.05		1	
#328		11:04:21	-59:46:01	13.93	0.32	0.23		1	
#329		11:04:23	-59:46:03	13.62	1.48	1.00		1	
#330		11:04:29	-59:46:40	12.60	0.71	-0.42		1	
#331	305941	11:04:28	-59:47:23	10.11	0.14	-0.58	B9	<u>చ</u>	
ಕಾನಾನ ಹಾಗಾನ		11:04:32		12.78	0.00	0.07		2	
- #3333 #770	0/150	11:04:20		10.02	0,30		· 10	7	
#3.34	20108	11.04.20		(12 24)	1 1 21		D)	ב ד	Comp
*333		11:04:25		11 71	1 21	(1 <u>A</u> 5)		7	dup
*330		11.04.28	59:48:43	11.67	0.73	0.43		3	
#338		11:04:38	-59:49:55	11.37	0.58	0.15		3	Сомр
#339		11:04:34	-59:50:25	13.55	0.64	0.05		ĩ	
#340		11:04:42	-59:49:45	13.36	0.46	0.07		2	
#341		11:04:40	-59:49:22	14,25	0,74	0.11		1	
#342		11:04:40	-59:49:09	13.41	0.27	-0.13		1	
#343		11:04:47	-59:49:41	13.14	1.44	0,96		1	
#344		11:04:50	-59:50:33	14,24	0.26	0.21		1	
#345		11:04:55	-59:49:52	12.15	1.31	1.90		1	(Comp)
#346		11:04:57	-59:49:18	14.25	0.19	0.11		1	
#347		11:05:01	-59:50:30	14.05	0,43	0.30		1	
#348		11:05:02	-59:50:32	14.42	0.38	0.26		1	
#349		11:05:07	-59:50:29	13.78	1.05	0.46		1	
#350		11:05:10	-59:49:53	13.20	0.38	0.09		2	
#351	305944	11:05:09	-59:49:18	9.92	0.12	-0.73	B8	3	Comps
#352		11:05:10	-59:49:15	13.88	0.36	0.19		1	Сомра
#353		11:05:06	59:49:01	12.63	0,26	0.16		2	
#354		11:05:02	-59:48:37	13.80	0.75	0.26		1	Comp
#300		11:05:06	-59:48:11	13.06	0.34	U,14		2	
1306		11:05:06	-59:47:40	10.86	(0.23))		2	
#357		11:04:57	-57:47:44	13.84	0.65	0.31		1	

No	HD/HDE	A.R.	DEC.	V	₿₽	U-B	TE	n	Coment,
#358	*** *** **** **** **** ****	11:04:55	-59:46:42	13.53	0.75	0.14		1	
#359		11:04:44	-59:46:18	13.51	0.30	0,16		1	(Compl)
#360		11:05:10	-59:46:51	12.59	0.54	0.08		2	
#361		11:05:15	-59:46:57	14.34	0.51	0.05		1	
₹36Z		11:05:19	-59:46:37	14.15	0.60	0.43		1	
帯ぶらぶ.		11:05:21	-59:46:58	13.77	0.54	0.12		1	
重じい 4 ボント		11:05:40		13.09	0.35	-0.22		2	
4000 4766		11:00:40		14.37	0,07	0.10		1	
#360	305942	11.05.52		10 71	່ທີ່ແລະ	0.01	A 0	2	
#368	0007 TE.	11:05:53	-59:47:15	11.52	(1, 02)	0.10	61.0	7	
#369		11:05:52	-59:47:23	14.11	0.58	0.34		1	
#370		11:05:52	-59:48:01	11.95	0.35	-0.38		3	
#371		11:05:56	-59:48:36	13.38	0.93	0.28		1	Comps
#372		11:05:55	-59:48:44	(9.12)	(1.44)	(3.03)		4	Сомра
#373		11:05:58	-59:49:05	13.59	0.71	0,09		1	•
#374		11:06:00	-59:49:15	11.53	0,58	0.14		3	
#375		11:05:58	59:49:38	(12.59)	1.14	0.67		2	
#376		11:05:59	-59:50:33	(13,22)	0.47((0.07)		2	
#377		11:05:60	-59:51:49	13,34	0.60	0.04		1	
#378		11:06:09	-59:50:30	12.91	0.62	-0,05		1	
#379		11:06:08	-59:50:47	13.18	0.73	0.20		1	
#380		11:06:08	-59:52:15	14.22	0.55	-0,08		1	
#381		11:06:14	-59:52:24	14.01	0.67	0.05		1	
事う じだ。 ルマロマ		11:06:08	-59:52:47	13,06	0.52	U,UD		1	
#303 #70A		11:00:12		14110	1 00			۲. م	
₩370円 ₩370円		11:00:17		12:00	1,00	0,78		2 	
#30J #329A		11.00.25		10.14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 75		2	
まで0000 まで97		11,06,20	-50.57.11	1 4 7 1	1 6.4	0 18		د ۲	
#307 #398		11:06:38	-59.56.91	13 72	0,04			1	
#389		11:06:42	-59:56:31	14.03	0.29	0.07		1	
#390		11:06:45	-59:56:31	14.40	0.52	0.25		1	
#391		11:06:42	-59:56:59	14.23	0.51	0.25		1	
#392		11:06:18	-59:56:52	14.22	0.55	0,05		1	
#393	96446	11:06:06	-59:56:59	6.71	-0.14	-0.83	BOITIN	4	

No	HD/HDE	A,R.	DEC.	V	BV	U-B	TE	n	Coment,
#394		11:06:11	-59:56:08	13.46	1.39	0.92		1	
#370 #707	-	11:06:04	-59:55:56	14.25	0,43	0.30		1	
#3707 #707				13.38	0.23	-0.06		1	
#37/ まての点		11:00:44		10 50	0.71	0,20		2 5	
#3700 #300		11:05:57		- 100 - U00 - (19 - 61)	0,17	0		<i>ــ</i> ــــــــــــــــــــــــــــــــــ	Comm
****	96415	11.05.52		0 00	0,2.2		рo	Δ	Comp
#401	20.410	11:05:56	-59:58:45	12.29	0.13	0.41	15.0	2	
#402		11:05:41	-59:58:13	13.68	0.33	0.19		1	
#403		11:05:33	-59:57:58	13.28	0.19	0.19		j	
#4()4		11:05:21	-59:57:36	13.27	0.90	0.54		1	
#405		11:05:20	-59:57:19	(12.97)	0.24	-0.16		2	
#406		11:05:23	-59:57:11	14,26	0.46	0.25		1	
#407		11:05:24	-59:57:16	13,93	0,42	0,20		1	
#408		11:05:29	-59:56:29	12.88	0.37	0.32		2	
#409		11:05:25	-59:56:18	(11,81)	0,15	-0,40		4	
#410		11:05:22	-59:55:56	13.81	0.30	0.27		1	
#411		11:05:14	-59:55:49	13.54	0,79	0.31		1	
#412		11:05:32	-59:55:14	14.24	0.57	0,16		1	
#413		11:05:31	59:54:39	12.95	0.21	-0.04		2	
#414		11:05:39	-59:54:23	13.82	0.63	0.06		1	
非415		11:05:42	59:54:24	13.28	0.03	0,14		<u>ک</u>	()
#418 #419		11:00:40		10.08	0.00	0 72		لا د	ի օրդե
₩41/ ▲ልዓ()		11:00:02		14.01	0,40	0 70		ية. +	
帯牛人の		11:00:08		14100	0,40	0,00		1	
ቁማኔን ቆለጋበ		11:00:40		13,00	0,07	0		4	
ቁማጨሀ #አንጋነ		11.05.04		10,40	0 ለሌ	0.20		1	
44C1 #400		11:00:20		14 42	0,00	0,22		1	
北ムウス		11+05+20		17.89	0.30	0.25		1	
#420		11:05:22	-59:52:40	14.20	0.76	0.24		1	
#425		11:05:26	-59:51:46	14,17	0.26	0,23		1	
#426		11:05:18	-59:51:20	13.63	1,27	0,91		1	
#427		11:05:10	-59:51:29	13.85	0.42	0.28		ī	Comp
#428		11:05:29	-59:50:07	12.42	0.24	0.08		1	
#429		11:05:26	-59:50:06	14.04	0.49	0.30		1	(Comps)

No	HD/HDE	A.R.	DEC.	Ŷ	BA	U-B	TE	n	Coment
#430	*** **** **** **** **** **** ****	11:05:26	-59:49:59	14.17	0.35	0.38		1	(Сомра)
#431		11:05:36	-59:49:38	12.14	0.21	0.10		2	
# 432		11:05:41	-59:50:24	12.65	0.43	0.33		2	
#434		11:05:45	-59:51:29	13.40	0.54	0.42		1	
#430		11:05:38	-59:52:12	14.32	0.44	0.27		1	
#436		11:05:42	59:49:44	14.18	0.33	0.24		1	
F437		11:05:46		14.24	0.80	0.11		1	
F438		11:05:31		14.37	0.71	0.43		1	
ጅዓ3ን″ ቆልልበ		11:00:00		14,02	0,00	0 ሳፍ		1	
#44U #AA1		11:00:02		19.07	0,70	0,00		1	
8-7-71 8-222		11,05,30		12 76	0.30	0.10		2	
1 4 4 X		11.05.30		172 55	0,40	0,2.0		د ۲	
#444		11:05:42	-59:47:27	14.38	0.58	0.10		1	
\$445		11:06:05	-59:47:36	13.06	0.42	0.21		ź	
#446		11:06:14	-59:48:21	13.51	0.53	0.16		1	
447		11:06:10	-59:46:53	12.10	1.13	1,24		1	
#448		11:06:07	-59:46:17	13.33	1,17	0.89		1	
449		11:06:12	-59:46:58	14.26	0.60	0.03		1	
¥450		11:06:24	-59:46:28	13.30	0.52	0.17		1	
\$451		11:06:28	-59:46:27	14.02	0,68	0.23		1	
\$452		11:06:31	-59:46:14	12.40	0.57	0.09		1	
\$453		11:06:02	-59:45:07	13.68	0.59	0.36		1	
\$454		11:06:04	-59:45:10	13.56	0.44	0.01		1	Сомр
¥455		11:06:01	-59:43:59	14.09	0.39	0.06		1	
\$456		11:05:56	-59:43:45	14.07	0.44	0.09		1	
\$457	1	11:06:07	-59:44:02	13.71	0.91	0.47		1	
+458	,	11:06:08	-59:43:56	12.88	0.32	0.25		2	
+4 59		11:06:17	-59:43:09	14.02	0.65	0.07		1	
\$460		11:06:17	-59:43:21	13,96	0,35	-0.09		1	
\$461		11:06:18	-59:43:49	14.08	0.54	0,29		1	
\$462		11:06:20	-59:44:07	13.02	1.24	0,79		1	
\$463		11:06:24	-59:44:14	14.02	0.62	0.19		1	
465		11:06:48	-59:44:32	13.97	0.56	0.35		1	
466		11:07:03	-59:44:22	14.17	0.56	0.03		1	
\$467		11:07:21	59:43:37	11.84	0,69	0.22		2	

No	HD/HDE	A.R.	DEC.	V	B-V	U-B	TE	n	Coment.
#468		11:07:21	-59:43:55	14.24	0.65	-0.02		1	
#469		11:07:22	-59:44:02	14.34	0.67	-0.10		1	(Comp)
#470	96756	11:07:43	-59:40:17	7,51	1.27	1.53	К 0	4	•
#471		11:07:49	-59:41:31	13.52	0.40	0.10		1	
#472	306031	11:07:59	-59:41:48	(10.61)	0,40	0.16	A 0	3	
#473		11:08:06	-59:41:43	11.22	0.24	-0.54		3	
#474		11:07:38	-59:42:04	12.55	0.22	0.14		2	
#475		11:07:47	-59:43:12	14.04	0.56	0.001		1	
#476		11:07:53	-59:43:14	13.63	0,86	0.13		1	Comp
#477		11:07:47	-59:43:34	14.14	0.76	0.33		1	
#478		11:07:46	-59:43:57	12.25	0.66	0.30		1	

Comentarios a la Tabla II-5:

Comp: La estrella tiene una compañera débil. La luz medida es la de ambas componentes.

Comps: La estrella es compañera de la estrella siguiente (doble visual). Ambas componentes se han medido separadamente.

Compa: La estrella es compañera de la estrella anterior (doble visual).

Compl: La estrella tiene una compañera débil cercana, pero fue posible medir la componente principal.

TABLA II-6

Errores externos de la fotometría UBV.

,

								••
 	N	oche	1	Te(V)	1	Te(B-V)	 Te(U-B) 	
					• • • • •			. 1
i			1		÷		1	÷
5	QQ	Maun /87		0 015	1	0 020	1 0 0 1 2	-
1	010	May0700	÷	0 010	1	0.011	1 0,012	1
1	7-10	may 0 / 00	-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.015	1 0.010	4
!	101	mayozos		0.007	-	0.010	1 0.010	1
1	11-12	mayo/85		0.007	1	0.013	1 0.010	1
1	12 - 13	mayo/83		0.012	1	0.013	0.011	1
1	3-4	abril/84	1	0.021	1	0.014	1 0.023	
1	45	abril/84		0.016	- E	0.008	1 0.017	
1	5-6	abri1/84	1	0.017	I	0.015	1 0.021	ł
1	7-8	abril/84	1	9.011	1	0.017	0,024	1
İ.	8-9	abril/84	1	0.009	1	0.008	1 0.030	ł
Ì.	· 710	abril/84	Ì	0.015	Ì	0,006	1 0,025	Ì
Í.	10-11	abr i 1/84	È	0.014	1	0.008	1 0.027	1
1	11-12	abril/84	- İ	0.014	1	0.006	0.026	T
İ	25-26	mar 70/85	İ	0.020	i	0.007	0.026	÷
	26-27	marzo/85	i	0.011	i	0.006	0.012	i
i	27-28	Marz0/85	i	0.013	i	0.007	1 0.018	i
	28-20	Marzo/85	i	0.012	i	0,009	1 0.020	i
1	29-30	Mar 20/00	i	0 014	j	0 0 0 9	1 0.019	i
1				0.017				4
!	1-2	apri1/85		0.020		0.008	י טיטעו	1
I.			1		ļ			Ţ
1	Valore	es medios		0.014	1	0.011	1 0.019	I
ł			1		I		1	I.
								•

T	A	B	١	A	I	I	7
---	---	---	---	---	---	---	---

Errores internos de la fotometría UBV.

Telescopio de 0.61m	Γ _i (V)	۵; (B-۷)	€(UB)
V 🔇 9	0.012	0.011	0.015
ዎ ‹ህ‹ 10	0.014	0.011	0.017
10 <v& 11<="" td=""><td>0.015</td><td>0.009</td><td>0,017</td></v&>	0.015	0.009	0,017
11 <v< 12<="" td=""><td>0.016</td><td>0.009</td><td>0.018</td></v<>	0.016	0.009	0.018
12 <v< 13<="" td=""><td>0.017</td><td>0.010</td><td>0.015</td></v<>	0.017	0.010	0.015
Telescopio de 0.91m	র্৻৩১	(۲-۷)	√į(UB)
12.5(V(13.5	0.012	0.009	0.013
13.5≼V≼14.5	0.015	0.016	0,020

TABLA II-8

Amplitudes de oscilación de estrellas detectadas como posibles variables en este estudio.

N	HD/HDE	AMPLITUD	n	N	НДХНДЕ	AMPLITUD	n
6		U-B=0.99	2	195		B-V=0.14 U-B=0.28	3
13		(U-B)=0.3	2	211		V≕0.79 B-V=0.81	2
35		V=0.11	2	214		V=0.11	2
50		V=0.14 B-V=0.3 U-B=0.78	3	227		U-B=0.10	3
54		V=0.16 U−B=0.15	3	229		V≕0.10	2
66		V=0.13	2	234		V=0.14	2
69		V≕0.10	2	239		U-B=0,28	2
73		V=0.15	2	240		V=0.13	2
76		V=0.15 U-B=0.11	2	241		V=0,95 B-V=0,34	3
83		V=0.14	2	249		V=0.11	2
85		V=0.24	2	259		U-B=0.17	3

N	HD/HDE	AMPLITUD	n	N	НД/НДЕ	AMPLITUD	n
92		V=0.29 B-V=0.19 U-B=0.10	2	285		U-B=0.11	2
102		V=0.14 U-B=0.29	2	324		B-V=0.22 U-B=0.16	3
118		V=0.14 U−B=0.18	4	335		V=0.10	3
119		U-B=0.6	3	336		U-B=0.65	3
123		V=0.47	2	356		V=0,24	2
129		V=0.10	3	368		B-V=0.13 U-B=0.24	3
141		V=0.10	2				
144		U-B=0.32	3				
146		V=0,43 B-V=0,94 U-B≡0,65	3	372		V=0.60 B-V=0.79 U-B=1.9	4
149		V=0.16	2	375		V=0.11	2

N	HD/HDE	AMPLITUD	n	N	HD/HDE	AMPLITUD	n
150		V=0.20 B-V=0.29 U-B=0.65	3	376		V=0.11 U-B=0.15	2
163		V=0.11 R-V=0.3	3	397		V=0.11	2
		U-B=0.30		399		V≕0.17	2
175		V=0.3 B−V=0.61	3	405		V=0,14	2
		U-B=0.85		409		V=0.26	4
183		V=0.13	3	472		V=0.10	3
MAN							

Bibliografia correspondiente al Capitulo II.

- Clarià, J.J. 1974, Elementos de Fotometría Estelar, Mérida, Venezuela. Clarià, J.J. 1979, Elementos de Fotometría Estelar, versión ampliada, (inédito).
- Cousins, A.W.J. 1973, Mem. Roy. Astron. Soc. 77, 223.
- Cousins, A.W.J. 1974, Monthly Notices Astron. Soc. Southern Africa, 33, 149.
- Evans, R.D. 1955, The Atomic Nucleus. McGraw Hill, New York.
- Hardie, R.H. 1962, Stars and Stellar Systems, Vol. II, Cap. 8.
- Johnson, H.L. y Morgan, W.W. 1953, Astrophys. J. 117, 313.
- Landolt, A. 1973, Astron. J. 78, 959.
- Mitchell, R.I. 1960, Astrophys. J. 132, 68.
- Schoenberg, E. 1935, Handbuch der Astrophysik, Band II/1,2, 280.
- Schulte, D.H. y Crawford, D.L. 1961, Contrib. Kitt Peak Nat. Obs. 10.
- Seggewiss, W. 1969, no publicado.
- Seggewiss, W. 1970, en IAU Symp. No. 38 sobre "The Spiral Structure of our Galaxy", Eds. W. Becker y G. Contopoulos, Reidel Publ. Co., Dordrech, Holland, p. 265.

CAPITULO III

ESTUDIO ESPECTROSCOPICO

III.1 INTRODUCCION.

En los capítulos anteriores se han detallado las características del material fotométrico obtenido para las estrellas presentes en la región de la asociación Carina OB2. Así como dicho material resulta sumamente importante para el estudio del contenido estelar del agregado, las observaciones espectroscópicas nos permitirán confirmar la condición de miembros, distancia y características físicas generales de objetos investigados. Por otra parte, este tipo de estudio nos reportará resultados cinemáticos (velocidades radiales de las estrellas presentes en la región, velocidades de rotación axial, velocidad baricentral de la asociación, velocidad radial del calcio interestetar) fundamentales para una mejor comprensión de las posibles relaciones entre las estrellas pertenecientes a Carina OB2 y las nubes de gas presentes en esta zona del cielo.

III.2 DESCRIPCION Y OBJETIVOS DE LAS OBSERVACIONES.

Las observaciones espectroscópicas se efectuaron integramente en el Observatorio Interamericano de Cerro Tololo (Chile), durante los meses de abril de 1984 y marzo-abril de 1985, empleando el telescopio de 1m y un espectrografo cassegrain con tubo intensificador de imágenes (tubo Carnegie de dos etapas)

En el transcurso de diez noches de observación en 1984, se obtuvieron los espectrogramas de 105 estrellas en la zona de Carina OB2, con magnitudes V=12.2 (según los datos de Seggewiss). A tal efecto se emplearon placas Kodak de emulsión IIIa-J, horneadas en "forming gas", las cuales fueron luego procesadas con revelador D-19 durante 5 minutos.

Si bien en el proyecto original se planeó la obtención de un espectrograma por estrella (1mm de altura y una dispersión de 42 Å/mm en el azul, para lo cual se utilizó la red #47) para determinar tipos espectrales, las condiciones climáticas de Cerro Tololo en 1984 nos permitieron obtener entre 2 y 4 'espectros por estrella, para los objetos mas brillantes que V=10.5. Esto permitió iniciar a su vez una bósqueda de estrellas binarias en la región de la asociación, sobre la base de la variabilido de las velocidades radiales obtenidas.

Durante las noches que van del 2 al 7 de abril de 1985, se complementó el material espectroscópico previamente recolectados con espectrogramas de 40 estrellas más brillantes que V= 11.0. En todos los casos se obtuvo un espectro estelar por noche, de 1mm de altura, usando una dispersión de 42 Å/mm en el azul. Durante el último turno, empleamos, nuevamente, placas Kodak IIIa-J horneadas y luego reveladas con D-19.

La densidad sobre fondo de placa se controló siempre con un exposímetro.

Los espectros de comparación utilizados son de He-A y se obtuvieron exponiendo, en todos los casos, 1 segundo antes de comenzada y 1 segundo al finalizar la exposición del espectro estelar.

Las características de los espectros obtenidos resultaron ideales no sólo para llevar a cabo la clasificación espectral de los mismos, sino también para determinar velocidades radiales y de rotación axial proyectada.

III.3 REDUCCION DE LAS OBSERVACIONES.

III.3.1 Clasificación espectral.

Para llevar a cabo la reducción de las observaciones espectroscópicas, fue necesario tomar espectrogramas de estrellas standard.

Según el análisis y el resultado requerido, estas standard pueden ser de clasificación espectral, de rotación axial o de velocidad radial. En el primer caso se tomaron, con el mismo equipo e idéntica emulsión fotográfica que para estrellas de programa, espectros de standard recomendadas por Morgan y otros (1978).

para propósitos La elección de las estrellas standard de clasificación espectral debe hacerse teniendo en cuenta que los tipos espectrales y clases de luminosidad de estos objetos deben ser tan similares como sea posible a los de las estrellas que se estudian. Si bien la clasificación se efectúa luego por simple comparación de espectros, la inspección visual puede hacerse en general con muy buen grado de aproximación gracias a que se dispone de un sistema de éstrellas standard confiable.

Todas las comparaciones (o clasificaciones) se llevaron a cabo usando un espectro comparador por proyección, construido por el Observatorio de Marsella (Francia) para la Facultad de Ciencias Astronómicas y Geofísicas de La Plata. Se observaron en total 105 estrellas y, en el grupo seleccionado, además de las estrellas presumiblemente tempranas, pertenecientes a la asociación, se incluyeron objetos tardíos, pertenecientes al campo galáctico.

Debemos hacer notar que la clasificación espectral determinada con el material observacional descripto precedentemente, no se encuentra estrictamente en el sistema de clasificación MK. La apariencia y dispersión de los espectrogramas obtenidos permitió la utilización de distintos criterios de clasificación descriptos en la literatura astronómica.

Para las estrellas mas tempranas, de tipos O y B tempranos, empleamos los criterios establecidos por Walborn (1971); la intensidad de la linea de HeIIA4686 y las características f, fueron usadas como criterio de la misma manera que en el esquema del mencionado autor; el tipo f y el uso del paréntesis también fue adoptado del mismo trabajo.

Para las estrellas B tardías, A, F y G tempranas, nos remitimos a los criterios enunciados por Morgan y colaboradores [1978 (MAT)], mientras que para los objetos más tardíos, presentes en la muestra, nos guiamos por el trabajo publicado por Keenan y McNeil (1976).

En la Tabla III-1 se ilustran los tipos espectrales asignados en trabajos previos para las estrellas de Carina OB2. Las columnas (1)--(5) representan sucesivamente: número de la estrella asignado en el catálogo HD o HDE, número de Seggewiss (1969), número asignado en alguno de los Boletines de los Observatorios de Tonantzintla y Tacubaya publicados entre 1953 y 1956, número de Lodén y otros (1976) y número asignado en el Catálogo de Estrellas Luminosas de la Vía Láctea Austral de Stephenson y Sanduleak (1971). Las siguientes columnas de la Tabla III-1 presentan sucesivamente los tipos espectrales del HD o HDE, de Lodén y otros (1976), del Catálogo de Stephenson y Sanduleak (1971 y Finalmente, la última columna incluye del Catálogo de Goy (1980). tercera columna de la Tabla III-2 se otras clasificaciones. En la presentan los resultados obtenidos a partir de la clasificación realizada en este trabajo.

III.3.2 Determinación de velocidades de rotación axial.

De la misma manera que para la clasificación espectral, la determinación de las velocidades de rotación axial se efectuó mediante la inspección visual de los espectrogramas de las estrellas de programa. Para la selección de las estrellas standard de rotación axial se utilizó la lista publicada por Sletteback y colaboradores (1975). Según el tipo espectral se emplearon diferentes líneas para estimar el parámetro V seni (V= velocidad de rotación en el ecuador; i= inclinación del eje polar estelar respecto de la visual a la estrella). En efecto, para las estrellas de tipo O y B se usaron las líneas\4026 y \4471 del He I en tanto que para las estrellas A y F las velocidades de rotación se determinaron a partir de la línea \4481 del Mg II. Los resultados obtenidos se presentan en la última columna de la Tabla III-2.

La magnitud Vo corregida por enrojecimiento fue calculada a partir de los colores observados (Tabla II-5) usando la calibración de Schmidt-Kaler (1982) de los índices intrínsecos versus tipo espectral. En todos los casos se usó el valor R= Av/E(B-V) = 3.0 para la razón entre la absorción total y la selectiva. a la selectiva. El cálculo de Vo fue efectuado para las estrellas normales y para cada clase de luminosidad. En el caso particular de las binrias de doble espectro, en las cuales la existencia del espectro secundario es incierta o no puede identificarse, se calculó la magnitud Vo integrada del sistema. Este es el caso de las estrellas Nos 193, 248, 473. Resulta, sin embargo conveniente aclarar que en algunas placas fue posible detectar el espectro de la componente secundaria. Los valores de Vo se consignan en la tercer columna de la TablaIII-2.

III.3.3 Obtención de Velocidades Radiales.

Con el fin de determinar velocidades radiales individuales de los objetos presentes en la zona y la velocidad baricentral del agregado estelar, se obtuvieron entre 3 y 10 espectrogramas por estrella, para los 41 objetos más brillantes de Carina OB2. Este número es suficiente para detectar la presencia de posibles binarias espectroscópicas de corto período y objetos anómalos en el grupo.

Los espectros fueron reducidos con la medidora Grant del Observatorio de La Plata y las mediciones se efectuaron en un solo sentido. Para el cálculo de las velocidades radiales se utilizó el programa de reducción VELRA y la computadora HP 1000 de esta Facultad, la cual funciona conectada al microdensitómetro.

Se midieron en las distintas placas las líneas de la serie de Balmer, desde HB hasta H χ . En las estrellas de tipo B se emplearon, además, las líneas de HeI λ 4026, λ 4387, λ 4471 y, en algunos casos, λ 4009 y λ 4121.

En las estrellas de tipo O, se utilizaron también las líneas del SiIV 14088 y 14116 (cuando esto fue posible, ya que son debiles), mientras que, para los objetos mas tardíos, se midió la línea 14481 de MgII.

En algunos casos fue posible medir las líneas λ 4200 y λ 4541, del HeII (para estrellas D) y λ 4552, λ 4567, λ 4574 del SiIII (para las estrellas supergigantes). En todos los casos, sin embargo, se midió la línea interestelar de CaII λ 3933.

Las longitudes de onda empleadas son las publicadas por Carlota Moore en la clásica Tabla de Multipletes (1945).

En cada turno de observación se obtuvieron numerosos espectros de estrellas standard de velocidad radial para permitir la reducción de

las observaciones de las estrellas de programa al sistema de Lick. En la tarea de obtención y posterior medición de espectros de standards de velocidad radial prestó su valiosa colaboración la Dra. Nidia Morrell.

La corrección al sistema de Lick que hemos considerado en la presente investigación es de +10 km/s, valor promedio entre los obtenidos para las estrellas standard tempranas (5 km/s) y las estrellas standard con tipos espectrales tardíos (15 km/s) por Levato y otros (1986) tras analizar una extensa muestra de velocidades radiales de estrellas standard. Resulta importante mencionar que la muestra analizada por Levato y otros incluía los espectros de estrellas standard obtenidos en 1984 para Carina OB2. La velocidades radiales correspondientes a la standard (Betha Crv) observada 1985, son las que se consignan en la siguiente tabla:

D.J. He	1. V.R.	e.p	, n	
+244000	0 km/s	km/s	5	
6158.83 6159.87 6161.82 6163.75	6 -26 8 -20 1 -25 3 -23	2 2 2 2 2	8 6 8 8	

donde, D.J. Hel. es el día Juliano heliocéntrico, V.R. la velocidad radial heliocéntrica, e.p. el error probable interno y n el número de líneas medidas.

Puesto que la velocidad radial de Beta Crv en el sistema de Lick es -7 km/seg, resulta en consecuencia fácil comprobar que la corrección media a efectuar es de +16 km/seg, valor éste que concuerda muy bien con los obtenidos por Levato y otros (1986), para las estrellas tardías.

Las velocidades radiales finalmente obtenidas se muestran en la Tabla III-3. En dicha tabla se identifica cada estrella observada, agregándose el día Juliano heliocéntrico correspondiente a la observación, la velocidad radial promedio para la placa, el correspondiente error probable, el número de líneas medidas y velocidad radial promedio del CaII interestelar.

En la Tabla III-4 se presentan los resultados cinemáticos correspondientes a aquellas estrellas para las cuales sólo se obtuvo un ónico valor de velocidad radial.

La corrección aplicada a las presentes mediciones fue de +10

km/seg.

Finalmente, en la Tabla III-5 se detallan los datos de velocidad radial existentes en la literatura, consignandose objeto, cita bibliográfica correspondiente, los datos concernientes a: día juliano de la observación, velocidad radial, error probable y número de líneas medidas

TABLA III-1

Tipos espectrales de estrellas en la región de Carina OB2 existentes en la literatura

HD/HDE	No.	Ttla,	No.L	No LSS	Sp.HD	Sp.Lod.	Sp.LSS	Sp.Goy	Otras clasif
96261	1	2-166	3928	2139	BIIb	OB:	0B		
	5		3931			B6B8			
305953	_8		3984			B8-B9			
305938	21		3855		B	B3-B5			
305937	22				BB	10 ¹ 1 101. 1710			
305936	53 71		3926		B-3	B1-B3			
305932 398888	89 193		3930 3988	2140	B3 RT	87-87 86-89	0B		
	115		3990			В			
96523	132		3991		B9	B7-B8			
	144		3992			K9-M1			
96546	147		3994		A0	89-A0			
306027	150		3993		K 5	K8-M1			
	165		4066			M0-M2			
96622	180	6-160	4067	2161	09.5IV	B0-B2	OB	09.51	/ a
306032	186		4065		A 0	B6-B7			
96670	193		4061	2167	08	05-B0	OB	08,080	у р
306935	227	6-159	4063	2160	BB	B2-B6		·	
305943	235		3987		B9	B2-B6			
96638	248	2-169	4064	2163	08	09-B0	OB	08	
306033	258				К2				
306034	260				A2				
96669	275	2-171	4062	2168	B3	05-B0			C:
96248	284	3-165	3924	2135	BII	OB:			d
96286	297		3923	2138	OB	B0-B2	ОB		e
305946	304				A3				
96176	306				A2				
305945	309		3853		B5	B0-B3			
96159	314				BO				
305940	323				F8				
305941	331				B9				

HD/HDE	No .	Ttla.	No.L.	No.LSS	Sp.HD	Sp.Lod.	Sp . LSS	Sp.Goy	Otras clasif
96158	334	6-151		2130	B		0B		
305944	351		3925		B8	B2-B4			
	356		3927			B4-B6			
305942	367				A0				
	372		3989			M0M4			
96446	393		3985		B2IIIc	OB:			f
96415	400		3986		B8	B1-B3			
96756	470				KO				
306031	472		4132		A0	B7-B8			
							**		

a: clasificada como 09.5IV por Walborn (1972).

b: clasificada como OBp por Walborn (1972) y como OBIb(f)

por Garrison (1977).

c: clasificada como B0.5Ib por Garrison (1977). d: clasificada como B0.5Clab por Walborn (1972).

e: clasificada como B0.5III por Garrison (1977).

f: clasificada como B2IIIp por Jaschek y Jaschek (1959).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	No	HD/HDE	Vo		МК	TE	V sen
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,			(este	estudio)	(HD)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	96261	6.41		BIID	BIID	
411.10 $B4:V:$ 4 59.71 $B2.5V$ 4 69.32 $A6IV-V$ 7 7 $G0:V:$ 4 89.33 BIV 1 13 10.94 $GBIII$ 4 14 11.32 $G0V$ 1 15 10.52 $B3V$ 1 21 305938 8.4 $B1:V$ B 22 305937 9.35 $B2.5V$ $B8$ 1 29 11.11 $B5V$ 3 32 10.29 $B3V$ 1 34 9.91 $B4V$ 4 37 10.84 $B3V$ 1 38 10.49 $B3V$ 1 51 9.87 $B2V$ 1 53 305936 9.07 $B2V$ 1 54 10.97 $B9.5V$ 1 54 10.95 $B2.5IV-V$ 2 76 12.08 $F8:V:$ 7 79 11.85 $K3V$ 305932 8.19 81 $Am(kA4,mA8)$ $B4V$ 1 92 305982 8.19 $B0V$ 1 91 10.95 $B4V$ 1	2		8.22		B1.5Ve		150:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4		11.10		B4;V;		<.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5		9.71		B2.5V		80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6		9.32		A6IVV		
8 9.33 $B1V$ 1 13 10.94 $G8III$ 14 11.32 $G0V$ 1 15 10.52 $B3V$ 1 21 305938 8.4 $B1:V$ B 3 22 305937 9.35 $B2.5V$ $B8$ 1 29 11.11 $B5V$ 3 3 3 32 10.29 $B3V$ 1 3 34 9.91 $B4V$ 4 3 38 10.49 $B3V$ 1 3 51 9.87 $B2V$ 1 1 53 305936 9.07 $B2V$ 1 1 54 10.99 $B9.5V$ 1 1 1 54 10.95 $B2.5IV - V$ 2 2 2 2 1 76 12.08 $F8:V:$ 7 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4	7				G0:V:		<< 40
1310.94G8111 $<$ 1411.32G0V11510.52B3V1213059388.4B1:VB223059379.35B2.5VB812911.11B5V33210.29B3V1349.91B4V43710.84B3V13810.49B3V1519.87B2V1533059369.07B2V15410.99B9.5V15410.95B2.5IV-V27612.08F8:V:27611.85K3V481Am(kA4,mA8)893059828.19823059828.19B0V19110.95B4V1	. 8		9,33		BIV		180
14 11.32 GUV 15 10.52 $B3V$ 1 21 305938 8.4 $B1:V$ B 3 22 305937 9.35 $B2.5V$ $B8$ 1 29 11.11 $B5V$ 32 305937 9.35 $B2.5V$ $B8$ 1 32 10.29 $B3V$ 1 34 9.91 $B4V$ 4 37 10.29 $B3V$ 1 34 9.91 $B4V$ 4 37 10.84 $B3V$ 1 53 305936 9.07 $B2V$ 1 53 305936 9.07 $B2V$ 1 1 54 10.99 $B9.5V$ 1 1 2 61 305934 9.72 $B2V$ 2 76 12.08 $F8:V$; 7 79 11.85 $K3V$ $Am(kA4,mA8)$ 89 305982 8.19 $B4V$ 1 91 10.95	13		10.94		GSIII		<< 40
15 10.52 $B3V$ 121 305938 8.4 $B1:V$ B 3 22 305937 9.35 $B2.5V$ $B8$ 1 29 11.11 $B5V$ 32 10.29 $B3V$ 1 34 9.91 $B4V$ 4 37 10.84 $B3V$ 1 38 10.49 $B3V$ 1 51 9.87 $B2V$ 1 53 305936 9.07 $B2V$ 1 54 10.99 $B9.5V$ 1 61 305934 9.72 $B2V$ 2 76 12.08 $F8:V:$ 2 76 12.08 $F8:V:$ 2 79 11.85 $K3V$ $Am(kA5,mA6III-IV)$ 83 $Am(kA4,mA8)$ 89 305982 8.19 $B0V$ 1 91 10.95 $B4V$ 1	14		11.32		GOV		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	1144 Co. 1147 200 2104 210	10.52		B3V	-	190;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	305938	8.4		B1:V	B	300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	305937	9.35		B2.5V	B8	150
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29		11.11		B2A		
34 9.91 B4V 4 37 10.84 B3V 1 38 10.49 B3V 1 51 9.87 B2V 1 53 305936 9.07 B2V 1 54 10.99 B9.5V 1 54 10.99 B9.5V 1 61 305934 9.72 B2V 2 73 10.95 B2.5IV-V 2 76 12.08 F8:V: 2 79 11.85 K3V 3 81 Am(kA5, mA6IIII-IV) 3 83 B0V 1 91 10.95 B4V 1	32		10.29		B3V		150
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34		9.91		B40		40:
38 10.49 B3V 1 51 9.87 B2V 1 53 305936 9.07 B2V 1 54 10.99 B9.5V 1 61 305934 9.72 B2V 2 73 10.95 B2.5IV-V 2 76 12.08 F8:V: 2 79 11.85 K3V 81 Am(kA5, mA6III-IV) 83 Am(kA4, mA8) 89 305982 B.19 B0V 91 10.95 B4V 1	37		10.84		BSV		180
51 9.87 B2V 1 53 305936 9.07 B2V 1 54 10.99 B9.5V 6 61 305934 9.72 B2V 73 10.95 B2.5IV-V 2 76 12.08 F8:V: 79 11.85 K3V 81 Am(kA5, mA6III-IV) 83 B1 Am(kA4, mA8) 89 305982 B.19 B0V 1 91 10.95 B4V 1	38		10.49		B3A		100
53 305936 9.07 B2V 1 54 10.99 B9.5V 61 305934 9.72 B2V 73 10.95 B2.5IV-V 2 76 12.08 F8:V: 2 79 11.85 K3V 81 Am(kA5, mA6III-IV) 83 Am(kA4, mA8) 89 305982 8.19 91 10.95 B4V 1 10.95 B4V	51		9.87		B2V		150
54 10.99 B9.50 61 305934 9.72 B2V 73 10.95 B2.5IV-V 2 76 12.08 F8:V: 79 11.85 K3V 81 Am(kA5, MA6III-IV) 83 Am(kA4, mA8) 89 305982 8.19 81 10.95 B4V	ప్రత	305936	9.07		B2V		180
61 305934 9.72 B2V 73 10.95 B2.5IV-V 2 76 12.08 F8:V: 79 11.85 K3V 81 Am(kA5, mA6III-IV) 83 Am(kA4, mA8) 89 305982 8.19 81 10.95 B4V	54		10,99		B9.5V		
73 10.95 B2.510-0 2 76 12.08 F8:V: 79 11.85 K3V 81 Am(kA5,mA6III-IV) 83 Am(kA4,mA8) 89 305982 8.19 81 10.95 B4V	61	305934	9.72		B2V		60
76 12.08 F8:0; 79 11.85 K3V 81 Am(kA5,mA6III-IV) 83 Am(kA4,mA8) 89 305982 8.19 91 10.95 B4V 1	73		10,95		B2.5IV-V		250:
79 11.85 K3V 81 Am(kA5,mA6III-IV) 83 Am(kA4,mA8) 89 305982 8.19 91 10.95 B4V 1	76		12.08		F8:V:		
81 Am(kA5,MA6111-1V) 83 Am(kA4,mA8) 89 305982 8.19 B0V 1 91 10.95 B4V 1	79		11.85		K30		
83 AM(kA4,mA8) 89 305982 8.19 BOV 1 91 10.95 B4V 1	81				AM(KAD,MA6	TTT-TA)	
BY 305982 8.19 B0V 1 91 10.95 B4V 1	83		444 .4 .815		AM(KA4,MA8)	
71 10.95 B4V 1	89	305982	8.19		BOA		100
	91		10,95		B4V		150
96 11.03 B9I:	96		11,03		B9I:		

TABLA III-2

Tipos espectrales y velocidades de rotación axial proyectada medidas de estrellas obicadas en la región de Carina OB2

No	ΗΏ/ΗΦΕ	Vo	(este	MK estudio)	TE (HD)	V sen i
1.0.3	305930	9.49		820		100
186	96586	8.66		B9.5U		170
115		10.25		82.5TU		240 240
117		10.79		B3V		100
119		10.05		Ř2		
129		11.22		B3V		380
132	96523	8.28		BBV	B9	90
140		11.08		F8II-III:		· •
144				K		
146				М		
147	96546	9.19		B9.5V	A0	70
150	306027			K5-7:	K5	
161		11.53		F6IV-V		
165				M		
175		10.52		KS:III		
180	96622	7,47		09.5V	09.5IV	100:
183		11.76		F6V		
186	306032	9.87		B2.5:IV:		
193	96670	5,98		07V(f)n	08	
195				K5:III:		
196		10.74		B1V		90
199		10.82		B3A		100
209		10.45		AGIV		180
212		10.45		B5Vp		110
213		10.33		B4V		300:
227	306035	8.75		B1V	B8	80
235		9.11		B2Vn		
238		8.61		BIV		100
241		11.49		G3V		
243		9.50		BRIV		250:
244		9,77		B1.5V		20
245		8.83		BIV		160
246		8.54		B0.5IV		< 40
248	96638	6.79		087	08	
252		9.34		B2.5V		70

•

No	HDZHDE	V0	MK (este estudio)	TE (HD)	V	sen	i
258	306033	9.04	K2111:	К2			
259		10.53	KOV.				
260	306034		Am(KA2IV, mF6	III-IV)	A2		
269		10.23	A3V			80	
272		11.50	B3V			200	
275	96669	7.11	BIIIIII	OB			
276		9.82	BIIV			200	
284	96248	5.29	BC1.5Iab	BII			
288		10.28	B4V			180	
290		10.22	B2.5IV			70	
297	96286	7,27	BIII-III	08			
304	305046		Am(kA5,mF3V)	A3			
306	96176		Am(kA6, mA2V)	A2V		130	
309		9.57	BIV			110	
314	96159	6.47	BIII-III			<40	
320		12.20	F8V				
323		10.63	F5:V:				
324		10.12	K2III				
325		9.23	G2Ib				
326		11.36	B6V			150	
331	305941	8,97	B2IV-V	B9		80	
334	96158	7.30	B2II-III	B			
335		10.83	BIV				
336		10.81	K2V				
337		11.04	F8V				
338		11.19	FRIU				
351	305944	8.96	BJIV	B8		85:	
356		9.39	BIU			190	
367	305942	9.78	AIV			250:	
370		10.33	B4U			110	
374		11.35	FBU				
386		n n 1 Wr Wr	KS:TTT:				

N 0	HD/HDE	Vo	MK (este estudio)	TE (HD)	V sen i
393			He-rich		
400	96415	7,98	B2III	BB	
401		11,15	B3A		220
409		10.94	₽7Vp(Hg,Mn)		
431		11.06	ASV		
470	96756	7.18	K2:III:	К2	
472	306031		Am(kA2,mF2I	II)	
473		10.07	B1V		

,

Tabla III-3

Velocidades radiales medidas de estrellas ubicadas en la región de Carina OB2

1 	D.J. Helioc.	V.R	, n	e.p.	 D.J. Helioc.	V.R	, n	e.p.	
Ļ	+2440000	(km/s	5)	(km/s)	1 +2440000	(km/	5)	(km/s)	I
 -		100			 				
I.	HD 96261	No.1	VR(Cal	I)=-20 <u>+</u> 2	1	No.5	VR(CaI	I)=-12±4	ł
" 	5803.500	-36	15	2	 5453.758		 8	4	
i	5803.501	-28	18	2	1 5805.589	10	11	3	
I.	5803.502	-42	15	2	I 6158.603	-14	10	3	ł
ł.	5809,619	51	9	4	l 6159.553	14	9	4	
1	6158.539	-24	15	3	1 6161.526	-9	10	4	1
1	6158.541	24	11	3	1 6162.527	-26	10	4	
ļ	6160.478	-12	14	2	6163.531	-27	7	3	
!	6161.473	-26	13	2	1				
1	6162.474	-18	14	2. 	1				
) 	6100,470	···· 4	[4]	د. 	·····	989 -019 0444 4.000 0644 0410 0000 -	*** **** **** **** **** ****		
 		No.7			; } [No.8	VR(Cal	I)=-18±3	
1	ECOA 2/01		^	7			157	15	,
 	- 0004+021 6150 614	50 50	-+ C)	ی ۸	I 3003-347 I 3150 500		ມ ອ	ີ 1	1
	6159.546	69 69	7 10	4	F 6159,579		с 2	- 7	1
ì	6161.540	59	11	3	1 6161.553	31	7	5	
i	6162.539	57	10	2	L 6162.549	-38	Ŕ	3	ļ
1	6163.544	63	10	2	1 6163.555	43	7	4	

٠

D.J. Helioc.	V.R	, n	e.p.	 D.J. Helioc.	V.R	. n	e,p,
+2440000	(km/s	5)	(km/s)	 +2440000 	(km/s	5)	(km/s)
HD 305938	No.21	VR(Cal	I)=-27 <u>+</u> 3	HD 305937	No.22	VR(Cal	I)=-18 <u>+</u>
5453.620	8	7	4	5453.726	-53	6	6
5803.596	-21	6	4	1 5803.601	14	10	4
5809.642	11	7	6	1 5811.795	13	9	3
5811.785	48	7	6	1 6158.647	4	8	2
6158.640	-6	8	5	1 6159.588	-2	8	3
6159,597	37	6	8	1 6161.569	8	9	4
6161.560	-30	7	6	1 6162.559	3	9	4
6162.566	-24	7	3	1 6163.564	19	8	3
6163.572	-30	6	7	1			
HD 305936	No.53	VR(Cal	I)=-15 <u>±</u> 4	HD 305934	No.61	VR(Cal	I)=-13 <u>+</u>
5803.585	-37	9	2	 5803.591	2	9	2
6158.658	-22	7	5	1 6158.667	-27	10	4
6159.602	20	9	2	1 6159.612	36	12	3
6161.629	-24	7	4	6160.581	-26	12	2
6162.572	6	9	5	6161.641	33	11	3
6163.578	-39	6	5	1 6162.580	-25	12	3
				1 6163.700	34	11	3

**** **** **** **** **** **** **** ****							
 D.J. Helioc.	V.R	, n	é.p.	 D.J. Helioc.	V,R	. n	e.p.
1 +2440000 	(km/	5)	(km/s)	 +2440000 	(km/s	;)	(km/s)
 HD 305932	No.89	VR(Call	[)=-14±2	I I HD 305930	No.103	VR(CaI	I)=-14±3
 5453.624 5803.551	30 21	6 6	6 3	5804.611 6158.684	-29 -17	 8 11	32
5809.590 5809.612	-55 -52	8 9	33	6159.628 6160.596	-27 -13	9 10	4 3
6158.676 6159.619	-38 -50	12	4 3	6161.656 6162.593	-28 23	8 9	33
6160,589 6161,581	-57 -62	9 10	4	6163.599 	-31	8	3
6162.587	-56	12	5	 	*** **** **** **** **** **** ****		
HD 96586	No.106	VR(Call	()=-17 <u>+</u> 4	i HD 96523	No.132	VR(Cal	I)=-6 <u>±</u> 5
5453.603	0	4	7	1 5453.630	17	6	8
5804,478	-43	4	4	1 5804.491	-17	7	4
	2	5	6 7	1 5809.783	11	7	4
0107-000 X1A1 A1X	····4 7	0 5	এ স	1 6107.672		/ /	ാ ⊿
6161.665		5	5	1 6161.674	7	7	3
6162.601		5	2	1 6162.617		7	3
6163.606	3	5	3	1 6163.543	-6	7	3
1				1			

D.J. Helioc.	V.R.	n	e.p.	l D.J. I Helioc.	V.R	, n	e.p.
+2440000	(km∕s	;)	(km/s)	 +2440000 	(km/	5)	(km/s)
HD 96546	No.147	VR (Cal	I)=-14±	2 HD 96622	No.180	VR(CaI	I)=-17
5453.635		5	6	5453.595	-29		3
5804.488	27	7	4	1 5804.480		12	2
5809,792		6	3	1 5805.806	-20	10	3
6158.828	1	6	4	1 5807.506	21	10	3
6159.676	9	6	2	1 5809.507	' -26	12	3
6160.636	-6	5	1	6158,818	3 5	13	3
6161.678	-14	6	3	1 6159.667	·4	14	2
6162.621	7	5	2	6160.625	° 6	12	4
6163.647	-21	6	6	6161.669	-2	13	4
				1 6162.614		9	3
				1 6163.640	2	13	4
4D 306032	No.186	VR (CaI	I)=-13 <u>+</u>	3 HD 96670	No.193	VR(Cal	I)=-16
5804.497		4	6	1	54	1 በ	7
6159.644	1	8	3	1 5804.577	43		4
6160.610	5	9	4	1 5805,794	21		4
6161,688	15	7	5	1 5807,498	-64	6	6
6162.607	4	5	5	1 5809.500	12	7	6
6163.634		8	2	1 6158.793	50	7	5
				1 6160.698	-31	8	4
				1 6161.735	-57	9	5
1				1 6162.698	30	6	3

•

D.J. Helioc.	V.R	, n	e.p.	 D.J. Helioc.	V.R.	n	e.p.
+2440000	(km/s	5)	(km/s)	 +2440000 	(km/s)	(km/s)
HD 306035	No.227	VR (Cal	I)=-10 <u>+</u> 3	 	No.238	VR(CaI	I)=-16±2
5804.572	-100	7	4	1 5453.589	-29	8	4
5809.797	17	8	4	1 5804.540	20	9	4
6158,803	-10	10	2	6159.727	-25	10	3
6160.693		11	7	6160.671			2
6161,731	-114	10	4	6161.718	-25	10	4
6162.694		9 0	4	1 6162.682		4.4	<u>ئ</u>
0103.02/	-02	8	ය 	1 8183-808		11	4
	No.246	VR(CaI	I)=-13 <u>+</u> 4	HD 96638	No.248	VR(CaI	I)=-13 <u>+</u> 2
5804.725		10	3	, 1 5453.585	-23	5	5
6159.689	-20	11	3	1 5804.535	55	6	5
6160.644	-26	10	3	1 5809.779	33	11	5
6162,651	-21	13	3	1 5811.772	61	8	4
				1 6158.811	40	7	4
				1 6159.700	56	10	2
					-54	12	4
						8 10	4
						10	5 A
****				I		0 	**
٨	10.260						•
5804.567	-26		3	1			
6159.747	-16	5	4	I			
6160.684	15	6	3	1			

D.J. Helioc.	V.R.	n	е.р.	D.J. Helioc.	V.R	, n	e.p.
+2440000	(km/s)		(km/s)	1 +2440000	(km/s	5)	(km/s)
No	.252 VR	(CaII)=8 <u>+</u> 4	HD 96669	No.275	VR(CaI	I)=-5 <u>+2</u>
				1 5453.582	-18	9	3
5804.748	31	9	3	1 5804.545	9	10	3
6159.710	-13	10	3	1 5805.801	-15	12	2
6162.669	-12	11	3	1 5809.504	19	8	4
				1 6159.737	8	11	2
				6160.678	-17	13	3
				6161.727	7	10	2
				1 6162.689	14	11	1
				1 6163.665	-15	10	2
HD 96248 N	10.284 V	R(Cal	I)=-15±3	HD 96286	No.297	VR(CaI	I)=-12±
5453.550	-30	13	4	1 5453.547	-20	11	3
5803.653	31	9	2	1 5803.683	8	12	3
6158,712	-28	17	2	1 5805.758	-16	12	3
6160.701	31	15	3	1 5807,493	1 0	11	3
6161.740	-36	15	2	1 5809.494	-16	11	3
6162.702	-28	13	2	6158.753	1 0	9	4
6163.676	-26	16	2	6160.719	-16	10	2
				6161.760	-18	12	2
				6162.731	-10	12	2
				1 6163.706	18	10	2

 D.J. Helioc.•	V,R	, n	e.p.	 D.J. Helioc.	V.R	, n	e.p.	
1 +2440000 1	(km/s	5)	(km/s)	i +2440000	(km/s	5)	(km/s)	
I HD 305946	No,304			HD 96176	No.306	<u>99</u> , 1999 2499 2499 2499 2499 2497 2497		-
6158.742 6160.710	2 -7	7	3 4	1 6158.749 1 6160.716	_5 4	4	2 5	
1 6161.749 1 6162.722	9 19 13	5 8 0	5 5	1 6161.757 1 6162.728	-1 6 14	4 4 4	1 5 4	
 HD 305945	No.309	VR(CaI	I)=-21±4	HD 96159	No.314	VR(Cal	I)=-16±3	 }
 5803.658	30	6	3	1 5803.649	-12		3	·
l 6158.730 l 6160.760	-86 -79	8 8	2 2	1 5809.646 1 6158.715	-11 4	$\begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \end{array}$	3 3	1
6161.808 6162.714	-65	9 9	3	1 6160.705 1 6161.743	-12	10	22	1
6163,686 	-78		4	6163.681 	8	10	2	ו י
HD 305941 	No.331	VR(Cal	$I \rangle = -10 \pm 3$	I HD 96158	No.334	VR(CaI	$I) = -1.4 \pm 2$? ·
5803.606 5811.560	-48 -23	7 7	2 4	1 5453.569 1 5803.644	17 9	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \end{array}$	22	
l 6158.695 l 6159.833	31 -37	8 11	4 3	1 5809.772 1 6158.701	8 21	11 12	3 2	
6160.751 6161.796	-35 -15	10 9	3 5	l 6160.746 l 6161.790	-22 -18	12 10	2 3	
6162.767 6163.725	-3 -28	8 10	4 3	6162.763 6163.720	-18 -17	11 14	1 3	
D.J. Helioc.	V.R.	n	e.p.	D.J. Helioc.	V.R.	n	е.р.	
-----------------	--------	---------	-----------	--------------------	----------	--------	---------	
+2440000	(km/s)	(km/s)	 +2440000 	(km/s	;)	(km/s)	
HD 305944	No.351	VR (Cal	[])=-14±3	 	No.367	VR(CaI	I)=-1±4	
5804.582	-16		4					
5811.565	31	9	3	1 6158.779	23	5	6	
6158.705	-26	9	4	1 6162.748	-31	5	5	
6160.741	-27	9	3	1				
6161.784	-25	8	3	I				
6162,759	30	8	4	1				
6163.716	-35	9	4	1				
HD 96446	No.393			I HD 96415	No.400			
5453,563	10	10	2	1 5453.566	2	10	1	
5803.688	1 0	5	3	1 5803.685	13	7	3	
5809.776	5	8	2	1 5809.803	4	10	2	
5811.806	7	10	3	1 6158,756	9	12	2	
6158.806	6	11	1	1 6160.722	5	13	2	
6160.726	1	12	2	l 6161.764	5 5	14	2	
6161.768	22	11	2	6162.734	2	12	3	
6162.738	2	11	3	1 6163.708	2	13	2	
6163.711	0	10	2	1				
HD 306031	No.472			1	10.473 V	R(Call)=-9±3	
5804.699	15	7	4	1 5804.712	-35	8	6	
6159,658	1	7	5	1 5812.545	81	8	4	
6160.621	11	5	6	1 6162.633	38	9	3	
6161.701	5	7	5	1 6169.712	16	8	5	

TABLA III-4

Resultados cinemáticos para estrellas con un único valor medido de velocidad radial

							
	No		D.J.	V.R.	V.R.(CaII)	е.р.	n
 			Helioc, +2440000	(km/s)	(km/s)	(km/s)	
 		*** *=* **** **** *	5810.534			5	
	6		5807.552	4	26	4	10
I	7		5804.621	63		3	14
	13		5803.566	6	24	2	11
1	14		5807.525	12		2	13
	15		5805.774	-40	-16	4	7
1	29		5810.580	-13	11	3	9
	32		5804.632	-30	3	2	7
ł	34		5803.576	31	-28	3	10
			5812.528	19	-31	4	9
i	37		5808.572	-32	-18	4	9
	38		5805.608	-22	-10	3	10
	51		5804.645	26	7	3	8
	54		5809.580	-5	3	3	6
	73		5807.672	45	14	4	7
	76		5809.750	23	28	4	8
	79		5809.531			2	7
	81		5807.697	-2		<u>ර</u> ස	10
	83		5808,788	26	18	5	10
	91	*	5807,719	-9 P	771M, -49	2	9
	~ /				ec.	7	() 17
	96		5807,742	-6	2.5	2	/
	102		5803.556		-23	<u>Ľ</u> .	
1			0800,637 E008 845	-18		ා 	11
	117		5807,765	43		4) ''''	7 1 7
			5163.518	- 30	-1.5	ා 	10
	117		5804.521	37	,	4	10
; ,	127		3810.715	4U 	() I	ය ^	6 /
	140		5804.660	ే	-5	4	6
3	44		5804,674	-26		<i></i>	ដ ភ
	150		5804.485	39	7	<i></i>	8
j I	161		5807.581	-6	····· /	Ą	10

TABLA III-4 (Cont.)

•	ibat mine can't milje stat with note can	. 2000 2000 2191 2192 2191 1-19 190 190 190 200 200 200 200 200 200			n fanle daar daar aan old oo to fin daar alaa aan aan aa	
ï	No	D.J.	V.R.	V.R.(CaII)	e.p.	n
Ļ		Helioc.	(km/s)	(km/s)	(km/s)	1
1		+2440000				
 	*** **** **** **** **** **** **** ****		·····			
1	175	5811.681	15		4	7
L	183	5801.668	23	34	4	8 1
ł	195	5808.602	34	-7	4	8
1	196	5808.631	41	-28	3	91
l	199	5808.681	15	-32	3	10
	209	5812.619	-45	0	7	8 1
1	212	5805.712	-32	14	2	9
1	213	5807,786	-41	4	6	7 1
1		5808.547		-30	4	7
1	235	5811,818	-46	-24	6	8 1
1	241	5811.729	45		3	9
Į.	243	5805.663		-22	4	8 1
1		5812.563			6	8
1	244	5807.601	-10	-11	చ	6 1
!	245	5804,737		····· 6 6	4	10
ļ.	258	5804.548	14		4	101
1	259	5804.556	-18	~	2	10
Ļ	261	5807.620	5	<u></u>	3	81
!	269	5804,771		చ జ	ప	9 I
1	272	5808.522		7	1	3 1
1	276	5804,786	··· ວ ය	/	ວ •	101
1	288	0804,803	7		4	1 4 1
!	270	5805.518	22	<i>3 2</i>	3	11
1		5812,580 5812,580	9	-	č.	Υ 1 Ο 1
!	320	5811,590	-8		4	8
	చ జీచ	5803.639	-2		2	У I
!		6163.740			5	6
1	524	5803.631			2	Y 1
ļ	325	5803.617	17	,		У I С 1
1	326	5810,581	-40	(c) (c)	చ	8
1		2808.626		-5 U	<u> </u>	У I С 1
1	<i>ა</i>	5813.761	-27		5	ម
ł						

TABLA III-4 (Cont.)

 	No	D.J. Helioc. +2440000	V.R. (km/s)	V.R.(CaII) (km/s)	e.p. (km∕s)	n
				#* -*** -*** -*** -	· · · · · · · · · · · · · · · · · · ·	
I.	337	5808,704	-12	-13	4	8
ł	338	5804.592	-2		2	8
Ł	356	5805.570	-20	37	4	9
1		5812.517	28	-14	4	7
L	370	5808.733	14		2	8
1	374	5807,642	24		2	11
L	386	5812.675	45		4	8
1	401 ×	5809.674	-1	-3	3	9
	489	5805.742	-43	-11	4	8
1	431	5808.759	-16	7	4	9
1	470	5804.506	21		3	11

* Hay un comentario para esta estrella en las "Notas correspondientes a la Tabla III-3".

TABLA III-5

Datos de velocidad radial existentes en la literatura

-

HD	Referencia	D.J.	VR (km/s)	VR (CaII) (km/s)	ep	n
6248	Thackeray y otros.	2439174.495	-26	-3	5	13
#284	(1973)	2439187.448 2439189.476	-17 -17	-10 -14	6 3	11 8
	Walker y Hill.	2442913.358	-46.1		3.5	7
(1985)	2442913,366 2442914,281 2442914,281	-51.4 -31.5 -27.4) j	5.0 3.6 2.6	9 9 10	
		2442914.300 2442914.310	-31.7	}	4.1	8
		2442916.371 2442916.377	-3915	; S	3.5	9 8
		2442916,383 2442916,389 2442916,395	-28.0 -47.5 -40.6	5 5	3.0 4.2 4.1	10 8 10
	Levato y otros. (1999)	2445776.753	-36		2	13
	(17007	2445778.651	-29		2	15
		2445779.633	-33		4	13
		2445780.710	-35		3	13
		2445781.832	-36		2	14
		2445782.701	-20		ა უ	13
		2440783,800 2445784 AR9			<u>د</u> ج	13
		2445785.605	-40		2	16
		2445786.603	41		3	13

 HD 	Referencia	D.J.	VR (km/s)	VR (CaII) (km/s)	ep	n
 96261 #001 	Feast y otros. (1963)	2434108.290 2434127.266 2434150.264 2434151.365 2434175.217	-21 -44 42 20 -15	-1 2 -3		11 9 8 7 8
 96446 #393 	Jaschek y Jaschek (1969)		-12	(3 placa	3S)	i
 	Buscombe. (1962)		7	-7	1.8	3
<pre> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</pre>	Walker y Hill. (1985)	2443299.234 2443299.240 2443299.273 2443299.280 2443300.223 2443300.233 2443300.238 2443300.238 2443300.278 2443302.217 2443302.217 2443302.309 2443303.233 2443303.238 2443303.238 2443303.275 2443303.305 2443304.311 2443304.316	11. 5. 1. 2. 8. 9. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	32232 3254 55250 34352 82	3241122902832511660 323233322322322222	19 19 19 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19

I HD I HD I I I	Referencia	D.J.	VR (km/s)	VR (CaII) (km/s)	ep	n	{ } { }
 96670 #193 	Thackeray y otros (1973)	2439629.323 2439659.343 2439669.251 2439683.223	-6 17 -2 -1	4 -9 -8	6 6 3	6 7 7 12	

ν.

NOTAS A LA TABLA III-2

ESTRELLA 4: Se observan líneas muy delgadas. El aspecto general del espectro, nos hace pensar que la estrella es una B4 de secuencia, o muy cercana a ella, pero $\lambda4009$ del HeI se ve demasiado débil, lo que hace dificultosa la clasificación. La estrella presenta, además, muy baja rotación.

ESTRELLA 29: El espectro presenta líneas muy delgadas. Muy baja rotación.

ESTRELLA 73: Las líneas de H y de HeI se ven muy ensanchadas. Aparece,33995 del NII, lo que indica que el objeto esta fuera de la secuencia principal.

ESTRELLA 91: Se observan líneas anchas de H.

ESTRELLA 96: Los núcleos de las líneas de H se ven finos e intensos (shell?). La línea K del CaII, nos indica que la estrella es de tipo A temprana que, por el aspecto general del espectro, parece estar fuera de secuencia. χ 4481 del MgII se ve, pero difusa.

ESTRELLA 129: Líneas de H muy anchas.

ESTRELLA 140: Líneas muy delgadas, producto de la baja rotación.

ESTRELLA 175: Tal vez el tipo espectral de este objeto sea más tardio que K5; la clasificación se hace difícil pues, la única placa de la que se dispone, está subexpuesta.

ESTRELLA 180: Esta estrella fue clasificada por Walborn (1972) como O9.5IV. No es sencillo distinguir entre clase de luminosidad V y IV con nuestro material.

ESTRELLA 186: Espectro variable. En algunas placas desaparece λ4009 del HeI, cosa que coincide con la mejor definición deλ4481 del MgII. Es probable que nos encontremos ante una SB2.

ESTRELLA 193: El espectro de esta estrella varía; esta característica es más evidente en el aspecto de 24481. Las líneas 24686 y 24649 están "rellenadas". Fue clasificada por Walborn (1972) como

O8p; es interesante conocer el comentario que hace este investigador en su trabajo: "Esta estrella se hace inclasificable en el esquema propuesto, debido a sus propiedades. Mientras la región de H indica intermedia o baja luminosidad, con tipo O8, λ 4686 es ancha, con la característica de una débil emisión (posiblemente superpuesta a una débil absorción), aunque la emisión es demasiado débil si es real. HD96670 debería ser chequeada para detectar variaciones de velocidad radial".

Garrison, y colab. (1977), da el tipo espectral para esta estrella en el sistema MK, el la clasifica como OBIb(f).

ESTRELLA 212: Se ve λ 4233 del FeII, intensa y delgada.

ESTRELLA 235: Lineas muy anchas y difusas. SB2?.

ESTRELLA 238: A pesar del tipo espectral asignado a este objeto, el blend de OII λ 4070-4076 aparece demasiado intenso.

ESTRELLA 243: El espectro presenta líneas anchas y difusas. Como las líneas se hacen mas anchas hacia el rojo, pensamos que se trata de una SB2. La línea del HeI λ 4143, se ve demasiado intensa, casi como λ 4026.

ESTRELLA 248: El aspecto de 4686 nos hace pensar que la línea está rellenada; sin embargo, es posible que esta apariencia esté relacionada con la posible naturaleza binaria del objeto. Tanto el aspecto de \4200 del HeII, como la relación \\4471/4541, coresponden a una O8.

ESTRELLA 275: En una de las placas correspondientes a esta estrella, apareceλ4481 demasiado intensa para el tipo espectral, esto no se repite en las demás. Aparece λ4552 del SiIII.

Fue clasificada por Garrison y colaboradores (1977) como BO.5Ib.

ESTRELLA 284: Fue clasificada por Walborn (1972) como BC1.5Iab. Con nuestro material es imposible detectar las diferencias remarcadas por Walborn para las OBC y las OBN, por lo que adoptamos para este objeto la clasificación ya existente.

ESTRELLA 297: Esta estrella fue clasificada por Garrison (1977) en el sistema MK; el tipo espectral asignado por este autor es: B0.5III

ESTRELLA 351: La clasificación de esta estrella fue hecha en base a las relaciones conocidas entre las líneas del HeI para estrellas de tipo B, sin embargo el blend del OII λ 4068-76 aparece más intenso que lo normal.

ESTRELLA 367: Las líneas se ven muy anchas.

ESTRELLA 370: En los espectrogramas de este objeto, no se ve $\lambda4009$ del HeI, ni $\lambda4481$ del MgII. No parece, sin embargo, ser una estrella B temprana.

ESTRELLA 393: Esta estrella rica en Helio fue descubierta por Jaschek y Jaschek (1959). A partir de tres placas tomadas en el Observatorio de Bosque Alegre (Cordoba), con una dispersión de 42 Å/mm. Fue clasificada por estos autores como B2IIIp (He-strong).

ESTRELLA 409: En el espectro de esta estrella están presentes las lineasλ3984 del HgII,λ4206 del MgII,λ4233 del FeII bastante intensa.

ESTRELLA 473: El aspecto de las líneas nos hace pensar en una SB2.

NOTAS CORRESPONDIENTES A LA TABLA III-3.

ESTRELLA 1: En una de las placas correspondientes a esta estrella, la del DJ 5809.619, se detectó el espectro de la secundaria, con una velocidad, en el sistema de Lick, de ±44±7, con tres líneas medidas: λ 4026, λ 4340 y λ 4471.

Existen en la literatura medidas de velocidad radial efectuadas por Feast y colab. en el Observatorio de Radcliffe. Los autores obtienen velocidad radial variable y comentan que, en una placa, las lineas parecen dobles.

ESTRELLA 5: Este objeto presenta líneas asimétricas en alguno de los espectrogramas que poseen, en otros las líneas aparecen simples.

ESTRELLA 8: Esta estrella presenta líneas asimétricas en todos los espectrogramas. Fue posible medir el espectro secundario en la placa correspondiente al D.J. 2446162.549, donde el valor de la velocidad radial resulto de + 73 ± 4 (las líneas medidas fueron: 14143, 14340 y 14387).

ESTRELLA 21: En algunas placas aparecen las lineas muy asimétricas. Existen indicios de la compañera en las placas correspondientes a los días 2446162.566, 6159.597,5809.642, 5811.785, sin embargo no es posible obtener un valor para la velocidad radial de la misma.

ESTRELLA 22: Presenta líneas asimétricas, estas se ven particularmente anchas el día 2446158.647, donde fue posible medir una velocidad radial de $\pm 68\pm7$ (tres líneas medidas: $\lambda 4340$, $\lambda 4387$ y $\lambda 4471$), para el espectro de la posible secundaria.

ESTRELLA 53: Las líneas medidas son, en todas las placas, muy asimétricas Una componente hacia el rojo de +47±5 (cuatro líneas medidas), fue medida el día 2445803.585. La asimetría es también muy importante el día 2446162.572.

ESTRELLA 61: Las líneas son delgadas y presentan algunas variaciones en la intensidad, especialmente las del HeI λ4009, λ4026, λ4143 yλ4471, que en algunas placas aparecen más intensas que en otras.

ESTRELLA 89: Presenta líneas asimétricas en algunas placas, sin embargo no es posible separar a la compañera. ESTRELLA 91: Es posible medir, para esta estrella, el espectro de la secundaria. Lamentablemente sólo contamos con un espectrograma para este objeto.

ESTRELLA 103: Lineas finas e intensas.

ESTRELLA 106: Líneas anchas, algo asimétricas.

Esta estrella fue observada por Nicole Martin (POHP, 7, N33, 1964) con prisma objetivo; descartamos el valor de velocidad radial publicado por desconocer la corrección al sistema de Lick.

ESTRELLA 132: Este objeto fue también observado por N. Martin (1964). Nuestros espectrogramas presentan variaciones en la intensidad y ancho de las líneas.

ESTRELLA 147: Líneas delgadas. Varía la intensidad de 4481 en las distintas placas.

ESTRELLA 180: Líneas bastante buenas para el tipo espectral de la estrella. No hay ningún indicio de espectro secundario.

ESTRELLA 186: Líneas asimétricas. Es muy probable que se trate de una SB2. En la placa correspondiente al día juliano 2445804.497 existen indicios de la secundaria con una velocidad de +85±5 (4 líneas medidas).

ESTRELLA 193: Lineas muy asimétricas; no fue posible separar el espectro secundario.

Thackeray et al. (1973) publican 4 medidas de velocidad radial para esta estrella, cuyo promedio es de +2 km/s; estas observaciones han sido tenidas en cuenta para el cálculo de la 6rbita de HD 96670.

ESTRELLA 227: Líneas muy asimétricas. Es posible, en algunas placas, advertir una componente secundaria. Es una candidata firme a ser SB2.

ESTRELLA 238: Los espectrogramas de esta estrella presentan líneas algo asimétricas.

ESTRELLA 246: A pesar de que las líneas son delgadas, Ά4471 aparece, en algunas placas bastante asimétrica. (1985) encuentran, para 19 observaciones, una velocidad radial promedio de +6 km/seg. Si utilizamos las 29 observaciones disponibles, la velocidad radial promedio resulta igual a +4.7 \pm 0.6.

ESTRELLA 400: Los espectros presentan líneas delgadas y bien definidas. En un par de placas se notan algunas asimetrías; las placas son las que corresponden a los dias: 2446160.722 (λ 4481 asimétrica); 2446168.685 (λ 4026, λ 4101, λ 4471 asimétricas).

ESTRELLA 401: Fue posible medir para esta estrella, en la única placa disponible, el espectro de la secundaria; para ella se obtuvo una velocidad radial de -116 \pm 5, empleando para el cálculo tres líneas del espectro.

ESTRELLA 473: Esta estrella presenta espectro doble. Los valores para el espectro secundario son: -76 ± 2 (3 líneas medidas: \4009,\4340 y \4387), correspondiente al D.J. 2446169.712; +144 ± 6 (con tres medidas, las de las líneas: λ 4340, λ 4387 y λ 4481), que corresponde al D.J. 2446162.633.

Bibliografía correspondiente al Capítulo III.

- Buscombe, W. 1962, Mon. Not. Roy. Astron. Soc. 124,
- Feast, M.W., Thakeray, A.D. y Wesselink, A.J. 1963, Mem. Roy. Astron. Soc. 68,1.
- Garrison, R.F., Hiltner, W.A. y Schild, R.E. 1977, Astrophys. J. Supp. 35, 111.
- Goy, G. 1980, Astron. & Astrophys. Supp. 42, 91.
- Jaschek, M. y Jaschek, C. 1969, Publ. Astron. Soc. Pac. 71, 465
- Keenan, P.C. y McNeil, R.C. 1976, An Atlas of the Cooler Stars: Types G, K, M, S, and C, The Ohio State University Press.
- Levato, H., García, B., Lousto, C., Morrell, N. y Saizar, P. 1986, Rev. Mex. Astron. y Astrof. 13, 3.
- Levato, H., Malaroda, S., Morrell, N. y García, B. 1988, en prensa en el Astrophys. J. Suppl.
- Loden, L.O., Loden, K., Nordstrom, B. y Sundman, A. 1976, Astron. & Astrophys Suppl. 23, 283.
- Martin, N. 1964, Pub. Hot Prov. Obs. 7, N33.
- Morgan, W.W., Abt, H.A. y Tapscot, J. 1978, Revised MK Spectral Atlas for Stars Earlier than the Sun (Yerkes Observ., Univ. of Chicago and Kitt Peak National Observatory).
- Morgan, W.W., Code, A.D. y Whitford, A.E. 1955, Astrophys. J. Suppl. II, 41.
- Moore, C.E. 1945, A Multiplet Table of Astrophysical Interes, Contrib. Princeton Obs. No 20.
- Schmidt-Kaler, T. 1982, Landolt-Bornstein, Vol. 2, Eds. K. Schaifers y H.H. Voigt..
- Seggewiss, W. 1969, no publicado.
- Sletteback, A., Collins, G.W., Boyce, P.B., White, N.M. y Parkinson, T.D. 1975, Astrophys. J. Suppl. 29, 137.
- Stephenson, C.B. y Sanduleak, N. 1971, Publ. Warner and Swasey Obs. Vol. 1, No 1.

Thakeray, A.D., Tritton, S.B. y Walker, E.N. 1973, Mem. Roy.

Astron. Soc. 77, 199.

Walborn, N. 1971, Astrophys. J. Suppl. 23, 257.

Walborn, N. 1972, Astron. J. 77, 312.

Walborn, N. 1973, Astron. J. 78, 1067.

A.

Walker, H.J. y Hill, P.W. 1985, Astron. & Astrophys. Suppl. 61, 303. CAPITULO IV.

DISTRIBUCION ESPACIAL DE LAS ESTRELLAS EN LA REGION

IV.1 INTRODUCCION

En el presente capítulo, analizaremos los datos fotométricos y espectroscópicos coleccionados. Nuestro primer objetivo consiste en determinar los excesos de color que afectan a cada objeto, la absorción interestelar y sus posibles variaciones en la región y las distancias individuales. Dado que la zona estudiada se encuentra en las inmediaciones del plano galáctico, es de esperar que la absorción interestelar no presente una distribución uniforme.

Las Cartas I a III constituyen reproducciones de las cartas del ESO Sky Survey. En ellas puede apreciarse el entorno que rodea la región investigada. Existen en la zona varias regiones HII, las cuales pueden verse en la Carta IX, tomada del trabajo de Georgelin y Georgelin (1970). La región de Carina OB2 se encuentra indicada en la parte superior de dicha Carta.

IV.2 DIAGRAMAS UBV OBSERVADOS

Las figuras IV-1, IV-2, y IV-3 ilustran los diagramas observados color-color y color magnitud de la fotometría UBV. Si bien estos diagramas incluyen, entre muchos otros, los efectos del enrojecimiento y absorción interestelar, puede apreciarse con claridad que un numeroso grupo de estrella O, B y A tempranas aparenta formar parte de un mismo agregado: la Asociación Carina OB2.

Para distinguir cuidadosamente los miembros físicos de esta asociación de las estrellas del campo galáctico, es necesario corregir los diagramas UBV observados de los efectos distorcionantes que sobre la radiación electromagnética produce el material interestelar. IV.3 DETERMINACION FOTOMETRICA DEL ENROJECIMIENTO INTERESTELAR.

La corrección de los colores UBV observados por efecto del enrojecimiento interestelar, se llevó a cabo utilizando los resultados obtenidos por Crawford y Madwewala (1976). Estos autores determinaron la naturaleza de la trayectoria de enrojecimiento en el diagrama (U-B) vs. (B-V) evaluando, en función del tipo espectral y de la luminosidad, las constantes α , β , y γ de la siguiente ecuación:

$$E(U-B) = d E(B-V) + \beta E(B-V)^{2} + \gamma E(B-V)^{3}$$
 (IV-1)

Si se examinan con cuidado los valores de la Tabla IV de Crawford y Mandwewala, puede concluirse que: (1) Independientemente del tipo espectral y de la luminosidad, el parámetro γ resulta menor o igual que 0.01, pudiendo en consecuencia despreciarse el término correspondiente en (IV-1); (2) Para todas las estrellas mas tempranas que A2, independiente de la luminosidad, β es prácticamente constante e igual a 0.05. (3) Si sólo se consideran las estrellas más tempranas que A2 y se promedian los valores obtenidos a partir de las curvas de enrojecimiento de Whitford (1958) y Nandy (1968), el parámetro \ll varía levemente entre 0.70, para el tipo A2Ia, y 0.74 para una estrella de tipo espectral O de la secuencia principal. En consecuencia, si solamente se consideran estrellas dentro del rango considerado, la ecuación (V-1) puede aproximarse muy bien por la siguiente:

E(U-B)/E(B-V) = 0.72 + 0.05 E(B-V) (IV-2)

Esta ecuación es exactamente la misma que encontraron Hiltner y Jhonson en 1956, usando 262 estrellas de tipo espectral D.

La pequeña dependencia del cociente E(U-B)/E(B-V) con el enrojecimiento hace que el parámetro Q de Jhonson, definido como:

$$Q = U - B - (E(U - B) / E(B - V)) \times (B - V)$$
 (IV-3)

resulte prácticamente independiente del enrojecimiento interestelar. En efecto, si Q y Qo representan los parámetros correspondientes a una estrella de un determinado tipo espectral enrojecida y no afectada por enrojecimiento, respectivamente, entonces de (V-2) y (V-3) resulta:

$$\mathcal{E} = Q - Q_0 = -0.05 E(B-V) (B-V)_0$$
, (IV-4)
siendo $Q_0 = (U-B)_0 - 0.72 (B-V)_0$,

La cantidad $\hat{\mathcal{E}}$ de (IV-4) es evidentemente muy pequeña ya que si consideramos estrellas más tempranas que A2V, el valor más desfavorable de (B-V)o es, aproximadamente, -0.30 y, por tanto, el máximo valor de $\hat{\mathcal{E}}$ será = 0.015E(B-V). Para el caso extremo de un exceso de color E(B-V) de dos magnitudes, equivalente a una absorción del orden de 6 magnitudes, resulta apenas 0.03.

Por otra parte, los índices intrínsecos (B-V)o y (U-B)o en el dominio (U-B)o \leqslant 0.0 presentan una correlación que se asemeja mucho a una recta del tipo:

(IV-5)

$$(B-V)_0 = a1 (U-B)_0 + a2$$

Los parámetros de esa recta pueden obtenerse por mínimos cuadrados. El problema que se plantea ahora es que los pares de valores (U-B)o y (B-V)o que corresponden a los diferentes tipos MK varían segun los autores. Entre otros, los siguientes investigadores han publicado relaciones entre los colores UBV intrinsecos: Johnson (1963), Schmidt-Kaler (1965, 1982), Fitzgerald (1970), Heintze (1973), Deutschman y otros (1976), Gutierrez-Moreno (1979) y Mermillod (1981). Dada la calidad y cantidad de datos UBV utilizados, la relación (U-B)o vs. (B-V)o derivada por Mermillod en 1981 para estrellas de secuencia principal parece ser la más refinada y confiable. Usando el método de mínimos cuadrados y los valores de la Tabla V del trabajo de Mermillod resulta:

$$(B-V)_0 = 0.220 (U-B)_0 0.05,$$
 (IV-6)

Eliminando (U-B)o de esta ecuación y la siguiente:

$$Q = Q_0 = (U-B)_0 - 0.72 (B-V),$$
 (IV-7)

resulta

$$(B-V)_0 = 0.261 Q - 0.059.$$
 (IV-8)

A su vez, eliminando el parámetro Q de las expresiones (IV-3) y (IV-8) y teniendo en cuenta (IV-2), se obtiene:

$$(B-V)_{0} = \frac{(U-B) - 0.72 (B-V) - 0.05 (B-V)^{2} - 0.226}{3.831 - 0.05 (B-V)}$$
(IV-9)

Finalmente, de (IV-2) y (IV-9) resultan las siguientes ecuaciones para los excesos de color E(B-V) y E(U-B) de estrellas más tempranas que A2:

$$E(B-V) = \frac{4.551 (B-V) (U-B) + 0.226}{3.831 - 0.05 (B-V)},$$
 (IV-10)
$$E(U-B) = 0.72 E(B-V) + 0.05 E(B-V)^{2} .$$
 (IV-11)

Estas expresiones reemplazan a las obtenidas previamente por Clariá en 1977, y serán utilizadas en el presente estudio. Si bien la mismas pueden aplicarse a estrellas más tempranas que A2 de secuencia principal, su utilización en el caso de estrellas de clases III-IV no introduce grandes errores; deben excluirse, eso sí, estrellas supergigantes.

El cálculo de los excesos E(B-V) y E(U-B) a través de las ecuaciones (IV-10) y (IV-11) se efectuó para todas las estrellas (excluidas las supergigantes y las estrellas A con líneas metálicas) con (B-V) \langle 0.5 y (U-B) \langle 0.4. Estos límites eliminan de hecho todas las estrellas más trdías que A2. Existe sin embargo la posibilidad de que estrellas B altamente enrojecidas I(B-V) > 0.61, sin tipos MK conocidos, puedan hhaber quedado de est manera excluidas en el cálculo anterior. La ubicación de estas estrellas en los diagramas color-color y color-magnitud nos permite, sin embargo, prácticmente descartar dicha

posibilidad. Un par de excepciones constituyen las estrellas Nos. 216 y 330, cuya posición en el diagrama color-color parece dejar pocas dudas de que se trata de objetos muy tempranos, ltamente enrojecidos. Si bien estas estrellas tienen índices (B-V) que superan la cota de 0.5, han sido tratadas como estrellas de tipo B y sus excesos han sido, por lo tanto, determinados a partir de las ecuaciones IV-10 y IV-11. Con relación a estas dos estrellas cabe consignar finalmente que los excesos E(B-V) calculados, superan en ambos casos el valor de una magnitud. Se trata pues de los dos objetos más enrojecidos observados en este trabajo.

Los resultados obtenidos se presentan en la Tabla IV-1 cuyas diferentes columnas indican:

- (1) Número de identificación de la estrella.
- (2)-(3) Colores intrínsecos (B-V)o y (U-B)o determinados fotométricamente.
- (4)-(5) Excesos de color E(B-V) y E(U-B) determinados fotométricamente.
- (6)- Absorción interestelar en el visual (Av).
- determinada fotométricamente.
- (7)- Magnitud aparente visual (Vo) corregida por absorción interestelar.

La absorción interestelar en el visual, consignada en la columna 7 de la Tabla IV-1, ha sido calculada aceptando para la región el valor normal de 3.0 para la razón R entre la absorción interestelar total y selectiva. La elección de este valor se justifica en el próximo capítulo cuando se determina el valor de R a partir de los miembros físicos de la asociación Carina OB2.

IV.4 DETERMINACION ESPECTROSCOPICA DE COLORES INTRINSECOS Y ENROJECIMIENTO INTERESTELAR.

La observación espectroscópica de los objetos mas brillantes del grupo nos permitió obtener tipos espectrales que, si bien no se encuentran en el sistema MK como ya se mencionó en el capítulo anterior, son lo suficientemente aproximados a el como para hacer uso de nuestros datos y derivar los colores intrínsecos, empleando alguna de las calibraciones empíricas existentes en la literatura. De esta manera puede obtenerse (B-V)o y a partir de este índice intrínseco, el valor para el exceso E(B-V). Esto resulta particularmente útil para las estrellas supergigantes y A con líneas metálicas, a las cuales no pudo aplicarse el método fotométrico.

Para las estrellas tempranas supergigantes, A metálicas y tardías con tipos espectrales determinados en el presente trabajo, los excesos de color y los colores intrínsecos se obtuvieron directamente de la calibracion de Schmidt-Kaler (1982). En las Tablas IV-2 se presentan las mismas cantidades que en la Tabla IV-1, pero determinadas espectroscópicamente. En la segunda columna de esta Tabla se ha incluido el tipo MK asignado en el presente estudio.

Una comparación entre los excesos de color E(B-V)UBV y E(B-V)MK, determinados a partir de datos UBV y MK, se ilustra en la Figura IV-4. En ella se advierte que el acuerdo es realmente satisfactorio, pudiendo en consecuencia adoptarse indistintamente los valores obtenidos por uno u otro método. El valor medio de las diferencias entre los excesos derivados por ambos métodos es de 0.01 magnitudes. Por lo tanto para aquellas estrellas con excesos de color E(B-V)UBV y E(B-V)MK conocidos se adoptó, finalmente, el promedio de ambas determinaciones.

IV.5 DETERMINACION DE MAGNITUDES ABSOLUTAS Y DISTANCIAS.

El conocimiento de las magnitudes absolutas de las estrellas es indispensable para determinar distancias al sol. Dichas magnitudes fueron determinadas de dos maneras independientes a saber:

- 1- Una primera determinación fue realizada utilizando la calibración del índice de color (U-B)o versus Mv de Schmidt-Kaler (1982).
- 2- Una segunda determinación se realizó empleando la calibración de Corbally y Garrison (1983) del sistema MK en función de la magnitud absoluta visual Mv. Este Este procedimiento sólo fue aplicado a las estrellas con tipos MK conocidos. Dado que los tipos espectrales no se encuentran rigurosamente en el sistema MK, esta determinación sólo fue llevada a cabo para comprobar la magnitud absoluta visual obtenida por otro procedimiento.

La Figura IV-5 ilustra una comparación efectuada entre las magnitudes absolutas obtenidas mediante los dos procedimientos antes mencionados.

Dado que la diferenciaa media | Mv(UBV) - Mv(MK) | obtenida a partir de 46 estrellas con determinaciones de Mv fotométricas y espectroscópicas resultó ser de 0.20 magnitudes, el cuerdo entre ambas determinaciones puede considerarse muy bueno.

La distancia al sol de cada estrella se determinó finalmente a partir de la conocida expresión que vincula la magnitud absoluta Mv, la magnitud aparente visual corregida Vo y la distancia r, a saber: $Mv = Vo + 5 - 5 \log r$

o bien

 $Vo - Mv = 5 \log r - 5$

(IV-12)

En virtud del buen acuerdo existente entre los excesos de color y las magnitudes absolutas determinadas fotométrica y espectroscópicamente, decidimos adoptar el promedio de las respectivas determinaciones. Para el caso particular de las estrellas supergigantes, A metálicas y objetos tardíos con tipos MK conocidos, se decidió adoptar el correspondiente valor espectroscópico.

Por otra parte, para las estrellas con clase de luminosidad II-III, se adoptaron directamente las magnitudes absolutas espectroscópicas.

En la Tabla IV-3 se presentan los colores intrínsecos, excesos de color, magnitudes absolutas y distancias finalmente adoptadas en este trabajo. Las Figuras IV-6 y IV-7 muestran los diagramas color-magnitud corregidos por los efectos de absorción interestelar, confeccionados con los datos de la Tabla IV-3.

IV.6 DISTRIBUCION ESPACIAL DE ESTRELLAS EN LA REGION.

En la Figura IV-8 se aprecia en forma general cómo se distribuyen espacialmente las estrellas (en su mayoría de tipos O, B y A tempranas) en función de los excesos de color E(B-V) adoptados; la escala superior es logarítmica y corresponde a la distancia expresada en parsecs. Debe hacerse notar que no se han incluido en este diagrama un total de 225 estrellas de tipos espectrales intermedios y tardíos, para las cuales no se detreminaron enrojecimientos y distancias, dados los objetivos específicos que se persiguen en el presente estudio. Si bien las estrellas tempranas observadas se ubican entre el sol y un máximo del orden de 4.5 kpc, existe una evidente concentración entre Vo-Mv = 11.5 y 13.0. Como veremos en el próximo capítulo, una buena parte de estas estrellas pertenecen a la Asocición Carina OB2.

La Figura IV-8 demuestra también que, tal como debería esperarse, los excesos E(B-V) tienden en general a aumentar con la distancia. Entre Vo-Mv = 11.5 y 13.0 aproximadamente, existe sin embargo una marcada variación del enrojecimiento interestelar. Esto es compatible, como se verá más adelante, con la presencia de nubes oscurecedoras, irregularmente distribuidas en la región de Carina OB2.

No.	VO	(BA)0	(U-B)0	E(BV)	E(U-B)	Αv
\$002	8,10	26	-1,04	. 53	.30	1.59
⊧ 003	12.70	····.11	28	. 37	.27	1.12
F004	11.07	20	69	. 42	.31	1.26
ŧ005	9.62	25	91	. 37	. 27	1.11
¥008	9,34	26	95	.39	. 29	1.16
¢010	12.08	15	,48	. 37	.28	1.12
012	13.08	13	37	.36	.27	1.08
\$015	10,46	-,22	-,78	. 42	.31	1.26
017	13.05	08	16	. 44	.33	1.33
\$019	11.67	06	-,05	.50	, 37	1.50
:021	8,30	27	-1.02	. 39	.29	1.18
1022	9.37	21	75	. 42	. 31	1.27
:024	13.89	06	····.04	. 34	.25	1.01
+026	12.66	08	···. 14	. 39	.29	1.17
027	12.65	-,13	37	.46	.34	1.38
\$028	12.74	11	29	. 34	.25	1.03
029	11.04	19	66	. 43	. 32	1,30
¢030	12.28	15	-,45	. 41	.30	1.23
031	12.62	10	22	.50	. 37	1.49
032	10.21	-,23	81	. 45	.33	1.34
033	12.35	13	36	. 41	.30	1.23
034	9.85	-,21	73	. 45	.33	1.35
035	11.26	17	- , 56	. 46	.34	1.39
036	12.66	12	33	, 43	.32	1.29
037	10.83	-,20	···.70	. 43	.32	1.30
038	10.38	-,24	87	. 42	. 31	1.26
039	11.87	-,17	56	. 46	.34	1.39
041	12.90	11	-,28	. 53	.40	1.59
045	10,91	17	57	.51	.38	1.54
046	12.94	10	21	. 45	.33	1.34
048	11.76		43	. 54	. 41	1.63
051	9,89	-,23	-,84	. 45	.34	1,36
052	11.73	-,12	, 34	.38	.28	1.15

TABLA IV-1

Determinación de Excesos de Color, Colores Intrínsecos y Asorción Interestelar Visual a partir de datos fotométricos

N 0	VO	(B…V)0	(U-B)0 E(E(B-V) E(U-B)		Av	
₽054	10.86	09	-,20	, 48	. 36	1.45	
1057	11,96	13	39	.36	.27	1.09	
ŧ058	11.94	17	,54	.37	.27	1.10	
1059	12.38	08	16	.52	. 39	1.57	
₽061	9,75	22	-,78	. 33	.24	, 99	
1062	12.29	08	16	. 45	.34	1.36	
ŧ064	12.34	07	09	, 37	.27	1.11	
ŧ065	12.34	07	,09	. 37	.27	1.11	
\$ 066	10.77	-,11	27	. 59	. 44	1.77	
\$067	12.43	,13	35	. 44	.32	1.31	
# 069	11.55	09	18	. 45	, 33	1,35	
1070	12.37	18	61	. 47	.35	1,42	
\$071	11.53	-,14	41	, 56	. 42	1.68	
\$072	12.75	09	17	.34	.25	1.01	
\$073	10.92	-,20	70	. 35	.26	1.06	
\$07 4	12.28	07	08	.24	.17	.71	
\$075	13.01	07	11	. 35	. 26	1.06	
\$080	12.27	10	-,23	.59	. 44	1.77	
ŧ082	12.57	07	-,08	. 44	.32	1.31	
\$084	13.01	15	45	.33	.24	. 99	
ŧ086	12.57	10	23	.52	.39	1.56	
\$087	12.60	····,09	20	.38	,28	1.15	
F088	12.94	···.07	11	. 30	.22	. 91	
089	8.28	27	-1.01	.34	.25	1.02	
¥091	10.97	21	72	. 37	.27	1.10	
\$094	12.89	,10	23	. 37	.27	1.11	
₽ 095	11.83	12	33	.62	. 47	1.86	
1096	10.89	12	31	.36	.26	1.07	
¥097	12.77	,10	-,22	. 33	.24	. 98	
\$098	13.13	···· , 04	.06	.36	.26	1.07	
ŧ099	12.17	···,08	16	. 39	.29	1.18	
101	12.12	06	-,06	. 42	. 31	1.27	
¢103	9,46	25	91	. 41	.30	1.23	
106	8.56	08	15	.16	.12	. 49	

No.	V0	(B-V)0	(U-B)0	E(B-V)	E(U-B)	Αv
#110	12.16	14	, 44	, 50	.38	1.51
#111	12.47	15	46	.50	.37	1.50
#112	11.64	17	57	. 43	.32	1.30
⊧ 113	10.87	13	37	. 57	. 43	1.71
#115	10.21	23	-,84	. 42	. 31	1.27
116	13.23	05	····.00	.38	.28	1.14
#117	10.74	22	77	. 38	.28	1.13
121	12.33	. 1 1	.74	.21	.15	. 62
#123	11.33	09	-,17	. 46	.34	1.37
#124	12.93	···· , 0 4	.05	.43	. 32	1.28
F 128	12.94	06	-,07	. 32	.24	. 97
¥129	11.24	19	···· , 66	.38	.28	1,15
⊧ 132	8.21	13	-, 39	. 37	.28	1.12
138	12.46	···.09	18	. 58	. 43	1.74
¥139	11.44	21	-,75	.40	,30	1.21
147	9,09	-,08	16	.09	.07	.28
¥151	12.12	09	21	. 59	. 45	1.78
156	12.40	07	-,10	.51	.38	1.53
\$167	11.39	-,06	05	. 48	, 36	1.44
174	11.62	13	38	.56	, 42	1.69
\$176	11.87	-,11	26	, 49	.36	1.46
:178	12.00	19	63	.51	, 38	1.52
\$179	12.09	17	-,53	.62	. 46	1.85
180	7.52	28	-1.07	. 47	.35	1.42
ŧ184	11.58	17	-,54	. 45	.33	1.34
185	12.07	09	17	.54	.40	1.61
ŧ186	10,00	18	59	.23	.17	. 68
187	11.78	···· , 0 9	19	.50	. 37	1.51
\$191	12,94	07	-,10	, 44	.33	1.32
193	6.09	-,28	-1.07	. 45	. 34	1.36
194	11.74	-,17	56	. 55	. 41	1.66
196	10.83	-,21		.43	.32	1.29
198	12.57	-,09	-,20	. 47	.35	1.42
199	10.76			45	77	1 725

No.	ŶŨ	(B…V)0	(U-B)0	E(B-V)	E(U-B)	Αv
202	11.52	17	54	. 45	. 33	1.34
203	11,44	07	08	. 47	.35	1.40
205	11.01	12	-,30	. 49	.36	1.46
209	10.45	.18	.10	.65	.15	1,95
210	11.86	08	-,13	. 56	. 42	1.67
211	12.76	10	21	12	-,09	37
212	10.39	19	-,64	. 42	. 31	1.26
213	10.34	19	63	. 49	.36	1,46
214	12.03	17	55	. 37	.27	1.11
215	12.65	,08	13	. 41	.30	1.23
216	10.09	31	-1,20	1.02	.79	3.06
218	12.14	06	06	. 45	.34	1.35
219	12.72	05	-,02	. 44	.33	1.33
223	12.72	-,08	15	.52	. 39	1.57
224	12.81	08	-,15	. 44	.33	1.33
225	12.76	08	····.14	. 48	.36	1.44
227	8,76	-,26	-,94	. 44	.32	1.31
228	11.36	16	, 49	. 43	.32	1.28
229	11.52	-,21	-,72	. 49	.36	1.46
230	12.42	13	, 37	. 48	.36	1.44
231	8.94	29	-1.08	.76	.57	2.27
233	11.30	05	.02	. 41	.30	1.22
234	11.47	-,20	-,67	. 55	. 41	1.64
235	9.10	-,24	89	.61	, 46	1.84
238	8.59	27	-1.00	. 68	.51	2.03
240	11.19	-,22	-,78	.63	. 47	1.89
243	9,44	26	-,96	. 68	. 51	2.04
244	9.78	25	91	. 64	, 48	1.91
245	8,87	-,25	- , 90	.73	, 55	2.18
246	8.58	27	1.00	.75	.57	2.24
248	6.88	-,29	-1.10	, 57	. 43	1.71
249	10.98	-,21	72	.63	. 47	1.88
251	12.52	17	54	.50		1.49
252	9.28	-,24		.52	. 39	1.57

No.	VO	(BA)0	(UB)0	E(B-V)	E(U-B)	Av
#253	11.86	17	57	. 52	. 39	1,57
#255	11.66	05		.54	. 40	1.62
#256	11.66	17	-,57	. 48	. 36	1,45
#261	10.83	.15	.10	. 22	.04	0.66
#262	11.80		12	. 49	.36	1,46
#263	12.79	-,12	33	.50	.37	1.51
4269	10.23	.08	.08	. 22	. 17	0.87
#270	13.01	10	23	. 47	.35	1.41
#273	11.58	12	34	.60	, 45	1.81
#274	11.48	19	64	. 41	.30	1.23
#275B1II-III	7.11	27	-,99	49	. 32	1.47
#276	9,92	23	- , 81	.59	. 44	1.76
#278	11,87	11	-,29	. 53	.40	1.60
# 286	12.52	-,06	-,05	. 41	.30	1.23
#287	11.76	12	-, 34	.52	.39	1.57
#288	10.23	-,22	76	. 37	. 27	1.10
#289	12.53	,09	20	.38	.28	1.15
#290	10.21	22		.35	.26	1.06
#291	12.74	05	.00	,52	. 39	1.56
#293	14.33	`01	.18	.00	.00	.00
+295	10,98	15	-,45	.64	.48	1,91
#297B1II-III	7.27	26		.38	.22	1.14
#298	12.65	-,17	-,55	. 42	.31	1.26
#299	12.63	06	 .05	.54	.40	1.62
#301	13.24	···,07	10	.36	.27	1,08
\$302	12.40	···· , 08	16	.58	. 44	1.75
#307	14.01	-,05	02	.08	.06	.25
\$3 08	13.03	-,08	13	. 45	. 33	1.35
#309	9,59	25	-,94	.37	.28	1.12
#312	11.91		43	. 45	.34	1.36
#313	12.03	-,13	36	. 47	.35	1.40
#314B1IIIII	6.47	26	···· , 99	. 44	. 36	1.32
‡ 318	12.40	07	10	, 42	.31	1.27
\$ 319	12.48	-,13	-,36	. 39	. 29	1.16

#326 1 #328 1 #330 #331 #333 1 #334B2II-III #335 1	1.19 2.79 9.54 8.98	21 06 31	72 05	, 39	. 29	1.16
#328 1 #330 #331 #333 1 #334B2II	2,79 9,54 8,98	06 31	05	70		
<pre>#330 #331 #333 1 #334B2IIIII #335 1</pre>	9.54 8.98 1.95	31			.28	1.14
#331 #333 1 #334B2II-III #335 1	8.98		-1.21	1.02	.79	3.06
#333 1 #334B2II III #335 1	1 05		86	. 38	.28	1.13
#334B2II111 #335		16	-, 52	.52	.39	1.57
#335 1	7.30	25	92	. 44	. 31	1.32
er var haf haf 🗛 🗛	0.92	23	83	, 44	.33	1.32
#340 1	1.59	13	37	.59	. 44	1.77
#342 1	2.16	15	-,44	. 42	. 31	1.25
#344 1	3.30	05	-,02	. 31	.23	.94
#346 1	3.48	07	-,08	. 26	.19	.77
#347 1	2.57	06	07	. 49	. 37	1.48
+348 1	3,09	,06	07	. 49	.36	1.47
#351 1	8.73	28	-1.03	.40	. 29	1.19
#352 1	2.56	08		. 44	.33	1.32
#353 1	1.65	07	08	, 33	.24	.98
+355 .1	1.56	16	51	.50	.37	1.50
#356	9.38	23		, 45	.34	1.36
#359 1	2.38	-,08	-,12	.38	.28	1.13
#364 1	1,49	18	62	.53	.40	1.60
#365 1	2.97	10	25	, 47	.35	1,42
#366 1	2.80	13	36	. 50	. 37	1.49
#367	9.51		-,15	.40	.30	1.20
#370 1	0.22	23		. 58	.43	1.73
#376 1	1.30	17	-,55	.64	. 48	1.92
#383 1	2.99	12	-, 32	. 38	.28	1.14
#388 1	2.32	16	-,50	, 47	.35	1.40
#389 1	2.87	10	-,22	.39	.29	1.16
#393	6.38	25	91	. 1 1	. 08	.33
#395 1	2.77	-,06	-,07	. 49	. 37	1.48
# 396 1	2.33	12	-, 32	. 35	. 26	1.05
#398 1	1.48	18	59	.35	.26	1.04
#399 1	1.44	17	~,55	. 39	.29	1.17

No.	¥0	(́B∀)0	(UB)0	E(B-V)	E(U-B)	Αv
#400	7,96	-,25	90	. 38	.28	1.13
#401	11,15	20	69	. 38	.28	1.14
#402	12.47	07	11	.40	.30	1.21
#403	12.27	15	-,44	, 34	.25	1.01
¥405	11,81	15	- , 45	. 39	.29	1.16
#406	12.63	08	-,16	.54	. 41	1.63
# 407	12.40	09	18	.51	, 38	1.53
#408	11.63	-,05	.01	, 42	. 31	1.25
#409	10.78	19	65	.34	.25	1.03
#410	12.77	-,05	.01	.35	.26	1.04
\$413	11.99	.1 1	28	. 32	.24	, 96
#416	12,32	07	09	. 42	.31	1.26
#417	11.45	05	02	, 45	.34	1.36
#418	12.82	-,05	.00	. 51	.38	1.53
≱ 420	12.00	,07	····. 11	. 49	. 37	1.48
#423	12.84		-,01	.35	.26	1.05
\$42 5	13.24	05	.00	. 31	.23	, 93
#427	12.39	-,07	08	, 49	.36	1.46
¥28	11.45		16	.32	.24	.97
#429	_ 12.34	08	12	. 57	. 42	1.70
#430	13.04	03	,10	.38	.28	1.13
#431	11.06	.15	.10	. 36	.00	1.08
¥432	11.19	-,06	···· 0 3	, 49	.36	1.46
#435	12.78	-,07	11	.51	.38	1.54
#436	13.01	-,06	-,05	. 39	. 29	1.17
#441	11.26	-,09	19	, .39	. 29	1.17
+ 442	11.31	08	16	. 48	.36	1.45
#445	11.54	09	17	.51	.38	1.52
#45 4	11,81	1 4	, 43	.58	. 44	1.75
#455	12,56	-,12	-,32	.51	.38	1.53
#4 56	12.39	12	33	.56	. 42	1.68
#458	11.75	-,06	-,03	.38	.28	1,13
#4 60	12.46	-,15		.50	, 37	1.50
#471	11.99	11	28	. 51	. 38	1.53
#473	9.76	-,25	~ ,90	. 49	.36	1.46
#474	11.70		07	. 28	.21	.85

TABLA IV-2

Valores de colores intrínsecos, excesos de color, absorción interestelar visual y magnitud Vo obtenidos a partir de de datos espectroscópicos

No	ТЕ	(B-V)o	(UB)o	E(B-V)	E(U-B)	Αv	٧o
1	в11ь	-0.20	0.99	0.44	0.37	1.32	6.41
2	B1.5Ve	-0.25	0,90	0.52	0.16	1.56	8.13
4	194V	-0.19	-0,65	0,41	0.27	1.23	11.10
5	B2.5V	-0.22	-0.78	0.34	0.14	1.02	9.71
6	A6IV-V	+0.18	+0.10	0.74	0.33	2.22	9.32
7	GOV:	+0,58	+0,06	0.01	0.14	0.03	10.52
8	B1V	-0.26	-0.95	0.39	0.29	1.17	9.33
13	GBIII	+0,94	+0.70	0.05	0.18	0.15	10.94
14	GOV	+0.58	+0.06	0.07	0.14	0.21	11.32
15	B3A	-0.20	-0.71	0.40	0.24	1.21	10.52
21	B1V	-0,26	-0.95	0.35	0.22	1.05	8.43
22	B2.5V	-0.22	-0.78	0.43	0.34	1.29	9.35
29	B5V	-0.17	-0.58	0.41	0.24	1.23	11.11
32	B3A	-0.20	-0.71	0.42	0.23	1.26	10.29
34	B4V	0.19	0.65	0.43	0.25	1.29	9.91
37	B3A	-0.20	-0.71	0.43	0.33	1.29	10.84
38	B3V	-0,20	0.71	0.38	0.15	1.14	10,49
51	B2V	-0.24	-0,84	0.46	0.34	1.38	9,87
53	B2V	-0.24	0.84	0.37	0.15	1.11	9.07
54	B9.5:V	-0.05	0.11	0.44	0.27	1.32	10.99
61	B2V	-0.24	-0.84	0.34	0.30	1.02	9.72
73	B2.5IV-V	-0.22	-0.81	0.37	0,35	1.11	10.95
76	F8V	+0.52	+0.02	0.05	0.18	0.15	12.08
79	K3V	+0.96	+0.80	0,03	0.34	0.09	11.85
81	Am(kA5,mAIII-IV)	+0.15	+8,10	0.04	0.01	0.12	11,68
83	Am(kA4, mABV)	+0.11	+0.09	0,08	0.01	0.24	12.04
89	BOV	-0.30	-1.08	0.37	0.32	1.11	8.19
91	B4V	-0.19	-0.65	0.35	0.20	1.05	10.95
96	B9II:	-0.07	-0.32	0.31	0.27	0.93	11.03
102	B1V	-0.26	-0.95				
103	B2V	-0.24	-0.84	0,40	0.23	1.20	9.49
106	B9.5V	-0.05	-0.11	0.13	0.08	0.39	8,66
115	B2.5IV	-0.22	-0.81	0.41	0.28	1.23	10.25
117	B3V	-0.20	-0.71	0.36	0.22	1.08	10.79

Tabla IV-2 (Cont.)

No	TE	(B-V)0	(UB) o	E(B-V)	E(U-B)	Αv	٧o
119	K2IUU	+0.91	+8.90	0.44	0.47	1.32	10.05
129	B3V	-0.20	-0.71	0.39	0.33	1.17	11.22
132	BSV	-0.11	-0.34	0,35	0.23	1.05	8.28
140	F8III	+0.54	+0.10	0.03	0.04	0.09	11.08
147	B9.5V	-0,05	-0.11	0.06	0.02	0.18	9.19
161	F6IV-V	+0.47	+0.00	0.06	0.01	0.18	11.53
175	K5:III	+1.50	+1.81	0,12	0.61	0.36	10.52
180	09.5V	-0.30	-1.10	0.49	0.38	1.47	7.47
183	F6V	+0,47	-0.01	0.10	0.13	0.30	11.76
186	B2,5;IV;	-0.22	-0.81	0.27	0,39	0,81	9.87
193	07V(f)n	-0.32	-1.15	0.49	0,42	1.47	5.98
195	K5:III:	+1.50	+1.81	0.00	0,00	0.00	11.79
196	B2V	-0.24	-0.84	0.46	0.42	1,38	10.74
199	B3A	-0,20	-0.71	0.43	0.27	1.29	10.82
209	AGIV	+0.18	+0.10	0.65	0.15	1.95	10.45
212	85Vp	-0.17	-0.58	0.40	0.25	1.20	10.45
213	B4V	-0.19	-0.65	0,49	0,38	1.47	10.33
227	B1V	-0.26	-0.95	0,44	0.33	1.32	8.75
235	B2Vn	-0.24	-0.84	0.61	0,41	1.83	9.11
238	B1V	-0.26	-0.95	0.67	0.46	2.01	8.61
241	G3V	+0.65	+0.15	0.06	0.19	0.18	11.49
243	B2IV	-0.24	-0.88	0.66	0.43	1.98	9.50
244	B1.5V	-0,25	-0.90	0.64	0.47	1.92	9.77
245	B1V	-0.26	-0.95	0.74	0.60	2.22	8,83
246	B0.5IV	-0.28	-1.03	0,76	0.60	2.28	8.54
248	087	-0.32	-1.14	0.47	0.60	1,18	7.41
252	B2.5V	-0.22	-0.78	0.50	0.28	1.50	9.04
258	KSIA	+1.04	+0.90	0.09	0,24	0.27	9.07
259	KOV	+0.81	+0.45	0.15	0.25	0.45	10.53
260	Am(kA2IV, mF6III-IV)	+0.05	+0,05	0.38	0.12	1.14	9,24
261	A5V	+0.15	+0.10	0.22	0,04	0.66	10.83
269	A3V	+0,08	+0,08	0.29	0,17	0.87	10.23
272	B3V	-0,20	0.71	0.74	0.79	2.22	11.50
275	BIII-III	-0.26	-0.99	0.49	0.32	1.47	7.11

Tabla IV-2 (Cont.)

No	TE	(B-V)o	(UB) o	E(B-V)	E(U-B)	Av	٧o
276	B1IV	-0.26	-0.95	0.62	0.58	1.86	9.82
284	BC1.5Iab	-0.18	0,97	0.42	0.31	1.26	5.29
288	B4V	-0,19	-0.65	0.34	0,16	1.02	10.28
290	B2.5IV	-0.22	-0.81	0,35	0.28	1.05	10.22
297	BIIIIII	-0.26	-0.99	0.38	0.22	1.14	7,27
304	AM(KA5V,MF3V)	+0.15	+0.10	0.17	0.03	0.51	9.77
306	AM(KA6V, MA2V)	+0.18	+0.10	0.04	0.00	0.12	8.93
309	B1V	-0.26	-0.95	0,38	0,29	1.14	9.57
314	BIIIIII	-0.26	0,99	0.44	0.36	1.32	6.47
320	F8V	+0.52	+0.02	0.06	0.03	0.18	12.20
323	F5:V:	+8.44	-0.02	0.07	0.06	0.21	10.63
324	KSIII	+1.16	+1.16	0.08	0.39	0.24	10.12
325	G2Ib	+0.86	+0.62	0.65	0.61	1,95	9.23
326	B6V	-0.15	-0.50	0,33	0.07	0.99	11.36
331	B2IVV	-0.24	-0,84	0.38	0.26	1.15	8,97
334	B2II-III	-0.24	-0,92	0.44	0.31	1.32	7.30
335	B1V	-0.26	-0.95	0.47	0.45	1.41	10.83
336	K2V	+0.91	+0.64	0.30	0,81	0.90	10.81
337	F8V	+0.52	+0.02	0.21	0.41	0.63	11.04
338	FBIV	+0.52	+0.02	0.06	0.13	0.18	11.19
351	B3IV	-0.21	-0.73	0.32	0.00	0.96	8.96
356	B1V	-0,26	-0.95	0.49	0.46	1.47	9.39
367	A1V	+0.01	+0,02	0.31	0.13	0.93	9,78
370	B4V	-0.19	-0.65	0.54	0.27	1.62	10.33
374	F8V	+0.52	+0.02	0.06	0.12	0.18	11.35
386	K5:III:	+1.50	+1.81	0.00	0.35	0.00	11.75
393	B2III(He-rich)	-0.24	-0.91	0.10	0.08	0.30	6.41
400	BZIII	-0.24	-0.91	0.37	0.29	1.11	7,98
401	B3V	-0.20	-0,71	0.38	0.30	1.14	11,15
409	B7Vp	-0.14	-0.43	0.29	0,03	0.87	10.94
431	ASV	+0.15	+0.10	0.36	0,00	1.08	11.06
470	K2:III:	+1.16	+1.16	0.11	0.37	0.33	7.18
472	Am(kA2,mF2IJI)	+0.05	+0.05	0.35	0.11	1.05	9.56
473	B1V	-0.26	-0.95	0.50	0.41	1.15	10.07

TABLA IV-3

Colores intrínsecos, excesos de color, magnitudes absolutas módulos de distancia y distancias individuales, para las estrellas en la región de Carina OB2.

No	Clase	TE	۷o	(B-V)0	(U-B)0	E(B-V)	Е(U-В)) AV	Mv	Vo-Mv	d (pc)
					164 6169 4984 - 184 8494 644 644 6				****		
									_		
001	M	BIID	6.41	20	···· • 99	, 44	.37 1	1.32	-5.70	12.11	2642
002	- M	BITOVE	9 8,10		-1.04	. 33	.30	1.37	4,00	12.10	2007
000	рм	10 AU	12,70		,28 	137	.27 1	1.12	-0,24	12.94	3873
00~	• •••	04V 02 EU	11.07		- 07	· 4 6	. <u>∠.</u> 7 . ∽+ +	1,20	····1.40	12,02	3172
000		D411	7,00		aa os	, JO 70	⊤‴i i ⊃o ·	1 1 1 1 2		10 50	2000
0.00	• m	DIV	10 00	- 15		1.07	י <i>בר</i> יי. סיס י	1 1 1 1		12.00	3201
010			17 09		······································	74.	27 -	1 NQ		17 67	5764
015	. 11191 	R .ZU	10 40			.00	28 1	1 27	-1 Q5	12 34	2938
010	' "' 7 D M	DUV	13.05		16	.44	.33	1.32	0.10	12.95	3890
019	, UW		11.67	06	05	.58	.37 1	1.50	0.30	11.37	1879
021	M	B1V	8.31	27		.39	.26	1.17	3,38	11.69	2178
022	DM.	82.5V	9.35	22	77	. 43	.33	1.29	-1.93	11.28	1803
024			13.89	06	04	.34	.25	1.01	0.30	13.59	5224
026	DM		12.66	08	14	.39	.29 1	1.17	0,10	12.56	3251
027	'pm		12.65	13	37	. 46	.34	1.38	-0.52	13.17	4305
028	M		12.75	11	-,29	. 34	.25 1	1.02	-0.24	12.99	3963
025	m	BSV	11.08	18	62	. 42	.28	1.26	-1.23	12.31	2897
030	M		12.28	-,15	- , 45	.41	.30 t	1.23	-0.80	13.08	4130
031	рм		12.62	10	-,22	.50	.37 1	1.49	0.10	12.72	3499
032	M	B3A	10.23	22	76	. 44	.28 1	1.32	-1.98	12.21	2767
032	m		12.35	-,13	36	. 41	.30	1.23	-0.52	12.87	3750
034	nm	B4V	9.88	20	69	, 44	.29 1	1.32	-1.58	11.46	1959
035	im		11.26	17	- , 56	, 46	,34)	1.39	-1,08	12.34	2938
036	M		12.66	12	33	. 43	,32 1	1.29	-0.38	13,04	4055
037	' M	B3V	10.84	20	71	. 43	.33 1	1.29	1.60	12.44	3076
038	M	B3A	10.44	-,22	-,76	. 40	.23 1	1.20	-2.10	12.54	3221
039	' M		11.875	17	56	.46	.34 1	1.39	-1.08	12.95	3890
041	рм		12.90	11	28	.53	.40 1	1.59	-0.24	13.14	4246
043	рм		12.47	08	-,12	.63	, 47 1	1.89	0.10	12.57	3266
045	рм		10.91	17	57	.51	.38 1	1.54	-1.08	11.99	2500
046	рм		12.94	,10	21	, 45	.33 1	1.34	0.10	13.04	4055
048	рм		11.76	,14	43	. 54	.41 1	.63	-0.66	12,42	3048
	stal Side terms state dataset	-									

TABLA IV-3 (Conti)

N N

					** **** **** **** **** **** ****			•• •••• ••• ••• ••• •••			
No	Clas	se TE	٧o	(BA)0	(U-B)0	E(B-V)	E(U-1	8) AV	Μv	Vo-Mv	d (pc)
051	m	B5A	9.87	24		. 46	, 34	1.38	-2,38	12.25	2818
052	្ពាក	RPU	9.04	-,12	····. 34 ····. 91	.38	.28	1.15	-2.75	12.11	2642
054	nm	89.5V	10.93	07	16	,46	.32	1.38	0.20	10.73	1400
052	M		11,97	13	- 54	- 37	27	1.08		12,47	37999
059	n M		12.38	08	16	.52	.39	1.57	0,10	12.28	2858
061	M	B2V	9.72	-,23	81	.34	.27	1.02	-2,25	11.97	2477
062	በሰ		12.29	08	16	. 45	.34	1.36	0.10	12.19	2742
064	пм		12,34	07	09	. 37	.27	1.11	0.20	12.14	2679
060	nm		12.34	07	···· U 9	.37	.27	1,11	0.20	12,14	2679
000	- NM - M		12 42		- 75	.57	144 XO	1.72	-0.52	12.94	3873
በሐማ	ក		11.55	09	18	. 45	.33	1.35	0.00	11.55	2042
070	пm		12.37	-, 18	61	. 47	.35	1,42	-1.22	13.56	5152
071	ทศ		11.53	14	-,41	.56	.42	1.68	0.66	12.19	2742
072	рм		12.75	09	17	. 34	.25	1.01	0.00	12.75	3548
073	m 1	82.5IV-	V10.98	21	74	.36	.28	1.08	-2.14	13,12	4207
074	በМ		12.28	07	08	.24	.17	.71	0.20	12.08	2606
075	рм		13.01	···· 07	···· 11	. <u>3</u> 0	.20	1,06	0,20	12.81	
080	n m	A	12.27	···.10	,23 10	י שא ה א	,44	1.77		⊥డుత∕ ల≡ం	<u>ፈን/ን</u> 001
001	1171	HM	12 57			.04 AA	30	1 77.1	0 20	12 77	02.4 0070
083	n M	Ам	12.04	.11	.09	.08	.01	.24	1.90	11.30	1820
084	пm		13.01	15	45	.33	.24	.99	-0.80	10.14	1067
086	рм		12.57	-,10	-,23	.52	.39	1.56	0.10	12.67	3420
087	рм		12.60	09	20	. 38	.28	1.15	0.00	12.60	3311
088	рм		12.94	-,07	- 11	.30	.22	.91	0.20	12.74	3532
089	м	BOV	8.22	29	-1.05	. 36	.29	1.08	-3.68	11,90	2399
091	М	B4V	10.92	20	69	.36	.24	1.08	-1.58	12,50	3162
074	рм		12.89	10		- 37	127	1.11	0.10	12,99	3763
070 Nga		ROTT	11 07	12 07		- 0 Z - 31	.4/	07,100	3310 3310	12.21 7 97	2/0/
070	1111	1. 2 L L I	11100	. 07	1 10 6	1.42.8	t faa f	120		7 1 7 53	4) CJ 4J

-

No	Clase TE	Vo	(B-V)0	(UB)0	E(B-V)	E(U-B) AV	Μv	Vo-Mu	d (pc)
097	' pM	12.77	10 04	22	.33	.24	,98 1,07	-0.10	12.87	3750 3357
099	" nm	12.17	08	16	.39	.29	1.18	0,10	12.07	2594
101	ПМ	12.12	06	06	, 42	. 31	1.27	0.30	11.82	2312
103	M B2V	9.46	-,25	, 88	. 41	. 27	1.23	-2.63	12.09	2618
106	nm B9.5V	8.60	07	13	.15	.10	, 45	0.25	8.35	468
110	M	12.17	14	,44	.50	, 38	1.50	0,66	12.83	3681
111	м	12.47	15		.50	.37	1.50	0.80	13.27	4508
112	M	11.65	17	57	. 43	.32	1.29	-1.08	12.73	3518
113		10.87	13	37	.57	.43	1.71	-0.52	11.37	1877
115	W 85.21A	10.22	-,23		, 42	.30	1,20	-2,40	12.07	342U 3401
116	рм 1970	13.23	00	···· , U U	, 38 777	. <u>2</u> 0	1.14	U,4U 	12.00	3001
11/	M 153V	10,70	, <u>2</u> 1 1	./ዓ		15	1 1 1 6 2	1 40	10 85	1479
107	11m 5 m	11 77		·/~+ 117	ι (). Δ. f.,	74	1 12.	0 0 0	11 777	1845
124		12.93		. 05	. 43	.32	1.28	0.50	12.43	3062
129		12.94	- 06	07	.32	.24	.97	0.30	12.64	3373
1/29	M BRU	11.22	20	69	.39	.31	1.17	-1.53	12.75	3548
132		8.25	12	37	.36	.26	1.08	-0.36	8.61	527
138	100 mm	12,46	09	-,18	.58	, 43	1.74	0.00	12,46	3105
139	' M	11.45	21	75	. 40	.30	1.20	-1.75	13.20	4365
147	' nm 89.5V	9.13	07		.08	.05	.24	0.25	8.88	597
151	ព្រក	12.12	09	21	.59	. 45	1.78	0.00	12.12	2655
156	nm.	12.40		10	.51	.38	1.53	0.20	12.20	2754
167	nM	11.39	06	05	, 48	, 36	1.44	0.30	11.09	1652
174	nm	11.62	13		, 56	. 42	1.69	-0.52	12.14	2679
176	nm	11.87	-,11	-,26	. 49	.36	1.46	-0.24	12.11	2642
178	рм	12.00	19	63	.51	.38	1.52	1.36	13.36	4699
179	nm	13.94	17	53	.62	. 46	1.85	-1.08	15.02	10093
180	M 09.5V	7.50	29	-1.09	.48	.37	1.44	3,98	11.48	1977
184	M	11.57	17	-,54	. 45	.33	1.35	-1.08	12.65	3388
185	пм	12.07		17	.54	, 40	1.61	0.00	12.07	2594
186	pm B2.5IV	10.00	-,18	5%	.23	.17	. 68	-1,94	11.94	2443
			** **** **** **** **** ****							

No	Clas	se TE	٧o	(B-V)0	(U-B)0	E(BV)	E(U-B)) AV	Μv	Vo-Mv	d (pc)
187	กท		11.78	09	19	.50	. 37 1	.51	0.00	11.78	2270
191	рм		12.94	07	10	, 44	.33 1	1.32	0.20	12.74	3532
193	M ()7V(f)n	6.04	30	-1.11	. 47	.38 1	. 41	-5,50	11.54	2032
194	M		11.75	17	56	.55	,41 1	1.66	1.08	12.83	3681
196	M	B20	10.77	-,23	79	. 45	.37 1	.35	-2.13	12.90	3802
198	рм	¥	12.57	09	20	, 47	, 3D) 70 1	1.42	0.00	12.57	3266
199	M	830	10,79	-,21	,74 EA	. 44	.30 1	1.5Z	-1.80	12.64	3373
202	M			···· , 1 /		- 40 A17	പാര പ	1,30		12.07	0670
200	11 11		11,44	······································	~~,U8	.4/	100 J	しょ40	U. <i>c</i> U 010	11.04	1667
200 നനയ	пм •		10 45	···· , / <u>/ /</u>	10	100 25	146 J	05	~ 0,10	0 41	1007
207	11 M		10,40	- 10		100 56	10 1 10 1	1 67	0 10	11 74	2249
210			100			100	, "YZ J "X 1 1	- '07 - '04	-0.10	12 84	スワスス
ແມ່ ວາວ	1111	10511a	10 42			. 41	28 1	1 27	1 44	11.88	2377
212	pri ne	τράθ	10, 77			49	777 1	47	-1.38	11.71	1828
210	μn	X.1 -4 4	12 03	17		.37	.27 1	1.11	-1.08	13.11	4188
215	n M		12.65	08	13	. 41	.30 1	23	0.10	12.55	3236
214	pn nw		10 09		-1.20	1.02	.79 3	3.06	4.00	14.09	6577
219	- 11 M		12.14	06	. 06	45	.34 1	.35	0.30	11.84	2333
219	nM		12.72	05	02	.44	.33 1	1.33	0.40	12.32	2911
223	nM		12.72	08	- 15	.52	.39 1	.57	0.10	12.62	3342
224	n M		12.81	08	15	.44	.33 1	.33	0.10	12.71	3483
225	יייק חאת		12.76	08	14	. 48	.36 1	. 44	0.10	12.66	3404
227	'м	R1V	8.75	26		.44	.33 1	1.32	-3.25	12.00	2512
228	M		11.35	16	49	. 43	.32 1	.29	-0.94	12,29	2871
229	m		11.51	21	72	. 49	.36 1	1.47	1.75	13.26	4487
230	M		12.42	13	37	. 48	.36 1	. 44	-0.52	12.94	3873
231	М		8.93	29	-1.08	.76	.57 2	2.28	-3.75	12.68	3436
233	пм		11.30	05	, 02	. 41	.30 t	. 22	0.40	10,90	1514
234	м		11.46	-,20	67	.55	. 41 1	l.65	-1,50	12.96	3908
235	M	B2Vn	9.11	24	87	, 61	.44 1	.83	-2.50	11.61	2099
238	m	B1V	8,58	27	98	.68	.49 2	2.04	-3,38	11,96	2466
240	м		11.19	22	78	. 63	. 47 1	.89	-2.00	13.19	4345
	**** **** ****		10 , 11 , 11, 11, 11, 11, 11, 11, 11, 11, 11,			424 00 00 4010 0000 0 0 00 0000 0000					

I
No	Cla	se TE	٧o	(B…V)0	(UB)0	E(B-V)	E(UE	AV (Μv	Vo-Mu	d (pc)
243	M	B2IV	9,47		92	. 67	. 47	2.01		12.58	3281
244	м	B1.5V	9.77	25		.64	. 48	1.92	-2.88	12.65	3388
245	м	B1V	8.83	-,26	93	.74	. 58	2.22	-3.13	11.96	2466
246	м	B0.5IV	8.54	28	-1.02	.76	.59	2.28	4.19	12.73	3516
248	M	087	6.82	31	-1.12	.59	. 45	1.77	-4.48	11.30	1820
249	m		10,97	-,21	72	.63	. 47	1.87	-1.75	12.72	3499
251	កក		12.52	17	54	. 50	. 37	1.49	-1.08	13.60	5248
252	m	B2.5V	9.31	23	84	.51	. 34	1.53	-2.30	11.61	2099
253	M		11.87	17	57	. 52	. 39	1.56	-1.08	12.95	3890
255	nм		11.66	05	00	.54	,40	1.62	0.40	11.26	1786
256	M		11.67	17	57	, 48	. 36	1.44	-1,08	12.75	3548
260	nм	Am	9.24	.05	. 05	. 38	,12	1.14	2.96	6.28	180
261	пм	A5V	10.83	.15	.10	.22	.04	0.66	1.80	9.03	640
262	пм		11.80	-,08	12	. 49	. 36	1.46	0.10	11.70	2188
263	рм		12.79	12		.50	. 37	1.51	-0.38	13.17	4305
267	ពក	A3V	10.23	. បម	. 08	.22	. 17	0.87	1.30	8,93	611
270	рм		13.01	10	, 23	. 47	. <u>3</u> 0	1.41	0,10	13.11	4188
273	пм		11.58	12	····, 34	. 60	.45	1.81		11.96	2466
274	M		11.48	19		,41	. 30	1,23	-1.50	12.84	3678
2/0	m i	3177		-, <i>21</i>	··· ,		,ನ⊄ ೯/	1.07	4,70	11,83	<i>డచడచ</i>
2/0	M 	BIIA	7,80 11 07	-,20		- 61 57	. ວິຍ 	1.83		12,93	- 3800 04 40
20A	៣ភា	D+ 51.4	11,07		·····	. 0.0	.40 	1.00			2042 0070
204	<u>п</u>	DI JIAI	19 59			• * • **	່ວ່າ ການ	1 27		10 00	2002 9700
200			11 72			·***	ະພິບ "70	1 620		10 10	22 C U 2 C 2 C U
207	1111	RAU	10 22		······································	- C.F.C. - 78 A	- 37 - 99	1 00		14 00	2077 2721
280	л. М. М.	1.1.4 V	12 57	- 09		70	2Q	1 15	0 00	10 57	ፈግዱ 1 ፕጋበሌ
201	M N	82 STU	10 22	- 22		75	- <u>2</u> .0	1 05	ער ביייי	10 55	3076
291	пм	1. C. I G.I. V	12.74		00	50	70	1 54	0 40	12 74	00.00 00.00
293	nm		14.33	.03 	.18	. <u>0</u> .0	.00	. 00	0 20	13 57	2730 5080
295	nm		10.98	15	45	.64	48	1.91	-0.80	11 79	2280
297	m F	3111-111	7.24			.30	22	1.17	-4.75	11.99	2500
298	nm	454 654 6	12.65	17	55	.42	31	1.26	-1,08	13.73	5572

No	Clas	se TE	Vo	(B-V)0	(U-B)0	E(B-V)	E(U-B)	AV	Mυ	VoMv	d (pc)
299	рм		12.63	06	05	, 54	.40 1	. 62	0.30	12.33	2924
301	рм		13.24	07		.36	.27 1	.08	0.20	13.04	4055
302	пM		12.40	-,08	16	.58	.44 1	.75	0.10	12.30	2884
304	пм	Am	9.77	.15	.10	.17	.03	. 51	2.10	7.67	342
306	nm	AM	8,93	.18	.10	.04	.00	.12	2.20	6.73	222
307	пм		14.01	05	-,02	.08	,06	.25	0.40	13.61	5272
308	рм		13.03	08	13	. 45	.33 1	.35	0.10	12.93	3855
309	M	B1V	9.57	26	95	.38	.29 1	. 14	3.13	12.70	3467
312	M		11.92		43	. 45	.34 1	.35	-0.66	12.58	3281
313	рм		12.03	13		, 47	.35 1	.40	-0.52	12.55	3236
314	Mb	3131-113	1 6 47	-,26		, 44	,36 1	.32	-4.75	11.22	1754
318	пм		12.40	07	····, 10	. 42	.31 1	.27	0.20	12.20	2704
319	M	T : ())	12.47	13	····. 36	. 39	.29 1	.17	-0.59	13.08	4093
320	M	BOV	11.27	-,18	/2	130 70	·ZY 1	.08.		12.50	3311
ು ಜಿಟ ಸಾರ	рм		12.77	UB		. 38	.28 l	.14	0,30	12.47	5148
330	ПM	THE THE IS	9,04 0 07	···	-1.21 OF	1.02	·/ሃ ብ ግግ ተ	4 4	4.00	13.04	0710 0710
ວວມ 	M	B53100	0,7/ 11 0/	····, 24	80	.00	<i>₁≝/</i> 1 70 1	114 EZ	-2,80	13 00	2000
- 333 - 777 A	м т		11.70	-,10	JZ	102 AF	,.3⊻ l -74 4	100	~~U, 74	1.22,70	1705
334	M L	1.1	10 04	-, <u>2</u> 0		140	ະວະ 1 "ແຕ່ 1	ເລສ ໝາຍ		17 74	1770
333	pm = ii	610	11 60	ີ, <u>ເ</u> ເບີ 1.77	····,07	.40	107 L 88 1	100 1919	····	10./4	0070 9649
340	nm		11.07	····· 1.5		. 37	,44 1. -774 1	- 1/		10.05	2004 2000
346	ריז 		17 70	-,10	······································	·***	າວາ 1 ອາສ	1 ACO - CD A		12,70	307U 3003
344	μm		17 10				・だい 10	ידיי, רירי	0,40	17 20	000 <i>2</i>
340	p m		10,40		····, 0 O	40	יג7 יזגיי •	· / /	0,20	10,00	ግሀ <u>ሮ</u> 7 ግር/ለ
371/ 77/0	1161		172 010	~~,UC ~~ 06	···· 07	· ** 7 	ג זכיי וי גדיגד	·*+0	0,30	10 70	2044
340	μn nw		11 77			, 44 AQ	100 I 776 1	100		11 07	001 m 0877
751	301 301	R3TU	R 84			74	າວວີ 1 "Xn 1	ነ ማ / በ ወ		11 94	2466
352	nm	A	12 54	- 08	- 14	44	, גע גע 1	, vo	0,12	12 46	3106
353	р., п.м.		11.65	07	 	.33	.24	.98	0,20	11.45	1950
355	M		11.56	16		.50	.37 1	.50	0.94	12.50	3162
356	m	B1V	9,45	-,25		. 47	.41 1	. 41	-2.88	12.33	2924
359	nm		12.38	08	12	.38	.28 1	.13	0.10	12.28	2858
						• ••• •••	• ••••• •••				

No	Clase	e TE	٧o	(B-V)0	(U-B)0	E(B-V)	E(U-B) AV	Mu	Vo-Mv	d (pc)
364 365	m pm		11.50 12.97	18 10	62 25	. 53 . 47	. 40 . 35	1.59	-1.22 -0.10	12.72 13.07	3499 4111
366 367	рм пм	A1V	12,80 9,63	-,13 -,04	36 15	.50 .36	.37 .30	1.49 1.08	-0.52 0.65	13.32 8.98	4613 625
370	M DM	B4V	10.27 11.30	21 17	-,73 -,55	, 56 , 64	.35 .48	1.68	-1,83 -1,08	12,10 12,38	2630 2992
383	рм		12.99	12	- 32	.38	.28	1.14	-0.38	13.37	4721
389	рм		12.87	10	22	. 39	. 29	1.16	-0.10	12.97	3926
390 391	рм рм		12.55	10 09	21 20	.62 .60	, 46 , 45	1.85 1.81	0.10 0.00	12.65 12.42	3388 3048
393	ПМ ПМ		6.38	25 - 06	91 07	.11	.08	.33	-2.75	9,13 12,47	670 3119
396	M		12.33	12	-132	.35	. 26	1.05	-0.38	12.71	3483
378 379	M M		11.47	18 17	57 55	.30 .39	.26 .29	1.05	-1.22 -1.08	12.71 12.52	3483 3192
400	M M	B2III B3V	7,95	25 20	91 70	.38 .38	. 29 . 29	1.14	-3.83 -1.60	11,78 12,75	2270 3548
402	p M M		12.47	07	···· , 1 1 ···· 44	,40 34	.30	1.21	0.20	12.27	2844
405	M		11.80	15	- 45	.39	.29	1.16	-0.80	12.60	3311
406	рм рм		12.63	08 09	16 18	.54 .51	,41 ,38	1,63 1,53	0.10 0.00	$12.53 \\ 11.63$	3206 2118
408	nm M	R7Un	11.63	05 17	.01 65	, 42	. 31	1.25	0.40 1.11	11.23	1762 2466
410	nm		12,77	05	.01	.35	.26	1.04	0,40	12.37	2979
415	កក កក		12.32	07	-,09	، مد 42	. 31	1.26	0.20	12,23	2655
417 418	пм рм		11.45 12.82	05 05	02 .00	,45 ,51	.34 .38	1,36 1,53	0.40 0.40	11.05 12.42	1622 3048
420	nm		12.00	07	···· , 11	. 49	37	1.05	0.20	11.80	2291
425	рм		13.24	05	.00	.31	.23	.93	0,40	11.80	3698
	• *** **** • • • • • • • •					•• •••• ••••					

No	Clase	TE	Vo	(BV)0	(UB)0	E(B-V)	E (U)	B) AV	Μv	Vo-Mv	d (pc)
	*** **** **** ***					***					
427	nM		12.39	07	08	. 49	.36	1.46	0.20	12.19	2742
428	пм		11.45	-,08	16	. 32	.24	. 97	0.10	11.35	1862
429	nm		12.34	-,08	12	. 57	. 42	1.70	0.10	12.24	2805
430	рм		13,04	03	.10	. 38	.28	1.13	0.60	12.44	3076
431	nM		11.06	, 15	.10	. 36	.00	1.08	1.80	9.26	711
432	nm		11.19	06	03	. 49	. 36	1,46	0.30	10.89	1507
435	рм		12.78	07	11	.51	.38	1.54	0.20	12.58	3281
436	рм		13.01	-,06	05	. 39	. 29	1.17	0.30	12.71	3483
441	nm		11.26	-,09	19	. 39	. 29	1.17	0.00	11.26	1786
442	۳m		11.31	08	16	. 48	.36	1.45	0.10	11.21	1746
445	nM		11,54	09	17	. 51	. 38	1.52	0,00	11.54	2032
454	pm		11.81	···. 14	43	. 58	, 44	1.75	0.66	12.47	3119
455	, pm		12.56	12	32	.51	.38	1.53	-0.38	12.94	3873
456	pm		12.39	12	-,33	.56	. 42	1.68	0,38	12.77	3581
458	пм		11.75	06	03	.38	.28	1.13	0.30	11.45	1950
460	DM		12.46	15	46	.50	.37	1,50	0.80	13.26	4487
471	pm		11.99	11	28	.51	.38	1.53	-0.24	12.23	2793
473	M	BSA	9,72	26	93	.50	.39	1.50	-3.13	12.85	3715
474	nM		11.70	06	07	. 28	.21	.85	0,30	11.40	1905

Figura IV-1.

Figura IV-2

Figura IV-3

Figura IV-4

Figura IV-5

Figura IV-6

Figura IV-7

E (B-1)

Bibliografia correspondiente al Capitulo IV.

- Clariá, J.J. 1977, Astron. & Astrophys. Suppl. 27, 145.
- Corbally, C.J. y Garrison, R.F. 1983, en The MK Process and Stellar Classification, R.F. Garrison (Ed.) D.D.O. University of Toronto, Canada.
- Crawford, D.L. y Mandewala, N. 1976, Publ. Astron. Soc. Pacif. 88, 917.
- Deutschmann, W.A., Davis, R.J. y Schild, R.E. 1976, Astrophys. J. Suppl. 30, 97.
- Fitzgerald, P.M. 1970, Astron. & Astrophys. 9, 224.
- Georgelin, Y.P. y Georgelin, Y.M 1970, Astron. & Astrophys. 7, 133.
- Gutierrez-Moreno, A. 1979, Publ. Astron. Soc. Pacif. 91, 299.
- Heintze, J.R.W. 1973, IAU Symp. No 54, E.B. Hauck y B.E. Westerlund (Eds.) Reidel Publ. Co.
- Hiltner, y Johnson, H.L. 1956, Astrophys. J. 124, 367.
- Johnson, H.L. 1963, Stars and Stellar Systems, Basical Astronomical Data. p. 214.
- Mermillod, J.C. 1981, Astron. & Astrophys. 97, 235.
- Nandy, K. 1969, Publ. Roy. Obs. Edinburgh, Vol 6, No 7.
- Schmidt-Kaler, Th. 1965, Landolt Bornstein, Numerical Data and Funcional Relationships in Science and Technology, Group VI. H. Voigt (Ed.), p. 202.
- Schmidt-Kaler, Th. 1982, Landolt Bornstein, Numerical Data and Funtional Relationships in Science and Technology, New Series, Group VI, Vol.2: Astronomy and Astrophysics K. Schaifers y H.H. Voigt (Eds.), p.

Whitford, A.E. 1958, Astron. J. 63, 201.

CAPITULO V.

LA ASOCIACION CARINA OB2: ANALISIS Y DISCUSION DE LOS DATOS OBSERVACIONALES.

V.1 INTRODUCCION.

Tal como sugiriera Seggewiss en la década del 60, la asociación Carina OB2 no se presenta como un agregado típico, con un elevado porcentaje de estrellas muy luminosas, sino como una verdadera transición a estrellas B algo más tardías.

En el presente capítulo intentaremos segregar los posibles miembros del grupo, determinar la distancia que nos separa de la asociación y estimar su edad. Asimismo, procuraremos determinar la función de luminosidad y la razón entre la absorción total y selectiva en la región de la asociación. Finalmente, se llevará a cabo un tratamiento estadístico de las velocidades radiales medidas, se determinarán órbitas de algunas estrellas cuyas velocidades radiales resultaron variables, se estimará la velocidad baricentral del agregado y se discutirá la ubicación de Carina OB2 en la correlación entre el porcentaje de binarias de corto período y la rotación axial proyectada.

V.2 ANALISIS Y DISCUSION DE LOS DATOS.

V.2.1 Selección de miembros de Carina OB2.

En el Capítulo anterior, al describir los diagramas UBV observados en la región, se mencionó la posible existencia de un grupo de estrellas aparentemente homogéneo en lo que respecta a la edad y distancias al sol de sus miembros. Este agregado parece estar representado por la envolvente izquierda de los puntos de los diagramas correspondientes a las figuras IV-6 a IV-7. Dicha envolvente presenta un recorrido aproximadamente paralelo a la secuencia principal de edad cero. En la región superior de los diagramas color-magnitud se ubican varias estrellas muy tempranas de alta luminosidad cuyas distancias individuales son llamativamente comparables. Existen pocas dudas de que este grupo de estrellas muy luminosas, distribuidas dentro de un área relativamente pequeña de aproximadmente 0.6 grados cuadrados, forma parte de Carina OB2.

En la mísma región se ubican otras estrellas tempranas de menor luminosidad cuyas distancias individuales no parecen diferir mayormente las del grupo anterior. A los efectos de discriminar posibles de miembros de Car OB2 de estrellas pertenecientes al campo galáctico, supuesto que cada miembro de la asociación debe verificar hemos básicamente dos condiciones, a saber: (1) su ubicación en 105 diferentes diagramas UBV, corregidos por absorción interestelar, debe aproximadamente al mismo estado corresponder evolutivo en la asociación. (2) Dicho estado debe ser enteramente compatible con el tipo MK asignado a la estrella.

Varios factores contribuyen a aumentar efectivamente la dispersión en los diagramas UBV. Entre ellos podemos mencionar la presencia de sistemas dobles y múltiples, la rotación estelar, efectos evolutivos, los errores derivados de las correcciones por enrojecimiento y absorción interestelar y aquellos involucrados en la determinación de las magnitudes aparentes, si bien estos últimos son despreciables respecto de los demás. De allí que una estrella de secuencia ubicada aproximadamente 0.5 magnitudes por encima de la misma en el diagrama Vo-(B-V)o es considerada miembro, siempre y cuando verifique los dos criterios antes mencionados. Dado que la duplicidad no puede aumentar el brillo aprente de las estrellas más de 0.75 magnitudes, en el peor de los casos, estrellas ubicadas entre 0.5 y 0.75 magnitudes por encima de la secuencia principal son en principio probables miembros.

Un total de 91 estrellas O y B fueron finalmente consideradas miembros de Carina OB2, en tanto que otras 66 fueron retenidas como probables miembros. Es importante notar que, con excepción de tres estrellas, todos los miembros con V (12.6 (52 en total) poseen tipos espectrales MK determinados en este estudio. Su condición de miembro, en consecuencia, se apoya sobre una base más firme. Entre los miembros se reconocen dos estrellas supergigantes tempranas, tres estrellas de tipo D (una con característica "f") y doce gigantes o subgigantes de tipo B.

V.2.2 Diagramas UBV de Carina OB2 corregidos por absorción interestelar.

Los excesos de color, colores intrínsecos y magnitudes absolutas de los miembros y probables miembros de la asociación han sido determinados a partir de los datos fotométricos y espectroscópicos disponibles, siguiendo los procedimientos descriptos en el capítulo anterior.

Las estrellas HD 96248 y HD 96261, clasificadas como B1.5Iab y B1Ib, respectivamente, son muy probablemente las únicas supergigantes de Car OB2. Los excesos de color y las magnitudes absolutas de estas estrellas fueron inferidas directamente de sus tipos MK. De igual manera, para las estrellas 275, 297, 314 y 334, clasificadas las tres primeras como B1II-III y como B2II-III las estrella No 334, se adoptaron las magnitudes absolutas espectroscópicas. En la Tabla V-1 se encuentran indicados los valores finalmente adoptados de los excesos de color, colores intrínsecos, magnitudes absolutas y módulos aparentes y verdaderos de distancias, de los miembros y probables miembros de la Asociación Carina OB2.

Haciendo uso de los datos que figuran en la Tabla V-1 se confeccionaron los diagramas UBV de Carina OB2, corregidos por los efectos de enrojecimiento y absorción interestelar. Las figuras V-1, V-2 y V-3, representan los diagramas color-color y color-magnitud corregidos de los miembros (círculos llenos) y probables miembros (círculos abiertos) de la asociación. En las dos últimas figuras se ha indicado con líneas de trazos la secuencia principal de edad cero, correspondiente al módulo de distancia Vo-Mv=12.43, adoptado para Carina OB2. Sobre la margen derecha de estas figuras se presenta la escala correspondiente a la magnitud absoluta, ajustada al valor del módulo de distancia adoptado.

Los efectos evolutivos de los miembros de la asociación son claramente visibles en la Figura V-3, a partir del índice (U-B)o=-0.9. Dichos efectos se aprecian también en la figura V-4, obtenida a partir de datos puramente espectroscópicos. La Línea de trazos en dicha figura, representa la secuencia de Corbally y Garrison (1983), ajustada al módulo de distancia Vo-Mv=12.25 determinado espectroscópicamente. Debe notarse que el módulo de distancia Vo-Mv=12.43 finalmente adoptado, desplaza hacia abajo la secuencia de Corbally y Garrison en 0.18 magnitudes.

V.2.3 Determinación de la razón entre la absorción total y la selectiva en la Asociación Carina OB2: Método de extinción variable.

La razón entre la absorción interestelar total y selectiva R=Av/E(B-V) es de fundamental importancia para la determinación de distancias en nuestra Galaxia. Dado que no disponemos aón de paralajes trigonométricas de estrellas OB enrojecidas, esta razón ha tenido que ser hasta ahora determinada por métodos indirectos. Entre otros, han sido usados procedimientos que incluyen estudios espectrofotométricos (Schultz y Wiemer, 1975), estudios cinemáticos de objetos jóvenes (Bell, 1971; Bell y Fitzgerald, 1971), extinción en dos colores de nebulosas oscuras (Schalén, 1975), diámetros de cómulos abiertos (Harris, 1973), y el método de extinción variable (Fernie y Marlborough, 1963; Herbst, 1974, 1975, 1976; Turner, 1976; Turner y Moffat, 1980). Este óltimo presenta la ventaja de ser su aplicación muy simple y de suministrar valores de R para regiones localizadas del espacio.

Durante muchos años se han aceptado para R valores típicos que oscilan entre 3.0 (Sharpless, 1963) y 3.3 (Aanestad y Purcell, 1973). El problema de si existen apreciables variaciones de R en ciertas regiones del cielo, ha sido largamente discutido en la literatura. En efecto, sobre este problema pueden verse, entre otros, los estudios realizados por Johnson (1965, 1968), Fernie y Hube (1968), Garrison (1970), Turner (1973, 1974), Moffat (1974), Feinstein y otros (1973), Herbst (1976), Forte (1978), Smidt (1987), Drissent y otros (1987) y Tapia y otros (1988).

En principio, R no varía sistemáticamente con la longitud galáctica, o en todo caso estas variaciones, si existen, son pequeñas (Turner, 1976). Por el contrario, hay varias regiones localizadas que incluyen estrellas OB, generalmente asociadas con alto oscurecimiento y marcada ionización, en las cuales las observaciones sugieren una ley de extinción anormal (R>4). Estos resultados son aparentemente compatibles con la presunción de que en la vecindad de estrellas OB muy luminosas, la ley de extinción podría ser peculiar debido a la influencia sobre los granos de polvo del intenso campo de radiación (Johnson y Borgman, 1963).

En el caso particular del Complejo de Carina, la naturaleza de la extinción interestelar ha sido examinada por varios autores. Por un lado, Rodgers y Searle (1967) han mostrado que en las proximidades del centro de la nebulosa de Carina (Tr 14-16, Cr228), R tiene un valor significativamente mayor que el normal. Un estudio exhaustivo realizado por Turner y Moffat (1980), sin embargo, parece mostrar que R no puede ser muy distinto de 3.2 en esta región.

Por otra parte, de los estudios de Herbst (1975) y Forte (1978) se desprende que en las regiones centrales de las asociaciones Car R1 y Car OB1, la razón entre la absorción total y selectiva es verdaderamente anómala (R)4.3). Un resultado similar obtuvo Turner (1973) al aplicar el método de extinción variable en la región del cómulo IC 2581. Cinco años más tarde, sin embargo, Turner (1978) derivó una ley normal para este cómulo.

Recientemente, Tapia y otros (1988) a partir de observaciones infrarrojas y polarimétricas determinaron que la ley de extinción es realmente anómala en la region de NGC 3372, con valores medios de R entre 3.2 y 4.6.

Determinaremos en la presente investigación si la ley de extinción en la región de la asociación estelar Car OB2 es o no anómala. Esto es particularmente importante por dos razones: (1) Para comprobar si las propiedades ópticas del material interestelar en esta región difieren o no de la tendencia general reconocida en la Galaxia. (2) Para determinar correctamente la distancia al sol de Car OB2 y discutir su vinculación a los cómulos y regiones HII de la región.

El método de extinción variable ha sido descripto por Johnson (1968). El principio fundamental sobre el que se basa es que, para un grupo de estrellas ubicadas a una misma distancia r del sol y afectadas por diferentes cantidades de enrojecimiento interestelar, debería existir la siguiente correlación lineal entre los módulos individuales de distancia aparentes y los excesos de color E(B-V):

$$V-Mv = 5 \log r/10 + R.E(B-V).$$
 (V-1)

La pendiente de la recta representada por la ecuación (V-1) es precisamente R.

La gran ventaja que presenta este método es la simplicidad con que puede ser aplicado a cómulos abiertos y asociaciones. Sin embargo, para que los resultados sean confiables es necesario que se respeten las dos hipótesis básicas sobre las que se fundamenta el método, a saber: (1) Que las estrellas del agregado en cuestión sean realmente miembros físicos del mismo; la inclusión de estrellas del campo puede conducir a sobreestimar seriamente el valor de R (Becker, 1966; Moffat, 1974). (2) Que los objetos considerados estén realmente a la misma distancia del Sol.

OB2 constituye un campo propicio para Carina aplicar este procedimiento por varias razones. En primer lugar, una inspección de la región en placas del ESO Sky Survey demuestra la presencia de nebulosidades oscuras y de emisión, irregularmente distribuidas en el área de la asociación. Esto permite suponer la posible existencia de enrojecimiento diferencial. En segundo lugar, la separación entre miembros y estrellas del campo se vió facilitada por la elevada cantidad de datos fotométricos y espectroscópicos Finalmente, tal como se verá en la siguiente sección, obtenidos. Car OB2 se encuentra a una distancia apreciable (~ 3 kpc.) y, por lo tanto, pequeñas diferencias reales en las distancias individuales de los miembros no tienen mayor incidencia en el análisis de la extinción lo tanto, variable.

Tal como se aprecia en la Tabla V-1, el enrojecimiento diferencial presente en la región es elevado ($\Delta E(B-V) = 0.451$, lo que hace aún más intergesante la aplicación del método de extinción variable.

En la Figura V-5 se ilustra cómo varían los módulos aparentes de distancia en función de los excesos E(B-V) de los miembros y probables miembros de Carina OB2. Un ajuste de estos datos por el método de mínimos cuadrados conduce a un valor de R = 2.9 ± 0.5 y a una distancia r = 3100 ± 724 kpc. Si dicho ajuste se lleva a cabo usando sólo los miembros con tipos MK conocidos, se obtiene R = 3.0 y r = 2.7 kpc. En conclusión, las presentes observaciones fotométricas y espectroscópicas en la región de Car OB2 no sugieren ningún tipo de anomalía en la ley de extinción interestelar.

Un efecto que habría que considerar en el cálculo anterior es la posibilidad de que exista una dispersión real en las distancias individuales de los miembros. Si éste es el caso, al derivar la ecuación (V-1) con respecto a E(B-V), suponiendo R constante, resulta:

$$d(V-Mv)/dE(B-V) = R + 5 r^{-1} \log_{0} e[dr/dE(B-V)] \qquad (V-2)$$

Suponiendo, por simplicidad, que el material interestelar está uniformemente distribuido entre los miembros de la asociación, de manera que r = q.E(B-V) siendo q una constante, resulta:

La aplicación del método de extinción variable, en este caso, conduce a sobreestimar el valor de R en la cantidad:

$$\Delta R = 5 \langle r \rangle^{-1} q \log_{10} e , \qquad (V-4)$$

siendo(r) la distancia media de los miembros de la asociación.

Si no existe una distribución uniforme del material interestelar, pero admitimos la validez de la expresión r = q.E(B-V), siendo q un parámetro variable, es fácil mostrar que el método de extinción variable sobreestimará R en la cantidad:

$$\Delta R = (Idq/dE(B-V)) \cdot E(B-V) + q) - 5 r^{-1} \log_{10} e. \qquad (V-5)$$

En uno y otro caso, sin embargo, es importante notar que R es inversamente proporcional a r, de manera que este efecto, si realmente existe, no puede ser importante dada la apreciable distancia (r = 3.1kpc) a la que se encuentra la asociación.

En conclusión, si los miembros de Car OB2 están a la misma distancia del Sol, la aplicación del método de extinción variable demuestra que la razón entre la absorción total y selectiva es normal en la región (R=3.0). Si, por el contrario, r no es constante y cambia con E(B-V), linealmente o no, entonces el valor de R puede ser incluso levemente menor que 3.0. En ambos casos, sin embargo, lo importante es que R no supera el valor normal.

Los resultados obtenidos y la discusión presentada en esta sección han sido recientemente publicados por García y otros (1988a).

V.2.4 Distancia al sol de Carina OB2.

La distancia de Carina OB2 fue determinada de tres maneras

diferentes. Una primera determinación se llevó a cabo a partir de los módulos individuales de distancia consignados en la Tabla V-1. Este procedimiento lleva implícita la hipótesis de que R = Av/E(B-V) = 3.0 es normal en la región, la cual no parece ser mayormente cuestionable en virtud de lo expresado en la sección anterior.

El módulo de distancia promedio de los 91 miembros reconocidos en este estudio resultó (Vo-Mv)1 = 12.46±0.51 equivalente a una distancia r = 3105±736 pc. Este valor prácticamente no se modifica si se incluyen en el promedio los 66 probables miembros (r = 3250±740).

Una estima de los errores porcentual y absoluto en la estimación de la distancia puede realizarse a partir de la clásica ecuación de propagación de errores, usando la siguiente expresión formulada por Clariá (1974):

$$S_{\mu} = [S_{\nu}^{2} + 9.0 S_{B-V}^{2} + 9.0 S_{B-V}^{2} + E^{2}(B-V) S_{R}^{2} + S_{Mv}^{2}]^{1/2} (V-6)$$

en la cual S μ es la desviación standard en la función μ = Vo-Mv y Sv, S(B-V) y S(Mv) representan las correspondientes desviaciones standard en las cantidades involucradas.

Los valores Sv y S(B-V) promediados para todas las estrellas no superan las dos centésimas de magnitud, en tanto que el valor medio de las diferencias entre los colores (B-V)o derivados a partir de datos fotométricos y espectroscópicos, es de una centésima de magnitud. Adoptaremos, por lo tanto, S(V)= S(B-V) = 0.02 y S(B-V)o = 0.01. Si consideramos que S(Mv) está representada por el acuerdo interno entre las magnitudes absolutas fotométricas y espectroscópicas, entonces S(Mv) = 0.2. Por último, si adoptamos para S(R) el valor obtenido en la sección anterior (0.5), resulta:

$$S_{\mu} = [0.045 + 0.25 E^{2}(B-V)]^{1/2}$$
 (V-7)

Tal como mostraremos más adelante, el exceso E(B-V) medio de los miembros de la asociación es 0.45, lo que implica S μ = 0.31. Ahora bien, expresando la distancia r en términos de μ en forma:

$$\log r = 1 + \frac{\nu}{5}$$
 (V-8)

y derivando ambos miembros, resulta:

$$Sr = \frac{10^{(1+\frac{1}{2})}}{5M}$$
 S_{μ} , $(V-9)$

en la cual Sr representa el error en la distancia y M = 0.4342... es el módulo de transformación de logaritmos neperianos a decimales. El error porcentual en la distancia se define entonces como:

$$e^{\chi}(r) = \frac{100 \text{ Sr}}{d} = \frac{100 \text{ Sw}}{5\text{M}}, \qquad (V-10)$$

Dado que S|W| = 0.31, el error porcentual en la estimación de la distancia de la asociación a partir de los módulos individuales de distancia de sus miembros resulta ser del 14%, equivalente a un error absoluto de 429 pc a la distancia adoptada para el grupo. Conviene notar que si se hubiera obtenido un valor tan grande como S(R)=1.0, el error porcentual hubiera resultado levemente superior al 20%.

Una segunda estimación de la distancia, independiente de la anterior, puede realizarse a partir de las magnitudes absolutas espectroscópicas de sus miembros. Si para dicha determinación se usan las magnitudes absolutas espectroscópicas de todos los miembros con tipos MK conocidos, el valor medio del módulo de distancia es Vo-Mv= 12.17 ± 0.49 . Si, como es más razonable, seleccionamos de la muestra sólo aquellas estrellas simples, con espectros normales sobre la secuencia y velocidades radiales conocidas (40 en total), el módulo de distancia espectroscópico es (Vo-Mv)2 = 12.25 ± 0.48 . Dicho módulo es compatible, dentro del error antes calculado, con el obtenido a partir de los módulos individuales de los 91 miembros de la asociación.

Finalmente, una tercera determinación de la distancia puede hacerse utilizando los datos listados de la Tabla V-1 y la curva de desviación standard media por efectos de evolución propuesta por Lindoff (1968). Un ajuste vertical de la curva de la Figura V-6 corresponde a un módulo de distancia (Vo-Mv)3 = 12.75, aunque con una imprecisión apreciable.

El valor del módulo de distancia adoptado es el promedio pesado de las tres determinaciones anteriores, esto es:

 $V_0 - M_V = 12.43 \pm 0.21$,

equivalente a una distancia $r = (3060 \pm 300)$ pc. Al efectuar dicho promedio, hemos asignado doble peso a los dos primeros métodos respecto del tercero. El valor adoptado prácticamente no modifica el inferido en forma preliminar por García y otros (1988a).

V.2.5 Estimación de la edad de la asociación.

Estimar la edad de una asociación no es de ninguna manera una tarea sencilla. El procedimiento tradicionalmente seguido consiste en ajustar isocronas teóricas a la distribución de estrellas observadas en el o los diagramas color-magnitud (ver, por ejemplo, Stothers 1972). Tal como ha sido puntualizado por Doom y otros (1984), sin embargo, resulta casi siempre imposible ajustar una única isocrona a todas las estrellas del grupo, áun permitiendo una dispersión apreciable.

Muchas de las determinaciones de edades de asociaciones y cúmulos muy jóvenes se basan en la posición del punto terminal de la secuencia principal en el diagrama color-magnitud Vo versus (B-V)o.

Hace aproximadamente 30 años Sandage (1957) mostro que la edad T de un agregado podía estimarse a partir de la bien conocida expresión:

$$T = 1.1 \times 10^{10} \frac{m}{L}$$
 (V-11)

en la cual \mathcal{N} y L representan la masa y luminosidad (ambas en unidades solares) del punto de desvío de la secuencia principal.

Si bien la expresión anterior es sólo aproximada, permite todavía hoy estimar la edad de una asociación en la cual pueda reconocerse el punto terminal de la secuencia principal. En el caso particular del Carina OB2, la estrella No. 193 (HD 96670), clasificada en este trabajo como O7V(f)n, aparenta ser el objeto más temprano perteneciente a la secuencia principal. La magnitud absoluta visual adoptada para esta estrella es Mv= -5.20; su correspondiente corrección bolométrica es -3.12 y, por lo tanto, la magnitud absoluta bolométrica es Mb =-8.32. La masa (en unidades de la masa del sol) correspondiente a este objeto puede inferirse de la siguiente relación empírica, formulada por McCluskey y Kondo (1972),

en tanto que la luminosidad (en términos de la luminosidad solar) puede obtenerse de la clásica relación:

Mb - Mbe = -2.5 Log L/Le (V-13)

Si adoptamos Mbe = 4.75 (Allen 1973), las expresiones (V-12) y (V-13) implican para la estrella 193: $\mathcal{M}/\mathcal{M}_{O}$ = 22.6 y L/Le = 169044. Usando estos valores y la expresión (V-11) resulta entonces pra Carina OB2 una edad del orden de 2 x 10° años. Si se rehacen todos los cálculos para la estrella 248 (HD 96638, OBV), el objeto más azul perteneciente a la secuencia principal, la edad resulta del orden de los 3 x 10° años.

Con posterioridad al trabajo de Sandage (1957) varios parámetros de edad han sido propuestos, entre otros, por Lindoff (1968) y Harris (1976). El primero de estos autores define un parámetro de edad Γ aplicable a agregados en un amplio rango de edad. Para el caso de agregdos muy jovenes, sin embargo, la relación entre Γ y log T no suele ser siempre biunívoca. Harris (1976), por su parte, define un parámetro A₁₂ basado en las dos estrellas más brillantes sobre la secuencia principal, aplicable sólo a cómulos más jovenes que las Hyades. El significado de A $_{12}$ no es siempre claro ya que combina índices (U-B)o provenientes de datos fotométricos y espectroscópicos, los cuales pueden diferir en algunas décimas de magnitud o varias subclases espectrales, respectivamente. En ocasiones, como en el caso del cómulo NGC 2516, cuando una de las dos estrellas es un "blue straggler", el parámetro A₁₂ pierde completamente su significado.

No obstante las restricciones mencionadas precedentemente, decidimos estimar la edad de Carina OB2 en base a los métodos antes mencionados. En primer lugar, efectuamos una determinación empleando las istoronas de Lindoff (1968). A partir de estas curvas es posible realizar un doble ajuste, horizontal y vertical (Fig. V-6). Del ajuste vertical pudo estimarse la distancia al agregado, problema discutido en el punto anterior, en tanto que del ajuste horizontal se desprende que Carina OB2 debe tener una edad ligeramente menor que 5 x 10⁶ años. Este valor presenta un excelente acuerdo con el obtenido a partir del parámetro A₁₂ de Harris (~4 x 10⁶ años).

Feinstein y otros (1973) aplicaron el método de Lindoff para estimar la edad de los cómulos abiertos Tr14 y Tr 16, ubicados en la región de la asociación Carina OB1. La edad obtenida por ellos para estos agregados (3 x 10⁶ años), es llamativamente comparable a la estimada para Car OB2 por el mismo método.

Más recientemente Mermillod (1981a), a partir de una cuidadosa inspección de diagramas color-magnitud compuestos de cúmulos pertenecientes a diferentes "grupos de edad", pudo mostrar que el mejor parámetro de edad es, sin lugar a dudas, el punto más azul sobre la secuencia principal del diagrama Mv versus (U-B)o (ver Fig. 2 de Mermillod). En verdad, este criterio ha sido antes aplicado por Stothers (1972), ya que el punto "e" de la Fig. 1 de este último trabajo representa el parámetro de edad antes mencionado. La Tabla 7 de Mermillod (1981a) demuestra claramente que el índice (U-B)o es significativamente más sensible a la edad que (B-V)o.

La gran ventaja que presenta el índice (U-B)o más azul sobre la secuencia principal, radica en la sencillez con que este parámetro puede ser determinado empíricamente. Por otra parte, los posibles efectos debidos a la presencia de sistemas dobles o múltiples prácticamente no influyen, en virtud de que las secuencias evolucionadas en los diagramas Mv versus (U-B)o se disponen en forma casi perpendicular a las absisas.

Mermillod (1981a) calibró este parámetro en función de Log T, usando los modelos evolutivos de Maeder y Mermillod (1981) en los cuales se incluye el efecto de "overshooting". La calibración fue hecha para nueve grupos de edad distintos, con valores de (U-B)o mayores que 0.0 y menores o iguales que -0.80. Los grupos fueron tratados como un todo, no habiéndose intentado en ningún caso efectuar estimaciones individuales de edad en los cúmulos. La calibración finalmente obtenida se presenta en forma gráfica en la Fig. 6 de Mermillod (1981a).

Si se comparan los diagramas Mv versus (U-B)o y Mv versus (B-V)o de Car OB2 (Figs. V-2 y V-3) con los correspondientes a los diferentes grupos de edad definidos por Mermillod (1981b), se advierte una notable similitud entre Carina OB2 y el grupo de edad representado por el cómulo NGC 6231. puntos de desvío de la secuencia principal correspondiente a este grupo son: (B-V)o = -0.32 y (U-B)o = -1.11, muy similares a los de la estrella 248 (O8V) de Car OB2. Las Figs. V-7 y V-8 son reproducciones de los diagramas Mv/(B-V)o y Mv/(U-B)o publicados por Mermillod (1981b) para el grupo de edad representado por NGC 6231. La similitud con los correspondientes diagramas de Car OB2 resulta evidente.

Si bien el índice (U-B)o más azul sobre la secuencia principal de la asociación queda fuera de la calibración de Mermillod, lo expresado más arriba permite asignar a Car OB2 una edad similar a la del cómulo abierto NGC 6231, o bien NGC 2264, ya que este último pertenece al mismo grupo de edad. La mayoría de los autores asignan a NGC 6231 una edad del orden de los 5 x 10⁶ años (ver, por ejemplo, Harris 1976). Esta es también la edad más recientemente obtenida para NGC 2264 (Sagar y Joshi 1983). Dado que en este último cómulo hay evidencias de que el proceso de formación de estrellas continúa, el valor de 5 x 10⁶ años puede tomarse quizás como un límite superior a la edad del agregado y, en consecuencia, también como un límite superior a la edad de Carina OB2.

V.2.6 Función de luminosidad.

La pertenencia de las estrellas a la asociación a partir de la apariencia del diagrama color magnitud es algo que deber considerarse cuidadosamente. Maeder (1974) mostró que pueden simularse secuencias si incluimos estrellas ubicadas a distintas distancias del sol. Sin embargo, estas "falsas" secuencias presentan una función de luminosidad constante.

El trabajo fotométrico que hemos encarado, incluye, como ya mencionamos, un total de 475 estrellas presentes en la zona delineada en las Cartas V, VI, VII y VIII. Nuestra fotometría tiene por magnitud límite V ℓ = 14.5 en la región. Teniendo en cuenta la magnitud límite, podemos trazar la curva de completitud en el diagrama E(B-V) vs.Vo a partir de la expresión V ℓ -RE(B-V), en la cual V ℓ representa la magnitud límite. Dicha curva de completitud puede observarse en la figura V-9, en la misma sólo se han incluído las estrellas miembros o probables miembros del agregado (un total de 154 estrellas).

Si existiera una distribución uniforme de los excesos de color de los miembros y probables miembros de Carina OB2 en torno al valor medio E(B-V) = 0.45, el número de estrellas con excesos de color por encima y por debajo de este valor debería coincidir, al menos para los miembros más brillantes que M_V = 0.0, los que fueron utilizados para determinar el exceso de color medio.

La Figura V-9 muestra que 88 estrellas se encuentran en el intervalo de excesos 0.0 < E(B-V) < 0.45, mientras que 66 estrellas tienen enrojecimientos que exceden este último valor. Esto nos permite suponer que las 22 estrellas faltantes con excesos mayores que 0.45, no han sido observadas por encontrarse por debajo de la magnitud límite. Ests estrellas fueron por lo tanto agregadas en el cálculo de la función luminosidad para el rango de magnitudes absolutas 0 < Mv < 1, donde la completitud no puede ser asegurada.

En la Tabla V-2, se muestran los valores utilizados en el cálculo de la función de luminosidad relativa, graficada en la figura V-10. Las barras horizontales representan la dispersión en magnitud, mientras que las verticales el error en el conteo de estrellas. En la misma figura se han graficado a de la función de luminosidad obtenidos por Juan Carlos Forte (1978) para los cúmulos abiertos Tr 14, Tr 16 y Cr 228, pertenecientes a la asociación Carina OB1. La función de luminosidad de Carina OB2 presenta la misma pendiente que la función de luminosidad inicial derivada por Salpeter (1955) y la función de luminosidad de los cúmulos jóvenes pertenecientes a Carina OB1.

VI.2.7 Función de masa.

La tasa de formación estelar y también la función de masa inicial (proporción en la que se forman las estrellas de distintas masas), son ingredientes fundamentales para el estudio de la evolución galáctica.

La función de masa inicial es definida frecuentemente como la cantidad $dN/d \stackrel{m}{(N)}$, que resulta ser la tasa de formación estelar por unidad de masa, pero más frecuentemente se sigue la definición propuesta por Salpeter (1955):

$$r \psi(\mathfrak{M}) = d\dot{N}(\mathfrak{M})/d \ln \mathfrak{M} = \mathfrak{M} d\dot{N}(\mathfrak{M})/d \mathfrak{M} \qquad (V-14)$$

Usualmente se trata de ajustar la función inicial de masa mediante una ley de potencia, al menos en un determinado rango de masas estelares y la ecuación de Salpeter se presenta de la forma

$$\psi(m) \propto m^{-\alpha}$$
 (V-15)

La cantidad \propto es llamada "pendiente".

La determinación directa de la función de masa requiere observaciones de estrellas de todas las masas, incluyendo los objetos de baja luminosidad de masas pequeñas.

Los cúmulos y asociaciones estelares resultan particularmente ótiles para la determinación de la función de masa, puesto que se piensa que todos los miembros se han formado aproximadamente al mismo tiempo.

La función de masa $\Psi(\mathcal{N})$, es decir el número relativo de estrellas formadas en un rango unitario de masas, centrado en una determinada masa \mathcal{M} , fue calculada para 153 estrellas miembros y probables miembros de Carina OB2. Los resultados se presentan en la Tabla V-3.

Fue posible derivar una pendiente ≪ =-1.8, en acuerdo con los resultados publicados por Lequeux (1980), quien completó un análisis de funciones de masa para varios cúmulos abiertos y asociaciones; este autor concluyó que, en general, para asociaciones OB una pendiente ≪ entre -1.4 y -2.3 es esperable dentro de un rango amplio de masas consideradas.

La función de masa relativa se encuentra graficada en la Figura V-11.

VI.2.8 Distribución de los excesos de color.

Resulta de interés examinar la posibilidad de que la distribución de los excesos de color de los miembros de la asociación, tenga alguna relación con la localización de las estrellas en la zona. En la Figura V-12 se ha graficado el exceso de color E(B-V) de cada estrella miembro y probable miembro del agregado, en función del módulo verdadero de distancia. El enrojecimiento medio resultante para las estrellas miembro de Carina OB2 es:

 $E(B-V) = 0.45 \pm 0.10$,

y al igual que la distancia, este valor prácticamente no se altera si se consideran también los probables miembros.

En las Figuras V-13 y V-14 se muestra cómo se distribuyen los excesos de color E(B-V) de los miembros y probables miembros de Carina

OB2, respectivamente. La línea de trazos en ambas figuras, corresponde a la ubicación aproximada del paralelo galáctico b=+0°.4. Cada círculo en la figuras, corresponde a la ubicación de un miembro (figura V-13) o probable miembro (figura V-14), en el plano (α , ζ). El tamaño de cada círculo ha sido dibujado proporcionalmente al exceso de color correspondiente. Resulta evidente en ambos diagramas la presencia de enrojecimiento diferencial en la región. La variación general de los excesos demuestra laa existencia de nubes oscurecedoras distribuidas en forma irregular en el área ocupada por la asociación.

Una atención especial merece un grupo de 11 estrellas tempranas, altamente enrojecidas, ubicadas en la porción este de Carina OB2 (ver Carta VII). Este conjunto de estrellas, denominado "grupo c" por Seggewiss (1970), está integrado por las estrellas Nos. 231, 235, 238, 240, 243, 244, 245, 246, 249, 370 y 376, de acuerdo a la numeración de Seggewiss. El enrojecimiento medio calculado para estos objetos es $E(B-V) = 0.66 \pm 0.07$. No obstante este elevado valor, estos objetos no parecen constituir un grupo separado y más alejado de Carina OB2, tal como sido sugerido por Seggewiss. En efecto, el módulo verdadero de distancia inferido para el grupo es Vo-Mv = 12.46 \pm 0.48, equivalente a una distancia de 3.1 kpc, prácticamente idéntica a la adoptada para la asociación. Parecen pues existir pocas dudas de que estos miembros de Carina OB2, se encuentran inmersos en una nube de polvo, responsable del elevado enrojecimiento observado.

V.2.9 Tratamiento estadístico de las velocidades radiales.

Se efectuó un análisis estadístico de la variación de la velocidad radial, según la propuesta de Conti, Garmanny y Hutchings (1977), para chequear las variaciones interlínea e interplaca, de las estrellas en la región de Car OB2. En dicho análisis hemos seguido los lineamientos detallados por Morrell en su Tesis Doctoral (1984), por lo cual, en el presente trabajo describiremos el problema brevemente.

Abt y Smith (1969) detallan el método por el cual, a partir del cociente entre errores externos e internos, puede detectarse la variabilidad en las velocidades radiales medidas. El error externo surge de la dispersión entre placas, mientras que el interno se calcula a partir de la desviación standard (o error probable) del promedio de todas las líneas consideradas en una determinada placa.

El error medio es característico del equipo empleado, del ancho del espectro, de la calidad y número de líneas empleadas y del procedimiento de medida.

Luego de un extenso trabajo de comparación de distintos espectros con distintas dispersiones y ensanchamientos, Abt y Smith estudiaron de qué manera inciden los errores en la determinación de las velocidades radiales; la relación entre el error externo y el interno resulta aproximadamente = 2 para estrellas con velocidad radial constante. Numerosas investigaciones sobre binarias espectroscópicas han adoptado como criterio de variabilidad de la velocidad radial, que el cociente E/I no supere el valor límite igual a 2.

Conti y otros (1977) encuentran que el criterio E/I es un caso particular dentro de un análisis estadístico general, que emplea la distribucion F de Snedecor (test F).

El test F consiste en comparar la varianza dentro de distintos grupos con la varianza de la media de los mismos grupos.

Se considera el cociente entre la desviación media de los promedios de grupos y la desviación media de los individuos. Dicho cociente, para grupos tomados de la misma población normal, sigue la distribución designada como F por Snedecor y descubierta por Fisher y Yates (1938).

Si el cociente supera el valor tabulado de F, podemos pensar que todos los grupos no provienen de la misma población, esto es, que la velocidad radial de la estrella es variable.

A cada valor de F, o cociente de varianzas, se le puede atribuir un nivel de significación, que se expresa porcentualmente y que es la probabilidad de encontrar entre 100 experiencias realizadas con una población que sigue la ley de distribucion normal, una en la cual el cociente de varianzas sea igual que quel que se desprende de los datos.

Para computar el valor de F, se aplica la fórmula:

$$F(k-1, \sum_{i} ni-k) = \sum_{\substack{i=1, \\ i = j = i}}^{k} ni (yi - \overline{y})^{2} / (k-1)^{2}$$
(V-16)
$$\sum_{i=1, j=i}^{k} \sum_{\substack{i=1, \\ i=j = i}}^{j} (yij - \overline{y}i) / (\sum_{i=1, j=i}^{k} ni - k)$$

en la cual k es el número de placas, ni el número de líneas medidas en cada placa, yij el valor individual de la línea j en la placa i, \overline{y} i el promedio de una placa e \overline{y} es el gran promedio, efectuado sobre todas las líneas de todas las placas.

El test F puede usarse para buscar variaciones de velocidad radial entre placas o bien para buscar variciones línea a línea. Bohannan y Garmany (1978) lo utilizaron para estudiar vientos estelares en estrellas O.

La gran ventaja de la elección del test F de análisis de varianza, respecto del E/I, radica en la elección de un único nivel de significación, independiente del número de placas y de líneas medidas, que debe ser elegido, a partir del material observacional con que se cuenta, empíricamente.

Para establecer cuál sería el nivel de significación en el valor calculado de F para el cual podemos suponer que los distintos grupos no provienen de la misma población, hemos adoptado el criterio establecido por Nidia Morrell (1983) luego de numerosas simulaciones numéricas de observaciones de estrellas con distintos períodos y semiamplitudes (variables) y de estrellas con velocidades radiales constantes.

Dichas simulaciones fueron realizadas utilizando un material análogo al que se presenta en este trabajo. Por lo tanto, el criterio adoptado acá, es el siguiente:

para		р	く 1%	 VR	variable	
para	1% <	p •	< 5%	 VR	probablemente	variable
para	5% <	p <	< 10%	 VR	probablemente	constante
para		p y	> 10%	 VR	constante	

donde p es el nivel de significación.

Para los niveles de significación en el análisis de varianza, hemos consultado las tablas de Merrington, Maxine y Thompson (1943) y las de Snedecor (1953).

La Tabla V-4 presenta los resultados del análisis de varianza. Las sucesivas columnas presentan: número de identificación de la estrella, velocidad radial promedio (VR), número de placas obtenidas para cada estrella, error probable externo de las observaciones (E), error probable interno (I), cociente de los errores (E/I), nivel de significación interplaca, nivel de significación interlínea, y las conclusiones.

Debemos hacer notar que estos resultados son preliminares y que el hecho de obtener una velocidad radial constante sólo significa que, partiendo de nuestros datos, no nos es posible detectar variación alguna. Tal como mencionara N. Morrell en su Tesis doctoral, no estamos en condiciones de detectar amplitudes menores que 25 km/seg, ni períodos mayores que 15 días.

De las velocidades medias presentes en la segunda columna de la Tabla V-4, fue posible obtener los siguientes valores de la velocidad baricentral del agregado:

< VR >	= (-27	±	2)	km∕seg	con los 26 miembros del grupo.
< VR >	= (-25	±	5)	km∕seg	considerando miembros y probables miembros del agregado.
< VR >	= (-23	<u>.</u>	2)	km∕seg	utilizando las velocidades de las 9 estrellas miembros con VR constante.

De los valores presentados se desprende que la velocidad baricentral del agregado es del orden de -25 ± 2 km/seg.

V.2.10 Obtención de orbitas preliminares.

Para aquellas estrellas cuyas velocidades radiales resultaron variables, intentamos determinar los parámetros orbitales correspondientes. Para concretar este trabajo tuvimos en cuenta, además de nuestras medidas, los valores publicados en el catálogo de velociddes radiales de Abt y Biggs (1972) y en la extensión de Barbier (1983).

Como puede suponerse, muy pocos objetos pertenecientes a la asociación tenían velocidades radiaales publicadas y de los valores existentes en la literatura sólo empleamos aquellos que estuvieran en el sistema de Lick.

De las velocidades encontradas, descartamos las publicadas por Martin (1964), en virtud de que las mismas fueron medidas sobre placas obtenidas con prisma objetivo y no presentaban corrección al sistema de Lick.

La búsqueda de probables períodos se efectuó empleando el programa propuesto por Morbey (1978) y, para los cálculos de órbitas, el programa publicado por Bertiau y Grobben (1969).

No intentamos ninguna determinación en aquellos casos con niveles de significación inferiores al 0.1 %, ni en los que mostraban velocidad constante, aunque la presencia de probables líneas dobles indicara estar ante una SB2 no resuelta.

Ninguna de las estrellas presentes en la muestra cuenta con órbita publicada previamente y por lo tanto no figuran en el Séptimo Catálogo de Elementos Orbitales de Batten y otros (1978). Por lo dicho, según la nomenclatura introducida por este último autor, nuestras órbitas serían de una calidad, tal vez, inferior que las de tipo "c".

En la Tabla V-5 se presentan los parámetros orbitales para las estrellas en cuyas órbitas pudieron ser determinadas. Ellas son: HD 96670, HDE 305938, HDE 305941, HDE 305982 y HDE 306035. Las sucesivas columnas de dicha Tabla indican: identificación de la estrella, valores proyectados del semieje (a sen i), semiamplitud de la velocidad radial (k), excentricidad (e), longitud del periastro (ω r), período orbital, velocidad del baricentro del sistema (Vo), error probable del ajuste y función de masa en el caso de binarias de un solo espectro. Las figuras V-15, V-16, V-17, V-18 y V-19 muestran las órbitas calculadas de las binarias detectadas en la región de Carina OB2.

En varias de las estrellas para las que se encontraron variaciones significativas de la velocidad radial, no fue posible determinar un valor para el período. Tal es el caso de las estrellas Nos. 1, 8, 53, 61, 180, 248, 309 y 314.

Debemos remarcar que los elementos orbitales derivados sólo sirven y son suficientes a los fines estadísticos que aquí se persiguen. Para confirmar o corregir los presentes resultados preliminares, es necesario disponer de un mayor número de observaciones.

V.2.11 Correlación entre porcentaje de binarias de corto período, y rotación axial proyectada, referida a la rotación axial de estrellas de campo.

Tal como se mencionó en el Capitulo III, la velocidad de rotación axial pudo ser determinada para 55 estrellas brillantes en el campo de la asociación. Dichas velocidades se obtuvieron considerando las standard propuestas por Sletteback y colaboradores (1975) y se encuentran en el nuevo sistema de velocidades de rotación axial de Sletteback.

Existen dos problemas fundamentales en el estudio de los cúmulos abiertos y sociaciones estelares: (1) la incidencia de binarias y (2) la rotación axial en los distintos grupos.

Estas cuestiones han sido objeto de varias investigaciones realizadas por diferentes autores y hsta el momento se han efectuado bósquedas de binarias y deteminaciones de V sen i en aproximadamente una docena de cúmulos abiertos y asociaciones.

El problema de la binaridad fue analizado por varios autores. Abt (1979) encontró que los cúmulos abiertos son, en general, pobres en binarias en relación a las estrellas de campo. La teoría que propone que en los cúmulos predominarían las fuerzas de disociación por sobre las que retendrían a las binarias, aún no ha sido comprobada, debido al bajo número de objetos observados.

La rotación axial fue investigada por primera vez en las Pleyades, por Otto Struve (1945).

Abt resume el problema de la rotación en cómulos abiertos de la siguiente manera:

1- La mayoría de los cúmulos muestran una velocidad de rotación media menor que las estrellas de campo.

2- En varios cúmulos se observa una distribución bimodal de los valores de V sen i, con un decremento en el número de estrellas con velocidades comprendidas entre 100 y 200 km/s.

3- En algunos cúmulos los rotadores rápidos tienden a concentrarse hacia el centro del agregado,talcomo ocurre en el caso de las Pleyades. Sin embargo, esto no parece confirmarse en otros sistemas. Se piensa que la rotación axial en binarias cercanas debe estar disminuida por efectos de marea que llevan al sistema hacia el sincronismo entre los períodos de rotación y revolución. Además existe evidencia observacional de que las estrellas peculiares magnéticas rotan más lentamente que las estrellas normales.

Tal como señalara Abt (1970), estos dos últimos efectos parecen ser los mayores responsables de la disminución de la velocidad de rotación, si dejamos de lado por un momento los efectos evolutivos, la rotación diferencial, la pérdida de masa y otros mecanismos que contribuyen al frenado. Podemos entonces suponer que debe existir cierta relación entre el porcentaje de binarias más estrellas peculiares magnéticas presentes en un agregado estelar y su velocidad de rotación axial.

Abt y Sanders (1973) encontraron dicha correlación, a partir sólo de 6 sistemas estudiados.

Levato y otros se propusieron ampliar esta muestra pequeña, concentrándose en la detección de binarias de corto período y en la determinación de las velocidades de rotación axial en aquellos casos en que no hubiera sido estimada con anterioridad.

Los grupos estudiados por estos investigadores hasta el momento son: NGC 6193 (Arnal y otros, 1988), IC 2391 (Levato y García, 1984; Levato y otros, 1988a), Trumpler 14 (Levato y otros, 1988b), Trumpler 16 (Levato y otros, 1988c), IC 2602 (García y otros, 1988b) y las asociaciones Sco-Cen (Levato y otros, 1987) y Orión (Morrell, 1984).

En los caso de Tr 14, Tr16, Cr 228, IC 2391 y Carina OB2, existian ciertas dudas acerca de la determinación de los valores de V seni, ya que los mismos antes determinados con placas tomadas con el telescopio de 1.0 m de Cerro Tololo.

Para estimar la confiabilidad de los presentes resultados, redeterminamos la velocidad de rotación axial para las estrellas de IC 2602, empleando un material observacional (estrellas de programa y standard) análogo al descripto en el Capitulo III, y comparamos estos valores con los publicados por Levato (1975).

Las dos determinaciones (la presente y la de Levato), concuerdan dentro del 15%. Esta diferencia es comparable a la que se obtiene en dos determinaciones independientes de la velocidad de rotación para el mismo objeto. Por lo tanto, los valores determinados para las estrellas de nuestro programa, resultan aceptables.

Si consideramos a los 40 miembros y probales miembro de Carina OB2 observados espectroscópicamente, el promedio de velocidad de rotación axial de las estrellas miembro, respecto del promedio de la velocidad de rotación axial proyectada de las estrellas de campo de los mismos tipos espectrales, resulta ser:

<V sen i> ----- = 0.87 <u>+</u> 0.05 <V sen i>c

o bien:

<V sen i> ----- = 0.72 ± 0.06 <V sen i>c

para los 26 probables miembros entre los que se hizo una busqueda de binarias.

En la figura V-20, se indica la posición de Carina OB2 en la correlación de Abt y Sanders (1973). Puede apreciarse que los resultados obtenidos para Carina OB2 satisfacen la mencionada correlación.

V.2.12 Presencia de objetos anômalos.

Entre los objetos con tipos espectrales determinados, se han encontrado las siguientes estrellas con características especiales:

1 - Estrella No 2.

Este objeto es una estrella detectada como B con emisión, clasificada en el presente trabajo como B1.5 Ve. Su magnitud aparente es V= 9.69. La estrella fue observada a lo largo de 10 noches y no se advierte nada especial en el comportamiento de la emisión.

Esta estrella es considerada miembro de la asociación Car OB2.

2 - Estrella No 193. HD 96670.

Este objeto fue clasificado por Walborn (1972) como O7p, quien sugirit la posible existencia de una compañera. El carácter binario de HD 96670 ha quedado demostrado en la presente investigación.

-Si bien el tipo espectral asignado en este trabajo es O7V((f)), es

posible que la presencia de la compañera "rellene" las líneas 4640-4649, que son las utilizadas para establecer la característica "f".

3 - Estrella No 284, HD 96248.

Esta estrella con anomalía de carbono, ha sido objeto de varias investigaciones (ver por ej. Walborn, 1972). En particular, Levato y otros (1988) la observaron, junto con otros objetos del grupo CNO, en el marco de un estudio de binaridad. Ellos encontraron que esta estrella presenta velocidad radial constante. En el presente trabajo queda confirmada dicha constancia. Esta estrella ha sido considerada miembro de Carina OB2.

4 - Estrella No 393. HD 96446.

Esta estrella rica en He, estudiada por Jaschek y Jaschek (1964), no pertenece a la asociación Carina OB2, tal como ya había sido propuesto por Hoffleit (1954).

En este trabajo se ha mejorado el valor de la velocidad radial publicada y confirmado que se trata de un objeto simple.

5 - Estrella No 409.

Clasificada como B7Vp en el presente trabajo, resulta ser miembro de la asociación. La peculiaridad consiste en la presencia de las líneas de Hg λ 3984, λ 4206 del MgII y λ 4233 del FeII.

6 - Estrellas con características metálicas.

En la presente investigación se han detectado las siguientes estrellas A con líneas metálicas: Nos. 81, 83, 260 y 472. Ninguna de ellas pertenece al agregado.

7 - Estrellas binarias.

Fue posible obtener los parámetros orbitales preliminares para las estrellas Nos. 21 (HDE 305938), 89 (HDE 305982), 193 (HD 96670), 227 (HDE 306035) y 331 (HDE 305941). Las estrellas Nos. 21, 193 y 227 presentan indicios que hacen suponer la presencia de la compañera secundaria. 8 - Estrellas binarias con doble espectro.

Entre las estrellas miembros de Carina OB2, las Nos. 248 (HD 96638) y 473 presentan espectros de líneas dobles (no fue posible obtener los parámetros orbitales de la primaria), mientras que las estrellas Nos. 1 (HD 96261), 8 y 53 (HDE 305936) se presentan como "probables SB2". Entre los probables miembros de la asociación, las estrellas Nos. 22 (HDE 305937) y 186 (HDE 306032) también aparecen como "probables SB2".

TABLA V-1

Colores intrínsecos, excesos de color, magnitudes absolutas módulos de distancia y distancias para las estrellas miembros y probables miembros de Carina OB2

No	Clas	e TE	Vo	(B-V)0	(UB)0	E(B-V)	E(U-B)	Μv	Vo-Mv	d
										(pc)
001	M 2 M	B11b B1.5V	6.41 e 8.10	20 26	-,99 -1,04	. 44 . 53	. 37 . 30	-5.70	12.11 12.15	2642 2767 7877
004	r pro I M	B4V	11.07	20	67	. 42	.29	-1.45	12.52	3192
005	M	82.5V	9.65	24	- 85	.36	.21	-2.43	12.08	2606
0.08	m	B1V	9.33	-,26		. 39	.29	-3.25	12.58	3281
010	M		12.09	15	- ,47	. 37	. 27	-0.80	12.89	3784
015	i m	B3A	10.49	-,21	75	. 41	.28	-1,85	12.34	2938
017	рм		13.05	08	16	. 44	.33	0.10	12.95	3890
021	M	B1V	8.31	27	99	.39	.26	-3.38	11.69	2178
022	рм	B5.20	9.35	22	,77	.43	. 33 50	-1.93	11.28	1803
020	pm ' mu		10 65		······	137	· 27 71	0,10	12,00	0201 A705
0 ~ . /	pen M		10 75			1 14 0	104 95		10.17	
020	' M	185U	11 0.9	18	- 42	42	28	-1.23	12.31	2897
030	m	A	12.28	15		41	.30	-0.80	13.08	4130
031	DM		12.62	10	- 22	.50	.37	-0.10	12.72	3499
032	: M	B3V	10.23	22	76	. 44	.28	1.98	12.21	2767
033	m		12.35	13	36	, 41	, 30	-0/52	12.87	3750
035	i M		11.26	17	56	. 46	, 34	-1.08	12.34	2238
036	M		12.66	12	-,33	. 43	.32	-0.38	13.04	4055
037	' M	B3A	10.84	-,20	71	. 43	, 33	-1.60	12,44	3976
038	M	B3A	10.44	22	76	. 40	.23	-2.10	12.54	3221
039	Р (М		11.87	17	56	. 46	.34	-1.08	12.95	3890
041	рм		12.90	-,11	28	,53	,40	-0.24	13.14	4246
043	рм		12.47	80.~		, ಏನ ಜಾತ	.47	0,10	12.57	3268
040	рм		10,71	···· 10		101	, 30 77	1.U8 0.10	17 04	2000
040	n huai n wa		11 74	····· 1 Δ		ነት። ማል	. J.J. A.1		10.04	~0000 7049
0.40	w hu	R 2U	0,07			1.ህግ .ልሌ	34		10.05	2818
053	M	R2V	9.02			.38	.22	-2.75	11.79	2280
057	'n	D1- [14 T	11,97	-,13	48	.37	.27	-0.52	12.49	3148
058	M		11.93	- 17	-,54	, 37	,27	-1.08	13.01	3999
No	Clase TE	٧o	(B-V)0	(U-B)0	E(B-V)	Е(U-В)	Μv	Vo-Mv	d (pc)	
-----	---	-------------------------------	------------------------------------	-----------	--------	------------------------------	--------------------------	-------	---	
	, and and and and and and and and and and	**** **** **** **** **** ****	aa aaso 1969 4440 4444 wax, 4994 -			*** **** **** **** **** ****	*** *** **** *** *** ***		ana ayo, dan siyo siyo taba daga siya tab	
061	M B2V	9.72	23	81	.34	. 27	-2.25	11.97	2477	
067	' M	12.42	13	35	. 44	.32	-0.52	12.94	3873	
072	pm .	12.75	09	17	. 34	. 25	0.00	12.75	3548	
073	6 m B2.5IV-	V10,98	21	···.74	. 36	. 28	-2.14	13,12	4207	
075	рм	13.01	07	11	.35	. 26	0.20	12.81	3648	
086	рм	12.57	10	23	.52	.39	0.10	12.67	3420	
087	рм.	12.60	09	-,20	. 38	. 28	0.00	12.60	3311	
088	l pm	12,94	07	11	.30	.22	0.20	12.74	3532	
089	M BOV	8.22	-,29	-1.05	. 36	, 29	-3.68	11.90	2399	
091	m B4V	10.92	20	69	.36	.24	-1,58	12,50	3162	
094	рм	12.89	····.10	23	. 37	. 27	-0.10	12.99	3963	
097	' pm	12.77		22	. 33	. 24	-0.10	12.87	3570	
098	p M	13.13	04	.06	.36	. 26	0.50	12.63	3357	
103	im B2V	9.46	25	···· . 88	. 41	. 27	-2.63	12,09	2618	
110	M	12.17	14	44	.50	.38	-0.66	12.83	3681	
111	М	12.47	15	46	.50	. 37	0,80	13.27	4508	
112	۲ ۱	11.65	17	57	. 43	.32	-1,08	12.73	3516	
115	- m B2.5IV	10.22	23	83	. 42	.30	-2.45	12.67	3420	
116	рм	13.23	05	-,00	. 38	. 28	0.40	12.83	3681	
117	'm B3V	10.76	21		.37	.25	-1.85	12.61	3327	
128	рм	12,94	06	07	. 32	.24	0.30	12.64	3373	
129	'm B3V	11.22	20	~.69	.39	. 31	-1.53	12.75	3548	
139	M	11.45	21	75	.40	. 30	-1.75	13.20	4365	
178	рм	12.00	19	63	.51	.38	-1.36	13.36	4699	
180	M 09.5V	7.50	29	1.09	. 48	. 37	-3,98	11.48	1977	
184	m	11.57	-,17	54	. 45	. 33	-1.08	12.65	3388	
186	рм B2.5IV	10.00	18	-,59	.23	.17	-1.94	11.94	2443	
191	рм	12.94	07	10	,44	. 33	0.20	12.74	3532	
193	M_07V(f)n	6.04	30	-1.11	. 47	38	-5.50	11.54	2032	
194	M	11.75	17	56	.55	. 41	-1.08	12.83	3681	
196	M B2V	10.77	23	79	. 45	37	-2.13	12.90	3802	
198	рм	12.57		-,20	, 47	, 35	0.00	12.57	3266	
199	M B3A	10.79	21	74	,44	30	-1.85	12.64	3373	
		*** **** **** **** **** ****								

No	Cla	se TE	Vo	(BV)0	(U-B)0	E(B-V)	E(U-B)	Μv	Vo-Mv	d (pc)
202	M		11.51	17	54	. 45	. 33	-1.08	12.59	3296
212	pm	B5Vp	10.42	18	61	, 41	.28	-1.46	11.88	2377
213	рм	B4V	10.33	19	64	. 49	.37	-1.38	11.71	1828
214	M		12.03	17	-,55	.37	.27	-1.08	13.11	4188
215	рм		12.65	08	13	, 41	.30	0.10	12.55	3236
223	рм		12.72		15	.52	.39	0,10	12.62	3342
224	рм		12.81	08	15	, 44	. 33	0.10	12,71	3483
225	рм		12.76	08	····.14	, 48	.36	0.10	12.66	3404
227	M	BIV	8,75	26	-,95	. 44	.33	-3.25	12.00	2512
228	М		11.35	16	49	. 43	.32	0,94	12,29	2871
229	M		11.51	21	72	, 49	.36	-1.75	13.26	4487
230	M		12.42	13	37	. 48	.36	-0.52	12,94	3873
231	M		8.93	29	-1.08	.76	.57	-3.75	12.68	3436
234	м		11.46	20	67	.55	. 41	-1.50	12.96	3908
235	М	B2Vn	9.11	-,24	87	. 61	. 44	-2.50	11.61	2099
238	M	BIV	8,58	27		.68	.49	3.38	11.96	2466
240	M		11.19	22	78	. 63	. 47	-2.00	13.19	4345
243	м	8210	9,47	25	92	.67	. 47	-3.11	12.58	3281
244	м	B1.5V	9.77	25	91	. 64	. 48	-2.88	12.65	3388
245	м	BIV	8,83	26		,74	.58	-3,13	11,96	2466
246	М	B0.5IV	8.54	28	-1.02	.76	.59	-4.19	12.73	3516
248	M	08V	6,82	31	-1.12	.59	,45	4,48	11.30	1820
249	M		10.97	21	72	. 63	. 47	-1.75	12.72	3499
252	М	82.5V	9.31	23		. 51	.34	-2.30	11.61	2899
253	M		11.87	17	57	.52	. 39	-1.08	12,95	3820
256	£4		11.67	17	57	. 48	.36	1.08	12.75	3548
263	рм		12.79	12	33	.50	. 37	-0.38	13.17	4305
270	рм		13.01	10	23	. 47	.35	0.10	13,11	4188
274	M		11,48	19	64	. 41	. 30	-1.36	12.84	3698
275	M)	3111-113	[7.08	27		.50	.32	-4.75	11.83	2323
276	M	BIIV	9.85	25	-,93	.61	.56	-3.08	12.93	3855
284	м	B1.5Iat	5.29	18	···· 97	. 42	.31	-6.25	11.54	2032

No	Clase TE	E Vo	(BV)0	(U-B)0	E(B-V)	E(U-B)	M٧	Vo-Mv	d (pc)
288	m B4V	10.22	21	71	. 36	. 22	-1.70	11.92	2421
289	DM	12.53	07	20	.38	.28	0.00	12.53	3206
290	M B2.5	5IV 10.22	22	80	.35	.27	-2.33	12.55	3236
297	M BIII-	-III 7.24	27	- , 99	.39	,22	-4,75	11.99	2500
299	рм	12.63	06	-,05	.54	. 40	0.30	12.33	2924
301	рм рм	13.24	07		. 36	. 27	0.20	13.04	4055
308	рм	13.03	08	-,13	. 45	. 33	0.10	12.93	3855
309	M B1	9.57	-,26	···.95	.38	.29	-3.13	12.70	3467
312	м	11.92	14	43	. 45	.34	-0.66	12.58	3281
313	рм	12.03	-,13	36	. 47	.35	-0.52	12.55	3236
314	M BIII-	-III 6.47	26	99	. 44	.36	-4.75	11.22	1754
319	i'4	12.47	13	-,36	.39	.29	-0.59	13.06	4093
326	M 861	11.27	18	72	. 36	.29	-1.33	12.60	3311
328	рм	12,79	06	05	.38	.28	0,30	12,49	3148
331	M B2IV	VV 8.97	24	85	, 38	.27	-2,85	11.82	2312
333	i'1	11.96	16	52	.52	.39	0,94	12.90	3802
334	m B2II-	-III 7.27	25	92	, 45	. 31	-4,00	11.27	1795
335	pm B1V	/ 10.86	25	··· · 89	. 46	.39	-2.88	13.74	5598
342	M	12.15	15	44	. 42	.31	-0.80	12.95	3890
344	рм	13.30	05	02	.31	.23	0,40	12.90	3802
346	рм	13.48	87	08	.26	.19	0.20	13.28	4529
348	рм	13.09	···.06	····.07	. 44	. 33	0.30	12,79	3614
351	M B31	V 8.84	25	-1.03	.36	.30	-3.12	11,96	2466
352	рм	12.56	···.08	···· . 14	, 44	.33	0.10	12.46	3106
355	м	11.56	16	51	. 50	. 37	-0.94	12.50	3162
356	M B1V	9,45	25	9 0	. 47	. 41	2,88	12.33	2924
364	M	11.50	18	62	. 53	. 40	-1.22	12.72	3499
365	рм	12.97	10	···.25	. 47	. 35	0.10	13.07	4111
366	рм	12.80	13	36	.50	. 37	-0.52	13.32	4613
370	M 84V	10.27	21	73	.56	.35	1.83	12.10	2630
376	рм	11.30	17	-,55	. 64	. 48	-1.08	12.38	2992
383	рм	12.99	12	32	.38	. 28	-0.38	13.37	4721
388	рм	12.32	16	50	. 47	.35	-0.94	13.26	4487

No	Clase	TE	٧o	(BV)0	(U-B)0	E(B-V)	E(U-B)	Μv	Vo-Mv	d (pc)
389	рм		12.87	10	-,22	, 39	.29	0,10	12.97	3926
391	p M q		12.42	09	-,20	.60	,45	0.00	12.42	3048
390	рм M		12.33	12	32	, 49	, 37	-0.38	12.47	3483
398 399	M M		11.47	18 17	-,59 -,55	, 35 , 39	.26 .29	-1,22 -1,08	12.71 12.52	3483 3192
400 401	M M	B2III B3V	7.95 11.15	-,25 -,20	,91 -,70	, 38 , 38	, 29 , 29	-3.83 -1.60	11.78 12.75	2270 3548
402 403	рм м		12.47 12.26	07 15	11 44	.40 ,34	.30 .25	0,20 -0,80	12.27 13.06	2844 4093
405 406	м рм		11.80 12.63	-,15 -,08	45 16	,39 ,54	.29 .41	0,80 0,10	12.60 12.53	3311 3206
407 409	рм м	B7Vp	12.40	09 17	18 65	, 51 , 32	.38 .25	0.00 1.11	11.63 11.96	2118 2466
418 425	рм рм		12.82	05 05	.00	.51 .31	.38 .23	0,40	12.42	3048 3698
430	рм рм		13.04	-,03 -,07	.10	.38	. 28	0.60	12,44	3076 3281
436 454	рм		13.01	,06 14	-,05 - 43	.39	,29 44	0,30	12.71	3483
455	рм		12.56	12	32	,50 ,51 E4	.38	0.38	12.94	3873
400	рм рм		12.46	-,15	, 33 , 46	.50	. 46 . 37	-0.80	13.26	4487
471	рм М	B2V	9.72	11 26	-,28 -,93	.51 .50	. 38 . 39	-0.24	12,23	2793 3715

Vo	Ni	Mv	Vo	log Ø
6-7	3±2	4.76	6.44±0.40	-1.49 -1.71 -2.19
7-8	5 <u>+</u> 2	-4.26	7.43 <u>+</u> 0.33	-1.34 -1.49 -1.71
8-9	11 <u>+</u> 3	3.41	8.65±0.31	-1.04 -1.15 -1.28
9-10	15 <u>+</u> 4	-2.65	9.57±0.27	0.91 1.01 1.15
10-11	18 <u>+</u> 4	-1.90	10.59±0.30	-0.85 -0.93 -1.04
11-12	33 <u>+</u> 6	-1.14	11.57±0.29	0.60 0.67 0.76
12-13	57±7	-0.21	12.60±0.25	-0.38 -0.43 -0.49
13-14	34 <u>+</u> 6	0.27	13.14±0.15	-0.59 -0.65 -0.74

TABLA V-2 Valores utilizados para el cálculo de la Función Luminosidad.

Error en el conteo : $(N)^{\frac{1}{2}}$ $p = Ni/(Nt* \Delta Mv)$ Nt = 154

1 1 m	Ni	m	(ሚ)	10g Y(M)
 21-22 	3 <u>+</u> 2	21.82	0.02	-1.71
 20-21 	1±1	20.10	0.01	-2.18
 17-18 	2±1	17.52	0.013	-1.88
 16-17 	2±1	16.75	0.013	-1.88
 15-16 	3±1	15.40	0.02	-1.71
 13-14 	2±1	13.42	0.013	-1.88
 12-13 	8±3	12.36	0.052	-1.28
 11-12 	4±2	11.17	0.026	-1.58

TABLA V-3 Valores utilizados para el cálculo de la Función de Masa.

 m 	Ni	m	Y (M)	10g Y(M)
 1011 	2 <u>±</u> 1	10.47	0.013	-1.88
 910 	6 <u>+</u> 2	9.43	01039	-1.41
	7 <u>+</u> 3	8.40	0.045	-1,33
 78 	11 <u>+</u> 3	7.56	0.071	-1.14
 6-7 	9 <u>±</u> 3	6.52	0.059	-1.23
 56 	21±5	5.45	0.137	-0.86
 45 	23±5	4.46	0.150	0.82
. . 3-4 	46±7	3.43	0,301	-0.52

TABLA V-3 (Cont.)

	-							
No	VR	n	E,	I	E/I	Рр (%)	P1 (%)	Conclusiones
1 5 7 8 21 22 53 61 89 103 106 117 132	28 18 32 21 27 24 27 24 27 24 23 6 39 9	11 7 6 7 9 8 6 7 10 7 8 2 8	10.6 8.2 2.7 12.3 16.9 19.3 11.1 10.7 25.5 6.3 14.1 3.5 8.1	2.6 3.0 4.3 5.5 3.9 3.1 3.9 3.1 3.9	4.1 2.9 2.9 3.1 5.5 2.9 3.7 6.9 2.1 3.4 1.0 2.0	$\langle .1$ 1 < P < 2.5 > 25 .1 < P < .5 < .1 .1 < P < .5 < .1 .1 < P < .5 < .1 5 < P < 10 .1 < P < .5 > 25 2 < P < 5	1 < P < 2.5 5 < P < 10 <.1 10 < P < 25 5 < P < 10 5 < P < 10 10 < P < 25 .5 < P < .1 > 25 <.1 .1 < P < .5 > 25 = 1	Variable Variable Constante Variable Var.Prob.SB2 Var.Prob.SB2 Var.Prob.SB2 Variable Variable Prob.Const. Variable Constante Prob.Var.
147 180 186 193 227 238 248 252 252 252 284 297	$ \begin{array}{r} -10 \\ -10 \\ 0 \\ -11 \\ -70 \\ -28 \\ -20 \\ -49 \\ -18 \\ -14 \\ -30 \\ -14 \\ \end{array} $	9 11 6 10 7 4 10 4 10 7 10	10.013.612.141.840.04.86.211.97.64.33.04.0	3.4 3.0 4.5 4.7 3.4 3.0 4.2 3.0 4.2 2.4 2.7	2.9 4.5 2.7 8.9 10.0 1.4 2.1 2.8 2.5 1.7 1.2 1.5	$\langle .1$ $\langle .1$ 1 < P < 2.5 $\langle < .1$ $\langle < .1$ $\rangle 25$ 10 < P < 25 $\therefore .1$ 1 < P < 2.5 10 < P < 25 25 25 25 25 25	10 < P < 25 .1 < P < .5 <.1 *25 >25 *.1 >25 *25 *25 <.1 *.1 <.1	Variable Variable Prob.Var. Var.ProbSB2 Var.SB2 Constante Constante Var.SB2 Prob.Var. Constante Constante Constante

TABLA V-4

Resultados obtenidos a partir del análisis de varianza

N 0	VR	n	E	I.	E/I	Рр (%)	P1 (%)	Conclusiones
304	-10	5	7.0	4,2	1.6	> 25	∠.1	Constante
306	-2	5	7.23	3.4	2.1	10 < P < 25	>25	Constante
309	-65	6	41.5	2.8	14.8	<u>ر ۲</u> ، ۲	>25	Variable
314	6	8	5.5	2.5	2.2	2.1	< , 1	Variable
331	-28	8	13.0	3.3	3.9	<.1	~.1	Variable
334	-16	8	4.7	2.3	2.0	10 くP く 25	く,1	Constante
351	-27	7	5.5	3.6	1.5	> 25	く,1	Constante
367	-23	3	6,1	5.0	1.2	> 25	> 25	Constante
393	3	8	3.1	2.1	1.5	> 25	<.1	Constante
400	4	8	3.0	2.1	1.7	>25	< 1	Constante
172	8	4	5.4	4.8	1.1	>25	2.1	Constante
473	-35	3	39.7	4.0	9.9	22.1	> 25	Var,SB2

TABLA V-4 (Cont.)

TABLA V-5

Parámetros orbitales

 No 	a seni	k	excen.	omr	per.	٧o	e.p.	f(M)
 #21 HDE	.226782E+07 305938	28 ±8	.54 <u>+</u> .15	37 <u>+</u> 13	6.967 <u>+</u> .003	-23 ±2	3.45	0.09
' I≢89 I I HDE	.907301E+07 305932	48 <u>+</u> 4	.23 ±.04	-3 ±8	14.015 ±.006	-25 ±2	0.92	0.15
' #193 HD 90	.373794E+07	51 <u>+</u> 4	.05 ±.07	177 ±85	5,36204 ±,00009	-5 ±2	6.27	SB2?
 #227 HDE :	.840064E+06 306035	58 ±19	.5 ±.3	310 +20	1,1707 <u>+</u> ,0004	74 <u>+</u> 17	3.37	0.02
 #331 HDE 3	.375854E+06 305941	21 ±2	,00 <u>+</u> ,10	27	1,2717 ±,0002	-24 <u>+</u> 1	1.76	1 0.0011

Figura V-1

Figura V-2

Figura V-3

Figura V-4

•

 $^{VO-M}$

Figura V-7

Figura V-8

<u>ر</u>

Figura V-10

Figura V-11

Figura V-15

Figura V-16

Figura V-17

Figura V-18

gathon peilod and X

Bibliografía correspondiente al Capítulo V.

- Aanestad, P.A. y Purcell, E.M. 1973, Ann. Rev. Astron. Astrophys. 11, 309.
- Abt, H.A. 1970, Stellar Rotation, A. Sletteback (Ed.).
- Abt, H.A. y Biggs, E.S. 1972, Bibliography of Stellar Radial Velocities, Kitt Peak Nat. Observatory, Tucson.
- Abt, H.A. y Sanders, W. 1973, Astrophys. J. 186, 177.

Abt, H.A. y Smith, 1969, Publ. Astron. Soc. Pacif. 81, 332.

- Allen, C.W. 1963, Astrophysical quantities (second edition).
- Arnal, M., Levato, H., Morrell, N. y García, B. 1988, enviado al P.A.S.P.
- Barbier, . 1983, Bibliography of Stellar Radial Velocities, Centre de Donnees Stellaires, Estrasburgo.
- Batten, A., Fletcher, J. y Mann, P., Seventh Catalogue of Orbital Elements for Spectroscopic Binary Sistems, 1978, Publ. D.A.O., 15.
- Becker, W. 1966, Z. Astrophys. 64, 77.
- Bell, R.A. 1971, M. Sci. Thesis, Univ. of Waterloo.
- Bell, R.A. y Fitzgerald, M.P. 1971, en "Colloquium on Supergiant Stars", M. Hauck (Ed.), Ob. Astron., Trieste, p. 168.
- Bertiau, F.C. y Grobben, J. 1969, Ric. Astron. Sp. Vaticana 8, 1.

Bohannan, B. y Garmany, C. 1978, Astophys. J. 223, 908.

Clariá, J.J. 1974, Astron. & Astrophys. 37, 229.

- Conti, P.S., Garmany, C. y Hutchings, J. 1977, Astrophys. J. 215, 561.
- Corbally, C.J. y Garrison, R.F. 1983, The MK Process and Stellar Classification, R.F. Garrison (Ed.) D.D.O., University of Toronto, Canada.
- Doom, C. De Greve, J.P. y de Loore, C. 1984, IAU Symp. No. 105, Observational Tests of the Stellar Evolution Theory, Eds. A. Maeder and A. Renzini, p. 341.

- Drissent, 1., Saint-Louis, N., Moffat, A.F.J. y Bastien, P. 1987, Astrophys. J. 322, 888.
- Feinstein, A., Marraco, H.G. y Muzzio, J.C. 1973, Astron. & Astrophys. Suppl. 12, 331.
- Fernie, J.D. y Marlborough, J.M. 1963, Astrophys. J. 137, 700.
- Fernie, J.D. y Hube, J.O. 1968, Astrophys. J. Lett., 153, L11.
- Fisher, R.A. y Yates, F. 1938, Statisticl Tables, Oliver and Boyd, Edinbourg.
- Forte, J.C. 1972, Tesis Doctoral. Fac. Cs. Astron. y Geof. U.N.L.P.
- Forte, J.C. 1978, Astron. J. 83, 1199.
- García, B., Clariá, J.J. y Levato, H. 1988a, Ap. Space Sci. 143, 317.
- García, B., Hernández, C., Malaroda, S., Morrell, N. y Levato H. 1988b Ap. Space Science, en prensa.
- Garrison, R.F. 1970, Astron. J. 75, 1001.
- Harris, D.L. 1973, en IAU Symp. No 52 sobre "Interstellar Dust and Related Topics", J.M. Greenberg y H.C. van der Hultz (Eds.), Reidel Publ. Co., Dordrech: Holland, p. 231.
- Harris, G.L.H. 1976, Ap. J. Suppl. 300, 451.
- Herbst, W. 1974, Astron. J. 79, 941.
- Herbst, W. 1975, Astron. J. 80, 498.
- Herbst, W. 1976, Astrophys. J. 208, 923.
- Hoffleit, D. 1956, Astrophys. J. 124, 61.
- Jaschek, M. y Jaschek, C. 1959, Publ. Astron. Soc. Pac. 71, 465.
- Johnson, H.L. 1965, Astrophys. J. 141, 923.
- Johnson, H.L. 1968, en "Nebulae and Interstellar Matter", Middlehurst y Aller (Eds.), Univ. Chicago P., Chicago, p. 167.
- Johnson, H.L. y Borgman, L. 1963, Bull. Astro. Inst. Netherlands 17, 115.
- Lequeux, J. 1980, en "Star Formation", Tenth advanced course of the Swiss Society of Astron. and Astroph., held in Saas-Fee, Switzerland, March 24-29, 1980, A. Maeder and L. Martinet (Eds.). Published by Geneva Observatory, p. 75.

- Levato, H. 1975, Astrophys. J. 195, 825
- Levato, H. y García, B. 1984, Astrophys. Letters 24, 49.
- Levato, H., García, B., Lousto, C. y Morrell, N. 1988a, Ap.& Space Science, en prensa.
- Levato, H., García, B., Malaroda, S., Morrell, N. y Solivella, G. 1988b, en preparación.
- Levato, H., Hernández, C., García, B. y Morrell, N., 1988c, Ap. & Space Science, en prensa.
- Levato, H., Malaroda, S., Morrell, N. y Solivella, G. 1987, Astrophys. J. Suppl.
- Levato, H., Morrell, N., García, B. y Malaroda, S. 1988d, Astrophys. J. Suppl., en prensa.
- Lindoff, U. 1968, Ark. for Astron., Band 5, No 1.
- Maeder, A. 1974, Astron. & Astrophys. 32, 177.
- Maeder, A. y Mermillod, J.C. 1981, Astron. & Astrophys. 93, 136.
- Martin, N. 1964, POHP 7, N33.
- McCluskey, G.E. y Kondo, Y. 1972, Astrophys. Space Sci. 17, 134.
- Mermillod, J.C. 1981a, Astron. & Astrophys. 97, 235.
- Mermillod, J.C. 1981b, Astron. & Astrophys. Suppl. 44, 467.
- Merrington, Maxine y THompson 1943, Biometrika 33, 73.
- Moffat, A.F.J. 1974, Astron. & Astrophys. 32, 103.
- Morbey, Ch. 1978, Publ. D.A.O. 15, 105.
- Morrell, N. 1982, Tesis Doctoral, Fac. Cs. Astron. y Geof. U.N.L.P.
- Rodgers, A. W. y Searle, L. 1967, M.N.R.A.S. 135, 99.
- Sagar, R. Josi, U.C. 1983, MNRAS 205, 747.
- Salpeter, E. 1955, Astrophys. J. 121, 161.
- Sandage, A. 1957, Astrophys. J. 125, 435.
- Schalen, C. 1975, Astron. & Astrophys. 42, 251.
- Scharpless, S. 1963, en "Basical Astronomical Data", K. Aa. Strand (Ed.) Univ. Chicago P., Chicago, p. 225.

- Schmidt-Kaler, Th. 1982, Landolt Bornstein, Numerical Data and Functinal Relationships in Science and Technology, New Series, Group VI, Vol.2: Astronomy and Astrophysics K. Schaifers y H.H. Voigt (Eds.).
- Schultz, G. V. y Wiemer, W. 1975, Astron. & Astrophys. 43, 133.
- Seggewiss, W. 1970, en IAU Symp. No. 38, sobre "The Spiral Structure of our Galaxy", Eds. W. Becker y G. Contopoulos, Reidel Publ. Co., Dordrech, Holland, p. 265.
- Sletteback, A., Collins, G., Boyce, P.B., White, N.M. y Perkinson, T.D. 1975 Astrophys. J. Suppl. 121, 102.
- Smith, R. G. 1987, M.N.R.A.S. 227, 943.
- Snedecor, G.W. 1953, Statistical Methods, The Iowa State College Press, 4ta. edicion.
- Stothers, R. 1972, Astrophys. J. 175, 431.
- Struve, O. 1945, Popular Astronomy 53, 259.
- Tapia, M., Roth, M., Marraco, H.y.Ruiz, M.T., 1988 M.N.R.A.S. en prensa.
- Thackeray, A.D., Tritton, S.B. y Walker, E.N. 1973, Mem. Roy. Astron. Soc. 77, 199.
- Turner, D.G. 1973, Astron. J. 78, 597.
- Turner, D.G. 1974, Ph. Thesis, Univ. Western Ontario.
- Turner, D.G. 1976, Astron. J. 81, 1125.
- Turner, D.G. 1978, Astron. J. 83, 1081.
- Turner, D.G. y Moffat, A.F.J. 1980, M.N.R.A.S. 192, 283.
- Walborn, N. 1972, Astron. J. 77, 312.

CAPITULO VI

CONCLUSIONES

El anàlisis y discusión del material observacional, esencialmente fotométrico y especroscópico, obtenido en la presente investigación nos permitió arribar a las siguientes conclusiones principales:

(1) - La Asociación estelar Carina OB2 constituye un agregado físico real, formado por, al menos, 91 miembros de tipos espectrles O y B, y algo más de medio centenar de probables miembros de tipos B intermedios y tardíos. Este agregado se encuentra ubicado a una distancia media de 3.1 kpc del Sol en la dirección 1= 290° y cubre un área mínima de ~ 40 x 50 minutos de arco, lo que equivale a un diámetro lineal de 45pc.

(2) - Carina OB2 contiene muy probablemente dos estrellas supergigantes tempranas (HD 96248, B1.5CIab y HD 96261, B1Ib), tres miembros de tipo O (uno de ellos con característica "f") y 12 gigantes o subgigantes de tipos B tempranos. Un total de 8 objetos con características especiales (estrellas con líneas de emisión, anomalías de carbono, ricas en He, B peculiares, A metálicas, etc.) han sido detectadas en el presente estudio, de los cuales tres pertenecen muy probablemente a la asociación. Además, 50 estrellas han sido reconocidas como variables fotométricas con amplitudes de variación $V \ge 0.1$. De ellas, 14 son miembros o probables miembros de Carina OB2.

(3) - La similitud reconocida entre Carina OB2 y el grupo de edad de Mermillod (1981a) representado por el cómulo NGC 6231, permitió estimar en 5 x 10⁶ años el límite superior de la edad de la asociación. Este resultado es compatible con ls edades obtenidas: (1) A partir del punto terminal de la secuencia principal ("3 x 10⁶ años). (2) Empleando las isocronas de Lindoff ("5 x 10⁶ años). (3) Usando el parámetro A (2 de Harris ("4 x 10⁶ años). La edad estimada para Carina OB2 es llamativamente comparable a la obtenida por Feinstein y otros (1973) para los cúmulos Tr 14 y Tr 16, ubicados en la región de la asociación Carina OB1.

(4) - Haciendo uso de los excesos de color, módulos aparentes de distancia y el método de la extinción variable, pudo mostrarse que la razón entre la absorción total y selectiva R = Av / E(B-V) es aparentemente normal en la región. En particular, pudo mostrarse que si los miembros de Car OB2 están realmente a la misma distancia del Sol, R es próximo a 3.. Si, por el contrario, existe una dispersión real en las distancias individuales de los miembros, el valor de R puede incluso ser levemente inferior a 3.0 En ambos casos, sin embargo, lo importante es que R no supera el valor normal.

(5) — La función de luminosidad relativa calculada para Carina OB2 presenta la misma pendiente que la función de luminosidad inicial derivada por Salpeter (1955) y la función de luminosidad de los cúmulos jóvenes pertenecientes la asociación Carina OB1.

(6) — La pendiente de la función de masa resultó ser igual a
 \ll =-1.8, en acuerdo con los valores propuestos para asociaciones OB por Lequeux (1980).

(7) - La distribución de excesos de color en la región de Carina OB2 demuestra la existencia de nebulosidades oscuras, no uniformemente distribuidas en el área ocupada por la asocición. El enrojecimiento medio resultante para los miembros de Carina OB2 es:

 $\langle E(B-V) \rangle = 0.45 \pm 0.10$,

y, al igual que la distancia, este valor prácticamente no se altera si se consideran también los probables miembros.

Contrariamente a lo sugerido por Seggewiss (1970), un grupo de 11 estrellas tempranas, altamente enrojecidas [$\langle E(B-V) \rangle = 0.66\pm0.07$], ubicadas en la porción este de Carina OB2, forma parte de la asociación. Este grupo se encuentra inmerso en una nube de polvo, responsable del elevado enrojecimiento observado.

(8) - Como resultado de un estudio de binaridad entre los objetos más brillantes del grupo (V(12.0), se han podido reconocer 5 estrellas binarias espectroscópicas de un solo espectro (SB1) y tres binarias de doble espectro (SB2) pertenecientes a la asociación. Parámetros orbitales preliminares se presentan para los 5 sistemas SB1 de Carina OB2.

(9) — La velocidad baricentral del agregado resulta ser de (-25 \pm 2) km/seg, en buen acuerdo con la velocidad del HI en la zona (~-20 Km/seg, obtenida por Humphreys y Kerr, 1974) y con la velocidad que resulta, para la distancia de 3 kpc., aplicando el modelo de Schmidt (~-29 km/s).

Por otra parte, la velocidad radial del calcio interestelar en la dirección de Car OB2, estimada a partir de la medición de la línea K del CaII, resulta (-16 \pm 1) km/seg.

(10) - La relación entre la velocidad de rotación axial de los miembros de la asociación y la correspondiente a las estrellas de campo de los mismos tipos espectrales, resulta ser: 0.87 ± 0.05. Esto nos permite concluir que los miembros de la asociación rotan menos, en promedio, que las estrellas del campo galáctico de los mismos tipos espectrales.

(11) - Respecto de la correlación de Abt y Sanders (1973), el 43% de las estrellas estudiadas presentan períodos menores que 100 días, en tanto que el 39% de la muestra posee períodos menores que 10 días. A partir de estos datos, la ubicación de Carina OB2 se encuentra en perfecto acuerdo con la correlación propuesta.

(12) - Durante la noche del 9 al 10 de noviembre de 1984 se llevaron a
cabo observaciones de monôxido de carbono (¹²CO), utilizando el telescopio milimétrico de 1.2 m de la Universidad de Columbia, en el Observatorio Interamericano de Cerro Tololo. Dichas observaciones fueron realizadas por el Dr. Jorge May, de la Universidad de Chile.

Para la frecuencia de 115 GHz, el haz de antena a potencia media (HBPW) del telescopio mencionado, es de 8.7 minutos de arco y la temperatura de antena de 193 K. Niveles típicos de ruido cuadrático medio de 0.1 K fueron obtenidos después de 5 minutos de integración.

Las zonas en que se dividió la región de Car OB2 para su estudio se encuentran indicadas en la Carta X. Las observaciones milimétricas se ilustran en las figuras VI-1 a VI-5.

A pesar de que los datos obtenidos resultan insuficientes para mapear el material molecular en la zona, se detecta una emisión débil, pero claramente identificable en la línea de 115 GHz del monóxido de carbono. La extensión de la emisión coincide, aproximadamente, con el tamaño de Carina OB2. El promedio de la velocidad radial de la línea detectada, (-21.7±0.2) km/seg, coincide con velocidad radial de la componente estelar de la asociación, (-25 ± 2) km/s, por lo que concluimos que esta componente y la nube molecular estan relacionadas.

Resulta interesante destacar la presencia de una estrella de carbono (HD 96248) en la región de Carina OB2, si se tiene en cuenta la bajísima densidad espacial que caracteriza a las estrellas de tipo OBC (ver por ejemplo: Walborn y Panek, 1985; Levato y otros, 1988).

(13) - Respecto de los cúmulos presentes en la zona de Carina OB2 y probablemente relacionados con ella, hemos confeccionado las tablas VI-1, VI-2, VI-3 y VI-4 en las cuales se presenta una comparación entre los distintos parámetros existentes en la literatura. Basándonos en dichos parámetros y en los resultados obtenidos en la presente investigación, podemos concluir que:

Tal como propusieran Walborn (1973) y Clariá (1976), la región que comprende las asociaciones CR 240(NGC 3572a), Carina OB2, los cómulos abiertos NGC 3572b, NGC 3590, Hogg 11 y muy probablemente NGC 3576, las estrellas más brillantes de Trumpler 18 y las regiones HII G 37, An 2, An 3 y muy probablemente G 38a (Georgelin y Georgelin, 1970), constituiría un único complejo, ubicado a una distancia de alrededor de 3 kpc. del Sol. Los datos espectroscópicos presentes en la literatura parecen confirmar estos resultados. Las dos estrellas clasificadas por Walborn (1973), pertenecientes a Cr 240 (HD 97166 y HD 97434), presentan módulos de distancia en perfecto acuerdo con los obtenidos para Carina OB2. La estrella más brillante de Hogg 10 (HD 97253), tiene un módulo de distancia que la ubica algo más lejos que el resto del complejo, lo que avalaría la conclusión de Clariá quien coloca a este cúmulo levemente por detrás del mismo; Trumpler 18 se encontraría, efectivamente, ubicado por delante del complejo y sería el más viejo de los cúmulos presentes en la región. Esta conclusión está avalada tanto por los resultados fotométricos como por los espectroscópicos. Por por otra parte, la estrella HD 96715, para la cual se dispone de datos espectroscopicos (Walborn, 1972) y fotométricos (Blanco y otros, 1968), resultaría, muy probablemente, miembro de Carina OB2. En leste último

caso, la edad del agregado resultaría algo menor, del orden del millón de años.

-

TABLA VI-1

Grupo]. b	A.R. Dec. (1950.0)	diametro lineal medio (pc)	dimensiones angulares (min. de arco)	5
NGC 3590	291°, 3 -0, 2	11h 10.8m -60° 31′	2.1 4.8	4.0×2.0 7.0	C
Ho 10	290°.8 +0.1	11h 08.6m -60° 067	1.4	1.5×1.5	
Cr 240 (NGC 3572a)		11h 09m 60° 01'			
NGC 3572	290°,7 +0,2	11h 07.7m -59° 50′	6.5 5.9	8.0x7.5 7.5	S
Ho 11	290°.9 +0.1	11h 09.4m -60° 06'	0.7	1 x 1	
Ho 12	291°.1 -0.2	11h 10.2m -60° 29′			
Tr 18	291°, 0 0 , 1	11h 09.3m -60° 241	4.0 2.2 3.4	6 x 5	C M S
Carina OB2	290°.0 +0.4	11h 03m -59° 31′	45	50×40	р

Referencias:

C: Clariá (1976). S: Steppe (1975). M: Moffat y Vogt (1975). P: Presente trabajo. •

T	a	b	1	a	V	T	-2
---	---	---	---	---	---	---	----

l Grupo 	No. de miembros	No, de estrellas evolucionadas	E(B-V)	Ref.
 NGC 3590 	20 41	5	0.51 0.62	C I S I
 Ho 10 	10	4	0.49	CI
 Cr 240 (NGC 3572a) 	22		0.41	C I
I I NGC 35726 I	21 41	2	0.46 0.50	MV I S I
 Ho 11 	3	**** ***	0.31	I MV I
 Ho 12 		No es un	c (mu 1 o	I MV I I
 Tr 18 	14	2	0,29 0,47	MV I G I
 Carina OB2	51	7	0,23	
	* 4	,		

Referencias:

C: Clariá (1976). S: Steppe (1975). MV: Moffat y Vogt (1975). G: Graham (1961). P: Presente trabajo.

Tabla VI-3

Grupo	T.E. de la est. mas temp. sobre la sec. ppal.	Edad (años)	distancia (pc)	Ref. I
NGC 3590	B3V 52.5	3.6x10 ⁷	2280 2360	C S
Ho 10	B2.5V	3.6×10^{7}	2800	С
Cr 240	B1V(?)	10 ⁷	2420	С
NGC 3572b	08 60.9		2790 2700	MV S
Ho 11	b 1		2300	M∨
Ho 12		No es u	n cumulo	MV
Tr 18	b5		2300	G MU
	b2.5		1100	S
Carina OB2	087	^{~~} 4 × 10 ⁶	3100	p

Referencias:

C : Clariá (1976), G : Graham (1967), MV : Moffat y Vogt (1975), S : Steppe (1977), P : Presente investigación,

HD	Τ.Ε.	Μv	Vo	Vo-Mv	d (Kpc)	Ref	
	(1)	(1)	(2,3,4)	*** **** **** **** **** **** **** ****			
96715	04V((f))	-5.5	6.91	12.41	3.0	1,3	
96946	067:	-5.3	6,90	12.20	2.7	1,4	
97166	07.5III((f))	-5.6	6.70	12.30	2.9	1,2	
97253	05.5III((f))	-6.0	5.67	12.67	3.4	1,2	
97434	07.5III(n)((f))	-5.6	6.60	12.20	2.7	1,2	

Tabla VI-4

Referencias:

1: Walborn, N., 1973. 2: Clariá, J.J., 1976. 3: Blanco, V.M. y colab., 1968. 4: Klare, G. y Neckel, Th. 1977.

Figura VI-1

!

Figura VI-2

Figura VI-3

Car OB 2

Figura VI-4

Figura VI-5

Referencias correspondientes al Capítulo VI.

- Abt, H.A. y Sanders, W. 1973, Astrophys. J. 186, 177.
- Blanco, V.M., Demers, S. y Douglass, G.G., 1968, Photoelectric Catalogue, Pubic. of the U.S. Naval Observatory, Vol. XXI.
- Clariá, J.J., 1976, Astron. J. 81, 155.
- Georgelin, Y.A. y Georgelin, Y.M., 170, Astron. & Astrophys. 7, 133.
- Feinstein, A., Marraco, H. y Muzzio, J.C., 1973, Astron. & Astrophys. Suppl. 12, 331.
- Graham, J.A., 1967, Mon. Not. Royal Astron. Soc., 135, 377.
- Harris, G.L.H., 1976, Astrophys. J. Suppl. 300, 451.
- Humphreys, R.M., 1972, Astron. & Astroph. 20, 29.
- Humphreys, R.M. y Kerr, F.J., 1974, Astrophysical J. 194, 301.
- Klare, G. y Neckel, Th. 1977, Astron. & Astrophys. Supp. 27, 215
- Lequeux, J. 1980, en "Star Formation", Tenth advanced course of the Swiss Society of Astron. and Astroph., held in Saas-Fee, Switzerland, March 24-29, 1980, A. Maeder and L. Martinet (Eds.). Published by Geneva Observatory, p. 75.
- Levato, H., Morrell, N., García, B. y Malaroda, S. 1988, Astrophys. J. Suppl. número de julio.
- Lindoff, U. 1968, Ark. for Astron., Band 5, No. 1.
- Mermillod, J.C., 1981, Astron. & Astrophys. Suppl. 44, 467.
- Moffat, A.F.J. y Vogt, N, 1975, Astron. & Astrophys. Suppl. 20, 125.

Salpeter, E., 1955, Astrophys. J. 121, 161.

- Seggewiss, W. 1970, en IAU Symp. No. 38, sobre "The Spiral Structure of our Galaxy", Eds. W. Becker y G. Contopoulos, Reidel Publ. Co., Dordrech, Holland, p. 265.
- Steppe, H. 1977, Astron. & Astrophys. Supp. 27, 415.
- Walborn, N., 1973, Astron. J. 78, 1067.
- Walborn, N. y Panek, . 1985, Astrophys. J. 291, 806.

157

INDICE DE TABLAS

INDICE DE TABLAS

- Tabla II-1: Estrellas standard de las regiones E de Cousins (1973,1974), observadas en el presente trabajo.
- Tabla II-2: Estrellas standard de la lista de Landolt (1973), observadas en el presente trabajo.
- Tabla II-3: Standards secundarias pertenecientes al cúmulo abierto NGC 2362.
- Tabla II-4: Coeficientes medios de transformación en el sistema UBV standard, obtenidos en Cerro Tololo entre 1983 y 1985.
- Tabla II-5: Resultados obtenidos a partir de la fotometría UBV de 475 estrellas en la región investigada.
- Tabla II-6: Errores externos de la fotometría UBV.
- Tabla II-7: Errores internos de la fotometría UBV.
- Tabla II-8: Amplitudes de oscilación de estrellas detectadas como posibles variables.
- Tabla II-9: Valores UBV individuales de 50 estrellas reconocidas como probables variables en el presente estudio.
- Tabla III-1: Tipos espectrales de estrellas en la región de Carina OB2 existentes en la literatura.
- Tabla III-2: Tipos espectrales y velocidades de rotación axial proyectada, obtenidas en el presente trabajo, para estrellas en la región de Carina OB2.

- Tabla III-3: Velocidades radiales medidas de estrellas ubicadas en la región de Carina OB2.
- Tabla III-4: Resultados cinemáticos para estrellas con un único valor medido de velocidad radial.
- Tabla III-5: Datos de velocidad radial, para estrellas en la región de Carina OB2, existentes en la literatura.
- Tabla IV-1: Determinación fotométrica de colores intrínsecos, excesos de color, absorción interestelar en el visual y magnitud aparente visual corregida por los efectos de la absorción interestelar, de estrellas O, B y A tempranas.
- Tabla IV-2: Determinación de colores intrínsecos, excesos de color y absorción interestelar visual, a partir de datos espectroscópicos.
- Tabla IV-3: Valores adoptados para los colores intrínsecos, excesos de color, magnitudes absolutas, módulos aparentes de distancia y distancias para estrellas O, B y A tempranas en la región de Carina OB2.
- Tabla V-1: Parámetros adoptados para las estrellas miembros y probables miembros de Carina OB2.
- Tabla V-2: Valores utilizados en el cálculo de la función luminosidad relativa
- Tabla V-3: Valores utilizados en el cálculo de la función de masa relativa.
- Tabla V-4: Resultdos obtenidos a partir del análisis de varianza aplicado a las velocidades radiales.
- Tabla V-5: Parámetros orbitales para aquellas estrellas cuyas órbitas pudieron ser determinadas.

- Tabla VI-1: Coordenadas y dimensiones de los cúmulos y asociaciones presentes en la región adyacente a Carina OB2, según los datos existentes en la literatura.
- Tabla VI-2: Número de miembros, fmero de estrellas evolucionadas y excesos de color E(B-V) medios para los grupos estelares presentes en la zona próxima a Carina OB2.
- Tabla VI-3: Punto terminal, edades y distancias para los grupos presentes en la región.
- Tabla VI-4: Tipos espectrales, magnitudes absolutas y distancias para estrellas brillantes en la región adyacente a Carina OB2.

INDICE DE FIGURAS

- Figura II-1 : Histograma representativo del número de estrellas observadas fotoeléctricamente en función de la magnitud aparente visual.
- Figura IV-1: Diagrama color-color correspondiente a todas fas estrellas observdas en la región de Carina OB2. La línea continua representa la secuencia principal de edad cero de Schmidt-Kaler (1982).
- Figura VI-2: Diagrama color-magnitud V vs.(B-V), correspondiente a todas las estrellas observadas fotoeléctricamente. La línea continua representa la secuencia de Schmidt-Kaler (1982).
- Figura VI-3: Diagrama color-magnitud V vs.(U-B), correspondiente a todas las estrellas en la región de Carina OB2. La línea continua representa la secuencia principal de edad cero de Schmidt-Kaler (1982).
- Figura IV-4: Comparación entre los excesos de color E(B-V) determinados a partir de la fotometría UBV y de la clasificaión espectral.
- Figura IV-5: Comparación de magnitudes absolutas determinadas por distintos procedimientos.
- Figura IV-6: Diagrama Volvs. (B-V)o confeccionado con los datos de la Tabla IV-3.
- Figura IV-7: Diagrama Vo vs. (U-B)o confeccionado con los datos de la Tabla IV-3.
- Figura IV-8: Variación de la distancia de estrellas, en su mayoría O, B y A tempranas, en función del exceso E(B-V) adoptado.
- Figura V-1: Diagrama color-color para los miembros (círculos llenos y probables miembros (círculos abiertos) de Carina OB2. Las estrellas numeradas constituyen el grupo "c" de Seggewiss.
- Figura V-2: Diagrama Vo vs. (B-V)o para los miembros y probables miembros de Carina OB2. Se identifican en particular, las

dos estrellas supergigantes tempranas.

- Figura V-3: Diagrama Vo vs. (U-B)o para los miembros y probables miembros de Carina OB2.
- Figura V-4: Diagrama H-R espectroscópico. Los objetos fuera de secuencia se identifican en la figura.
- Figura V-5: Variación delos módulos aparentes de distancia en función de los excesos de color E(B-V) para los miembros y probables miembros de Carina OB2. La recta indicada en el dibujo corresponde al vlor de R = 3.0, obtenido a partir del método de mínimos cuadrados.
- Figura V-6: Módulo verdadero de distancia corregido versus magnitud aparente corregida para los miembros y probables miembros de Carina OB2. La curva fue tomada de Lindoff (1968). Para el ajuste vertical se obtiene un módulo verdadero de distancia igual a Vo-Mv= 12.75. La escala superior de magnitudes absolutas fue ajustada de acuerdo con el valor de Vo-Mv.
- Figura V-7: Reproducción del diagrama Mv vs. (B-V)o publicado por Mermillod (1981b), para el grupo de edad representado por NGC 6231.
- Figura V-8: Reproducción del diagrama Mv vs. (U-B)o publicado por Mermillod (1981b), para el grupo de edad representado por NGC 6231.
- Figura V-9: Magnitud visual corregida vs. Excesos de color. Los símbolos tienen igual significado que en la figura 6. La Línea discontinua indica el límite observacional, correspondiente a VI=14.5 y Av/E(B-V)=3.
- Figura V-10: Función de luminosidad relativa. Los círculos llenos corresponden a Carina OB2, los abiertos a Collinder 228 y los triángulos a Trumpler 14-16 (los dos últimos según los datos tomados de Forte, 1978).
- Figura V-11: Función de masa relativa correspondiente a Carina OB2.
- Figura V-12: Excesos de color E(B-V) de las estrellas miembros (puntos) y probables miembros (cruces) de Carina OB2 en función del módulo verdadero de distancias.

- Figura V-13: Distribución de los excesos de color E(B-V) de las estrellas miembros de Car OB2 en el plano (ヾ, シ). La línea de trazos corresponde al paralelo galáctico b=+0°4.
- Figura V-14: Distribución de los excesos de color E(B-V) de las estrellas probables miembros de Carina OB2 en el plano (4,5). La línea de trazos corresponde al paralelo galáctico b=+0.4.
- Figura V-15: Curva de velocidad radial para HDE 305938 (estrella #21).
- Figura V-16: Curva de velocidad radial para HDE 305932 (estrella #89).
- Figura V-17: Curva de velocidad radial para HD 96670 (estrella #193). Los círculos corresponden al presente trabajo. Los triángulos representan las observaciones de Thackeray y colaboradores (1973).
- Figura V-18; Curva de velocidad radial para HDE 306035 (estrella #227).
- Figura V-19: Curva de velocidad radial para HDE 305941 (estrella #331).
- Figura V-20: Porcentaje de binarias espectroscópicas con períodos menores que 100 días (izquierda) o menores que 10 días (derecha) más estrellas peculiares para cómulos abiertos versus las respectivas velocidades de rotación en promedio respecto de las estrellas de campo de los mismos tipos espectrales. Los círculos abiertos corresponden a los objetos estudiados por Abt y Sanders (1973), mientras que los círculos llenos representan los cómulos abiertos y asociaciones investigadas por Levato y colaboradores. Carina OB2 ha sido representada mediante un triángulo

INDICE DE CARTAS

- Carta I: Reproducción de una de las Cartas (azul) del ESO Sky Survey en la cual se indican los distintos agregados estelares presentes en la región próxima a la Asociación Carina OB2.
- Carta II: Ampliación de la Carta I en la cual se ilustra en forma específica la región investigada.
- Carta III: Región de Carina OB2 en la cual se han indicado los tipos espectrales MK de las estrellas más luminosas reconocidas como miembros en el presente estudio.
- Carta IV: Imagen obtenida de una placa fotográfica (Kodak 103a-O, 20 minutos de exposición) tomada con el Astrográfico doble de la Estación de Altura El Leoncito, perteneciente al Observatorio Astronómico Félix Aguilar de la provincia de San Juan. Las cinco estrellas brillantes observadas por Hoffleit (1954), se indican en la Carta.
- Carta V: Porción Noroeste de la zona estudiada. Las estrellas observadas en este trabajo se identifican con los correspondientes de Seggewiss (1969).
- Carta VI: Idem Carta V, pero para la porción Noreste de la zona estudiada.
- Carta VII: Idem Carta V, pero para la porción Sureste de la zona estudiada.
- Carta VIII: Idem Carta V, pero para la porción Suroeste de la región estudiada.
- Carta IX: Distribución de regiones HII según Georgelin y Georgelin (1970). En la porción superior del diagrama se distingue la región de la Asociación Carina OB2.
- Carta X: Zonas en que se dividió la región de Carina OB2 para la observación de monóxido de carbono (⁹²CO).

Carta I

Carta II

Carta III

Carta IX

