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Abstract

Focusing on the Ontology Change problem, we consider an environment where Description
Logics (DLs) are the logical formalization to express knowledge bases, and the integration of dis-
tributed ontologies is developed under new extensions and modifications of the Belief Revision
theories yielded originally in [2]. When using tableaux algorithms to reason about DLs, new in-
formation is yielded from the models considered in order to achieve knowledge satisfiability. Here
a whole new theory have to be reinforced in order to adapt belief revision definitions and postu-
lates to properly react over beliefs on extensions generated from these DL’s reasoning services.
In this text we give a brief background of these formalisms and comment the research lines to be
taken in our way to this goal.

1 Introduction
Our main research interest relays in topics like Ontology Integration and Ontology Merging [3], for
what we propose to use theory change formalizations in order to join consistently two terminologies,
redefining or reinforcing sub-concepts. But following the reasoning methods exposed for DLs, like
satisfiability, solved by tableaux algorithms originally defined in [4], a new area of interest arises.
A new set of extensions is obtained from the models considered during the execution of the DL
reasoning service. Here, is imperative to redefine the formalizations of the theory change exposed in
[5] in order to revise beliefs on each extension and transitively in the knowledge base itself. Those
research lines here exposed are a consequence of our previous research works cited in [6], [7] and [5].

The remainder of this paper is disposed as follows. Section 2 gives a brief description of tableau-
based algorithms behavior by achieving satisfiability of two very simple DL examples. Section 3
briefly summarizes the kernel contractions of the theory change formalism. Section 4 explains some
of the preliminary results obtained and the intended research lines to be followed in order to achieve
formal and final results on our investigation. Finally, section 5 concludes making an analysis of this
brief description and raises some new lines of investigation to be followed.

∗This article assumes some extra knowledge on description logics and reasoning services from the reader. For a more
exhaustive reading he may refer to [1].
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2 DLs Reasoning Algorithms
Relevant inference problems usually are reduced to the consistency problem for ABoxes, provided
that the DL at hand allows for conjunction and negation. However, for those description languages
of DL systems that do not allow for negation, subsumption of concepts can be computed by so-called
structural subsumption algorithms, i.e., algorithms that compare the syntactic structure of (possibly
normalized) concept descriptions.

While they are usually very efficient, they are only complete for rather simple languages with little
expressivity. In particular, DLs with (full) negation and disjunction cannot be handled by structural
subsumption algorithms. For such languages, so-called tableau-based algorithms have turned out to
be very useful.

2.1 Basics for Tableau Algorithms
Instead of directly testing subsumption of concept descriptions, these algorithms use negation to re-
duce subsumption to (un)satisfiability of concept descriptions: C v D iff C u ¬D is unsatisfiable.

We illustrate the underlying ideas by two simple examples taken from [8]. Let A, B be concept
names, and let R be a role name. As a first example, assume that we want to know whether (∃R.A)u
(∃R.B) is subsumed by ∃R.(AuB). This means that we must check whether the concept description
C = (∃R.A) u (∃R.B) u ¬(∃R.(A uB)) is unsatisfiable.

Pushing all negation signs as far as possible into the description yields C0 = (∃R.A)u (∃R.B)u
∀R.(¬At¬B), which is in negation normal form, i.e., negation occurs only in front of concept names.

Then, we try to construct a finite interpretation I such that CI
0 6= ∅. This means that there must

exist an individual in ∆I that is an element of CI
0. The algorithm just generates such an individual,

say b, and imposes the constraint b ∈ CI
0 on it, this means that b must satisfy all the three interpreted

conjunctions that composes C0.
From b ∈ (∃R.A)I we can deduce that there must exist an individual c such that (b, c) ∈ RI and

c ∈ AI. Analogously, b ∈ (∃R.B)I implies the existence of an individual d with (b, d) ∈ RI and
d ∈ BI. In this situation, one should not assume that c = d. Thus:

• For any existential restriction the algorithm introduces a new individual as role filler, and this
individual must satisfy the constraints expressed by the restriction.

Since b must also satisfy the value restriction ∀R.(¬At¬B), and c, d were introduced as R-fillers
of b, we obtain the additional constraints c ∈ (¬A t ¬B)I and d ∈ (¬A t ¬B)I. Thus:

• The algorithm uses value restrictions in interaction with already defined role relationships to
impose new constraints on individuals.

Now c might be such that c ∈ (¬A)I or c ∈ (¬B)I. Assume the first possibility leads to an
obvious contradiction, so we must choose the second one c ∈ (¬B)I. Analogously, we must choose
d ∈ (¬A)I in order to satisfy the constraint d ∈ (¬A t ¬B)I without creating a contradiction to
d ∈ BI. Thus:

• For disjunctive constraints, the algorithm tries both possibilities in successive attempts. It
must backtrack if it reaches an obvious contradiction, i.e., if the same individual must satisfy
constraints that are obviously conflicting.

In the example, we have now satisfied all the constraints without encountering an obvious contra-
diction. This shows that C0 is satisfiable, and thus (∃R.A)u (∃R.B) is not subsumed by ∃R.(AuB).
The interpretation generated by the algorithm is ∆I = {b, c, d}; RI = {(b, c), (b, d)}; AI = {c} and
BI = {d}.



In our second example, we now want to know whether (∃R.A) u (∃R.B)u 6 1R is subsumed
by ∃R.(A u B). The tableau-based satisfiability algorithm first proceeds as above, with the only
difference that there is the additional constraint b ∈ (6 1R)I. In order to satisfy this constraint, the
two R-fillers c, d of b must be identified with each other. Thus:

• If an at-most number restriction is violated then the algorithm must identify different role fillers.

The individual c = d must belong to both AI and BI, which together with c = d ∈ (¬A t ¬B)I

always leads to a clash. Thus, the search for a counterexample to the subsumption relationship fails,
and the algorithm concludes that (∃R.A) u (∃R.B)u 6 1R v ∃R.(A uB).

3 Kernel Contractions
The Kernel Contraction operator is applicable to belief bases and belief sets. It consist of a contrac-
tion operator capable of the selection and elimination of those beliefs in K that contribute to infer α.
Definition 3.1 - [9]: Let K be a set of sentences and α a sentence. The set K⊥⊥α, called set of
kernels is the set of sets K ′ such that (1) K ′ ⊆ K , (2) K ′ ` α , and (3) if K ′′ ⊂ K ′ then K ′′ 0 α.
The set K⊥⊥α is also called set of α-kernels and each one of its elements are called α-kernel.

For the success of a contraction operation, we need to eliminate, at least, an element of each α-
kernel. The elements to be eliminated are selected by an Incision Function.
Definition 3.2 - [9]: Let K be a set of sentences and “σ” be an incision function for it such that
for any sentence α it verifies, (1) σ(K⊥⊥α) ⊆

⋃
(K⊥⊥α) and (2) If K ′ ∈ K⊥⊥α and K ′ 6= ∅ then

K ′ ∩ σ(K⊥⊥α) 6= ∅.
Once the incision function was applied, we must eliminate from K those sentences that the in-

cision function selects, i.e., the new belief base would consist of all those sentences that were not
selected by σ.
Definition 3.3 - [9]: Let K be a set of sentences, α a sentence, and K⊥⊥α the set of α-kernels of
K. Let “σ” be an incision function for K. The operator “−σ ”, called kernel contraction determined
by “σ”, is defined as, K −σ α = K\σ(K⊥⊥α).

Finally, an operator “ − ” is a kernel contraction operator for K if and only if there exists an
incision function “σ” such that K − α = K −σ α for all sentence α.

4 First Advances and Future Research Lines
As seen in section 2.1, new beliefs may be generated from a satisfiability process applied following
a tableau-based algorithm. It would be interesting so, to check out what may happen to the theory
change definitions cited in section 3 applied to these extensions.

Let first give an example borrowed from [10] in order to understand more precisely the extensions
obtained during a reasoning process. Let Σ be a knowledge base composed by FRIEND(john, susan),
FRIEND(john, andrea), LOV ES(susan, andrea), LOV ES(andrea, bill), Female(susan),
¬Female(bill).

Now we want to know if is there some not Female loving a Female who is FRIEND of
john. This is a query Σ |=? α such that α is ∃FRIEND.(Femaleu (∃LOV ES.¬Female))(john).
Following the given tableau specifications, note that we have two different possibilities in order to
achieve satisfiability of α, this is, two interpretations (models) named M1 and M2 satisfying the
query Σ |= α, where ¬Female(andrea) ⊆ M1 and Female(andrea) ⊆ M2.

Let analyze the yielding situation with respect to the α-kernels for each model.



1. Considering M1 there is only one proof set K ′ for α, this is Σ⊥⊥α = {FRIEND(john, susan),
Female(susan), LOV ES(susan, andrea),¬Female(andrea)}

2. Considering M2 there is also only one proof set K ′ for α, Σ⊥⊥α = {FRIEND(john, susan),
Female(andrea), LOV ES(andrea, bill),¬Female(bill)}

Now if we verify the restrictions given in definition 3.1 for α-kernels, we realize that the first
restriction K ′ ⊆ Σ is not verified due to the assumption taken during the reasoning service, i.e., the
beliefs adopted from each model M1 and M2 that are not part of the explicit knowledge base Σ. In
order to facilitate further reference to this beliefs, let call K ′

M1
= {¬Female(andrea)} and K ′

M2
=

{Female(andrea)}.
Note that we now have redefined the K ′ proof set as K ′ = K ′

Σ ∪ K ′
M, where K ′

Σ is the proof
subset that is part of the explicit KB Σ, and K ′

M that extends it consistently, is the set of beliefs as-
sumed in M, i.e., that are outside the KB Σ. Now we propose to formally redefine the definition of
the α-kernels in the following way:
Definition 4.1 - Extended Set of α-kernels : Let Σ be a knowledge base and α a sentence. The
set Σ⊥⊥α, called set of kernels is the set of sets K ′ such that (1) K ′ = K ′

Σ ∪ K ′
M, where K ′

Σ ⊆ Σ,
K ′

M 6⊆ Σ, and K ′ 6` ⊥, (2) K ′ ` α, and (3) if K ′′ ⊂ K ′ then K ′′ 0 α. The set Σ⊥⊥α is also called set
of α-kernels and each one of its elements are called α-kernel.

Following with the belief revision connection, let think about an incision function selecting beliefs
from Σ⊥⊥α in order to achieve a contraction of Σ by α, i.e., we want to get Σ −σ α. In this case and
following the original definitions given in definition 3.2, an incision function σ may select beliefs
from each K ′ in Σ⊥⊥α, this means that we may have beliefs taken from K ′

Σ and also from K ′
M. But

now, special care we must have with those beliefs coming from outside the KB, i.e., taken from K ′
M,

because they are “assumed” beliefs and are not explicitly specified in the KB. In this sense we propose
an extended incision function as,

Extended Incision Function: Let Σ be a knowledge base and “σ” be an incision function for it such
that for any sentence α it verifies, (1) σ(Σ⊥⊥α) = σ(KΣ) ∪ σ(KM), where σ(KΣ) ⊆

⋃
(K ′

Σ) selects
beliefs belonging to the KB, and σ(KM) ⊆

⋃
(K ′

M) is an “assumed” subset from outside the KB,
and (2) If K ′ ∈ Σ⊥⊥α and K ′ 6= ∅ then K ′ ∩ σ(Σ⊥⊥α) 6= ∅.

A contraction as defined in definition 3.3 only retracts the selected beliefs in the incision function
from the KB, but now we have a different situation due to possible selected beliefs not belonging to
the KB, i.e., beliefs inside σ(KM). This type of beliefs need a special care in order to be “contracted”
from the KB, because they are not inside the KB, we really need not to contract them from the KB,
but revise their opposites. In this sense, we propose a new hybrid operation as follows,

Hybrid Contraction Determined by σ: Let Σ be a knowledge base, α a sentence, and Σ⊥⊥α the
extended set of α-kernels of Σ. Let “σ” be an extended incision function for Σ. The operator “ >σ ”,
referred as hybrid contraction determined by “σ”, is defined as, Σ >σ α = (Σ\σ(KΣ)) ∗ ¬σ(KM).

Finally, an operator “ > ” is an hybrid contraction operator for Σ if and only if there exists an
extended incision function “σ” such that Σ > α = Σ >σ α for all sentence α.

5 Conclusions and Future Work
Part of the formalization of the relying theory change definitions into a more general flavor in order
to match extra-classic logics like DLs, have being done in [3], where the generalized postulates have
being defined and their pertinent analysis developed.

Considering DLs reasoning services like tableau-based algorithms to solve satisfiability, not only
sets us up in a more direct theory formalization, but also permits us to work purely description lan-



guages without need to translate beliefs to fragments of classic first order logic like we have done
before in [5].

Tableaux algorithms are nowadays probably the most important reasoning algorithms used in the
area. A distinctive feature of this reasoning service is the way it reasons over incomplete information,
inferring new beliefs from knowledge in order to prove clauses’ satisfiability. By this, we have a
totally different way to reason about knowledge, due to a multiple generation of extensions.

When a tableaux algorithm proves satisfiability, it generates models for the knowledge base adding
beliefs to it. But on different models, we have different extensions potentially inconsistent one from
the other. Here we have given a first glimpse to what should be the extended revision of beliefs
on extensions besides the knowledge base revisions we already have. A totally different reasoning
dimension is generated by thinking on extensions if one thinks this is a way of predicting future
information.

Another interesting research line to be studied is the incision function and its reaction over beliefs
outside the KB, or what we have called “assumed” beliefs.
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