
Skeletal Parallel Programming

F. Saez M. Printista F. Piccoli
LIDIC- UNSL

Ejército de los Andes 950, (5700) San Luis, Argentina. TE: 2652-420823

e-mail: {bfsaez@unsl.edu.ar, mprinti@unsl.edu.ar, mpiccoli@unsl.edu.ar}

Abstract

In the last time the high-performance program-
ming community has worked to look for new
templates or skeletons for several parallel pro-
gramming paradigms. This new form of pro-
gramming allows to programmer to reduce the
time of development, since it saves time in the
phase of design, testing and codification. We are
concerned in some issues of skeletons that are
fundamental to the definition of any skeletal par-
allel programming system. This paper present
commentaries about these issues in the context
of three types of D&C skeletons.

1 Programming with Skele-
tons

A skeleton is a generic tool that allows to de-
fine a concrete problem creating instances of the
general method that implements it. From these
skeletons programs can be derived models that
illustrate as the paradigm solves specific prob-
lems [2].

The essence of this methodology of program-
ming is that all program model has a par-
allel component that implements a pattern or
paradigm (provided by the skeletons) and a spe-
cific sequential component of an application (in
charge of the user). The clear separation of the
issues of parallelism and the details of applica-
tions are essential for writing programs that are

easy to understand.
The objective of these templates is to reduce

difficulties of software development by means of
parallel program’s reusability. For example, we
are familiar with concepts such as “divide and
conquer”, “pipeline” and “dynamic program-
ming”. When investigating a new problem we
may try to formulate a solution in one of these
well known styles. Since we already know how
to implement the essential computational struc-
ture of each technique, it will only be necessary
to introduce problem specific details to produce
a new program. The user will only choose one
of these methods of resolution without worried
in aspects related to them, neither to the depen-
dent code of target architecture.

We have defined several sketelons as a set of C
functions on top of MPI library [3, 4, 6]. In this
paper we will provide a simple example, which
involves three different implementations from
skeletons corresponding to the Divide and Con-
quer (D&C) paradigm. These skeletons or high
level constructors extend MPI model, allowing
the programmer codifies the sequential compo-
nents of a specific D&C problem, whereas the
communication and synchronization aspects be-
tween processors are solved by the skeleton and
its support. The section 2 describes the D&C
Skeletons.

This simplification allows us to disscus some
issues of skeletons that are fundamental to the
definition of any skeletal parallel programming
system. We are concerned in examinig the ways



in which particular skeletons divide responsabil-
ity betweeen implementation and the program-
mer. In order to that, it is useful to distinguish
the external and internal view of one skeleton.
The external view is caracterized by the degree
of “programmability”; it is to say the posibil-
ity to write and modify parallel programs eas-
ily, and to prove their correctness against spec-
ifications. The internal view is represented by
the way in which the constituent processes of
skeleton (activities) may interact and the com-
munications constrains between these activities
(interactions) [1]. The sections 3 and 4 present
commentaries about these issues in the context
of D&C skeletons. Our conclusions are in sec-
tion 5.

2 Divide and Conquer Skele-
tons

The divide and conquer approach, presented in
Figure 1, finds the solution of a problem x by
dividing x in subproblems x0 and x1 (divide)
and applying recursively the same resolution
scheme. This recursive procedure ends when the
subproblems are small enough, in which case,
another procedure (conquer) is used to solve the
problem. The two subproblems (lines 7 and 8)
in this typical structure can be done in parallel.
This techniques is the basis of all parallel pro-
gramming, in one form or another. Therefore,
we can find several parallel formulations for this
kind of computation.

1 procedure DC(x: Problem; r: Result);
2 begin
3 if trivial(x) then conquer(x, r)
4 else
5 begin
6 divide(x, x0, x1);
7 DC(x0,r0);
8 DC(x1,r1);
9 combine(r, r0, r1);
10 end;
11 end;

Figure 1: Scheme of algorithm D&C

We are developed three types of skeletons,
called ParD&C [4], D&C − H [6] and forall
[3].

The ParD&C skeleton is the straight imple-
mentation of algorithm “divide and conquer”.
It maintains a recursive structure and it gener-
ates, while there are available processors, a bi-
nary tree of groups of processes whose leaves
contains a single processor. In each recursion, a
group of processors is divided in two sub-groups
that solve the subproblems to be combined [5].

Other skeleton to solve algorithms D&C, is
a parallel clause derived of model OTMP [3].
Design and implementation of this clause were
made in MPI and proven for several problems in
different targets. To explain the work of forall
is necessary to indicate that in OTMP model the
processors are organized in groups. In any mo-
ment, the state of the memory (input data and
program) is the same for each processor in the
group. When computation starts, all processors
belong to same group, then when they reach
forall clause, the group is divided in sub-groups
and each processor decides in terms of his iden-
tification what sub-group will belong. When
clause ends, the sub-groups are joined in origi-
nal group. The constructor definition takes the
form:
forall (i,first, last, FunctionStetament[i],

PosMemoryArea[i], SizeMemoryArea[i])

The programmer states that the different
FunctionStetament[i] of the loop can be per-
formed independently in parallel. The results
of the execution of the ith iteration are stored in
the memory area pointed by PosMemoryArea[i],
and SizeMemoryArea[i] is the size in bytes. first
and last indicate how is the wide of process’s
tree.

The third skeleton, Hypercube Divide and
Conquer (D&C − H) provides a structure
with hyper-cubical communication between pro-
cesses. Taking care of hiding the mapping and
routing problems, this structure will be transpar-
ent to the programmers. The constructor defini-
tion takes the form:



void MPI_Hypercube (MPI_Comm Comm, int Tag,
TMessage TMInput,
TMessage TMOutput,
TOperacionInicial PtrFtDistribution,
TOperacionFinal PtrFtProcessing,
unsigned int SetupSecuence)

The first two parameters are used to coordi-
nate communications in MPI . Two phases must
be performed in order to ensure a proper use of
skeletons: initialization and sweep phases. Dur-
ing initialization phase, the user must configure
the parameters in order to allow the sweeping
takes place. After that, by each level of hy-
percube, the following task are executed: “Call
to a Distribution Function”, “Send and Receive
of Messages” and “Call to a Processing Func-
tion”. The implementation of D&C − H skele-
ton introduces two new data types. THyperInfo
provides to programmer with information of the
current state of execution, and TMessage imple-
ments a generic buffer used by programmer to
send (TMInput) or receive (TMOutput) data from
skeleton. SetupSecuence is a stream of bits that
indicates the direction of the sweeping or se-
quence of levels to follow in the execution of hy-
percube.

The key of this skeleton are their distributing
and processing functions. The call to distribution
function (PtrF tDistribution) is made previous
to the communication among processes, with the
purpose to “divide” or prepare the data. Then,
in case of receiving a message from the part-
ner in the hypercube, the skeleton combines this
message and the data of the local state, calling
to processing function (PtrF tProcessing). Fi-
nally the output corresponds with the data stored
in the local state, when finalizing the sweep.
The processing function has the responsibility
to combine the received message from the part-
ner with its local data. If there is no message
to receive, then the call to the processing func-
tion is ignored. Both functions depend on a
specific problem to solve and they must be pro-
vided by the user. The programmers will have to
consider the responsibilities that concern to each
one. Nevertheless they are under the control of

MPI Hypercube primitive.

3 Programmability

We were introduced three skeletons or high
level constructors to obtain solutions to Divide
and Conquer problems. Each one ParD&C,
forall and D&C −H provides different way to
help programmer to develop parallel algorithms.
Some commentaries are exposed in next sen-
tences.

In the ParD&C skeleton are necessary to pre-
pare the structures to send, besides explicitly to
indicate the partner of a process in the hyper-
cube, situation that is totally transparent for the
user in the other two skeletons.

As an important abstraction, D&C − H and
forall skeleton allow to hide the stop point
of the hypercube. However in instances of
ParD&C is necessary to make a control on the
availability of processors.

With respect to encapsulation, D&C − H is
the only implementation that allows access to
internal state of the execution through Hyper-
info structure; on the other hand, ParD&C use
global variables, and the case of implementation
with forall does not allow any type of interac-
tivity once reached the clause forall.

The separation of sequential and parallel as-
pects in D&C − H establishes an forced in-
terface for distribution and processing function.
In these functions the programmer is forced to
know and to respect several guidelines. e.g. dis-
tribution function must to create the message to
be sent, in another case the send operation is ig-
nored. Viewed the different instances with this
skeleton we noticed that no there clarity in the
location of components to divide and combine
an algorithm D&C. Perhaps the most significant
and complicated point at the time to think a so-
lution with this constructor is when we thought
about recursive solution of problem (natural in
the paradigm D&C), and we must solve it with
a recursion in distribution function without take



advantage of hypercube’s sweep that implements
D&C − H .

The parD&C constructor although with less
problems cannot completely isolate the paral-
lel component of paradigm D&C, since the use
of global variables is necessary for implement
certain control in the constructor. On the other
hand, the forall constructor reaches a well de-
fined interface that separate all the parallel as-
pects of problem. However these skeletons clar-
ify the zone to implement the sequential solu-
tions.

The hiding of parallel aspects in forall is to-
tal. With D&C−H constructor was necessary to
interact in distribution and processing functions
with details like e.g. which level of the sweep
hypercube is the execution?, What processor is
executing now?, etc. In the case of parD&C al-
though hides most of the parallel aspects, leaves
the synchronization of the nodes in the hyper-
cube to programmer.

ParD&C skeleton models in an abstract way
the concept divide and conquer, it is clearest to
understand and it provides the best performance
in two instantiated applications. A clear point
that must be improve is hiding of information re-
spect to partnership between processors.

Is easily understood that forall skeleton
arises with the necessity to satisfy a greater set
of requirements for D&C algorithms (e.g. load
balance). This amplitude of cases entails to gain
a little of complexity, by to add entrance param-
eters to cover the different cases. However this
complexity does not influence in the clear sep-
aration between the parallel and sequential as-
pects, neither in the run times reached, very sim-
ilar to reached for ParD&C. The third skele-
ton analyzed in this work, D&C − H , it was
very criticized in most of the analyzed proper-
ties. However we found in it desirable character-
istic like the possibility of to provide structures
(e.g. Hyperinfo and TMessage) that allows store
information about execution of algorithm. This
is a very important characteristic at the time of
debug a parallel application.

4 Interaction Mode

The purpose of any skeleton is to abstract a pat-
tern of activities (process) and their interactions
(messages for distributed memory MIMD). It is
useful to further distinguish internal and exter-
nal interactions. Internal interactions occur be-
tween two or more activities, whereas external
interactions occur between activities and the en-
closing context. For example, in a pipeline, an
interaction between two stages is internal, but
an interaction between the initial stage and the
source of pipeline inputs is external. Abstrac-
tion of skeletons constrains the way in which its
constituent activities may interact. There are two
types of constraints in the interaction between
activities, spatial constraints determine the ac-
tivities with which it may interact and the direc-
tions these interactions may take (partner activi-
ties), and temporal constraints determine the al-
lowable orderings of interactions between part-
ners. For example, in a pipeline, a spatial con-
straints determine the partner stages (activities)
of any stage in the pipeline are the preceding and
succeding stages. A temporal restriction may re-
quire that a stage interacts first with its predeces-
sor then its successor.

Recursive implementation of the ParD&C
generates in run time a binary tree of groups or
sets of activities. The root is a group formed by
all the activities (with binary addresses from 0
to 2n − 1 that are adjusted to hypercube topol-
ogy), and the leaves nodes with groups of a sin-
gle activity. In each recursive call, the group of
activities is divided in two, the first subgroup has
activities with first bit of address in 0, the second
subgroup has activities with first bit of address
in 1. The skeleton internal spatial constraints are
imposed by hypercube topology, therefore each
activity in the first subgroup makes a partnership
with an activity of the second group in a way but-
terfly. For temporal constraints, partners activi-
ties communicates in synchronous way, sending
half results to partner and receiving of it other
half results, then skeleton combines results in a



single solution. It is necessary to highlight that
all the activities have external interactions with
main program, they receiving all input data from
main program, and returning a complete result to
main program (Class of Replied-Replied prob-
lems (RR) [6]).

The structure of D&C − H skeleton con-
sists of an initialization stage and a level block
stage. The Initialization stage is in charge of
external interactions with main program. Each
one of activities receive a portion of input data,
and generate a portion of the solution (Class of
Distributed-Distributed problems (DD) [6]). The
level block stage is in charge of to call to dis-
tribution function, the interaction between ac-
tivities and to call to processing function. The
interaction between activities is organized in
the same way that previous skeleton, activities
have a temporal constraints imposed by hyper-
cube. The synchronization of processes is sin-
crnomous between partners too.

The forall parallel clause is derived from
OTMP model. This model extends the sequen-
tial paradigm with a constructor of parallel itera-
tion and global communication. This clause, like
ParD&C, behaves with an Replied-Replied ex-
ternal interaction. In this skeleton the number of
independent activities is determined by the num-
ber of iterations (M iterations), forming this way
a hypercube of orden M of groups of processes.
The number of processes assigned to each group
can be balanced if the problem demands its. The
spatial constraints are imposed by partnership re-
lation among processors give place to comunica-
tion patterns among processors that are topolog-
ically similar to a hypercube.

5 Conclusion

We have analysed the issues of “Programmabil-
ity” and “Interaction mode” as aspects of design
of skeletal parallel programming frameworks.

We were examined, by means of several D&C
examples, that these characteritics are not always

easy to abord. However, on explicit specification
of them will clarify the use of a particular skele-
ton.

Acknowledgments

We wish to thank the Universidad Nacional de
San Luis, the ANPCYT and the CONICET from
which we receive continuous support.

References

[1] A. Benoit and M. Cole. Two fundamental
concepts in skeletal parallel programming.
V.S. Sunderam et al. (Editors), ICCS 2005,
LNCS 3515, pages 764–771, 2005.

[2] Murray Cole. Algorithmic Skeletons: Struc-
tured Management of Parallel Computation.
1989.

[3] F. Piccoli, M. Printista, and C. Rodriguez
Len. Dynamic Hypercubic Parallel Compu-
tations. Proceeding (466) Parallel and Dis-
tributed Computing and Systems, 2005.

[4] F.D. Saez. Paradigmas de Programacin Par-
alela. Degree Thesis submited to UNSL,
2004.

[5] F.D. Saez, R. Gallard, and M. Printista.
Paradigms of Parallel Programming. Work-
shop de Investigadores en Ciencias de la
Computacin (WICC 2003), Tandil, Ar-
gentina, May 2003.

[6] J.G. Zanabria. Hypercubic Comunications
in MPI. Degree Thesis submited to UNSL,
2005.


