
Traveltime inversion for 2-D anomaly stru
turesDanilo R. Velis1(A

epted in Geophysi
s, February 13, 2001)Abstra
tThis work presents a traveltime inversion method that utilizes parametri
 fun
tions for representing 2-D anomalystru
tures. These fun
tions are des
ribed by a small set of unknown parameters whi
h are in turn obtained aftersolving a highly nonlinear optimization problem via simulated annealing (SA). The pro
edure favors neither smoothnor high 
ontrasting anomalies and keeps the number of unknowns very small so as to make the problem tra
tableusing SA. Yet, the strategy allows one to a

ommodate a large 
lass of velo
ity models. Results indi
ate thatthis new approa
h typi
ally yields better images 
ompared with a standard linearized inversion based on a 
ellparameterization s
heme.1 Introdu
tionTraveltime tomography is a valuable tool for imaging the Earth subsurfa
e. Curved ray traveltime tomography wasoriginally developed by Bois et al. (1972) for estimating the velo
ity distribution between two wells. As opposed tostraight ray traveltime tomography, 
urved ray traveltime tomography is a highly nonlinear problem. This is due to thefa
t that the arrival-times are nonlinearly related to the unknown velo
ity �eld. In other words, not only the velo
itydistribution is unknown, but also the raypaths. Usually, the problem is solved using linearizing te
hniques in aniterative fashion, where the velo
ity �eld is represented by a network of 
ells with 
onstant velo
ity. In general, a goodstarting model is required and some form of regularization or model 
onstraints must be introdu
ed in the obje
tivefun
tion to stabilize the solution and to minimize the artifa
ts generated by the inversion, for the nonuniquenessasso
iated with this underdetermined inverse problem (Nolet, 1987; Bregman et al., 1989). The main diÆ
ulty 
omesfrom the fa
t that usually the ray density in some regions of the grid is very low (Vesnaver, 1994).The use of basis fun
tions di�erent from a rigid grid of re
tangular 
ells o�er an interesting approa
h to solve thetomography problem. In many 
ases, it is possible to obtain good �ts to the true model and to inhibit the 
reationof inversion artifa
t using relative 
oarse meshes or appropriate parametri
 representations. Mi
helini (1995), forexample, uses and adaptive B-spline gridding pro
edure where the node positions are optimized together with thevelo
ity values. Velis and Ulry
h (1995) 
arry out this optimization by means of SA. Sen et al. (1993) also 
ombineB-splines and SA, but for the inversion of resistivity data. Natural pixels have been used by Mi
helena and Harris(1991) to also signi�
antly redu
e the number of degrees of freedom in traveltime tomography. Other strategies makeuse of adaptive irregular grids to in
rease the number of pixels in areas well 
onstrained by the data (high ray density),and to de
rease their number in poorly 
overed domains (B�ohm et al., 1997; B�ohm and Vesnaver, 1999).In this work I use parametri
 fun
tions for de�ning 2-D anomaly stru
tures, either smooth or high 
ontrasting,using a few adjustable parameters (Velis, 1998b; Velis, 1998a). The inverse problem is then 
ast as a nonlinearoptimization problem where the unknowns are the 
enter of the anomaly, size, shape, et
. These parameters, whi
hare 
omplemented by a ba
kground velo
ity model (e.g. a linear trend), are obtained by means of SA. The 
oeÆ
ientsof the trend represent extra parameters in the traveltime inversion. Chunduru et al. (1995) also use SA to estimatethe parameters de�ning 2-D geometri
al bodies in a resistivity inversion 
ontext. But these stru
tures are parti
ular
ases of the parameterization s
heme adopted in this work to solve the tomography problem.The parametri
 fun
tions introdu
e strong nonlinearities into the optimization problem. Besides the resultingobje
tive fun
tion (mis�t between observed and 
al
ulated arrival times) is multimodal and rather ill-behaved. Toavoid premature 
onvergen
e and lo
al minima, I make use of very fast simulated annealing (VFSA) (Ingber, 1989) to�nd the global minimum of the obje
tive fun
tion. Traveltimes at ea
h iteration are 
omputed using a �nite di�eren
emethod (Vidale, 1988; Aldridge and Oldenburg, 1993). The strategy may �nd appli
ation in mining and ar
haeologyprospe
tion, as well as in other near surfa
e studies.1Departamento de Geof��si
a Apli
ada, Observatorio Astron�omi
o, Paseo del Bosque s/n, La Plata 1900, Argentina. E-mail:velis�f
aglp.unlp.edu.ar
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Figure 1: (a) One-dimensional velo
ity anomaly fun
tion for various slopes. (b) Two-dimensional velo
ity anomalyfun
tion for various shape parameters (
at region only).2 Model representationThe parameterization s
heme adopted in this paper for representing a 2-D velo
ity �eld, v(x; z), is intended to o�er analternative to 
ell parameterization so as to redu
e the number of parameters to a minimum. Yet, it allows a 
ertain
exibility to a

ommodate 
omplex stru
tures.I 
onstru
ted 2-D anomalies based on 1-D fun
tions. Essentially, the anomaly is represented by two separate parts:(1) a \
at" region of width 2R and amplitude A; and (2) the \slopes" at ea
h side of the 
at region. Let x = x
 bethe 
enter of the 1-D anomaly, then I de�ne its velo
ity asva(x) = �A; jx� x
j � Rf(jx� x
j �R); otherwise (1)where f(x) = A1 + ( x�R )2 ; � > 0 (2)This fun
tion has its maximum, A, at x = 0, and tends to zero asymptoti
ally as x ! �1. The fa
tor �, adimensionless 
onstant, is de�ned in su
h a way that �R is the distan
e from the 
enter at whi
h the maximum off(x) de
reases by a fa
tor of two. That is, f(j�Rj) = f(0)=2 = A=2. This parameter is a measure of the width of thefun
tion f(x). As a result, it 
ontrols the slopes of fun
tion va(x).Figure 1a shows a series of 1-D anomalies with unit amplitude and unit width, 
entered at x
 = 0. Noti
e howthe slopes of va(x) vary with di�erent values of �. For � ! 0, f(x) ! 0, and the anomaly redu
es to a box
ar. For�!1, f(x)! A, and the \anomaly" is 
at for all x. It is important to remark that equation (1) is 
ontinuous anddi�erentiable everywhere, even at x = x
 �R, sin
e f(0) = A, and f 0(0) = 0. Equation (1) allows one to model eithersmooth or high 
ontrasting 1-D anomalies, using only 4 parameters, namely x
, A, R, and �.In 2-D, one 
an make use of equation (1) to 
onstru
t 2-D anomaly fun
tions with similar features. Let's rede�nethe \radius" of the 
at region, R, as the distan
e between the 
enter of the anomaly, (x
; z
), and the following 
urve:jx� x
jpRpx + jz � z
jpRpz = 1; p > 0: (3)Here I have introdu
ed a new parameter, p, that helps to 
ontrol the shape of the 
at region boundary. Noti
e thatfor p = 2, equation (3) be
omes an ellipse of 
enter (x
; z
) and semiaxes Rx and Rz. Further, if Rx = Rz, it be
omesa 
ir
le. In pra
ti
e, R is 
al
ulated by �nding the interse
tion point, (xR; zR), between the line 
onne
ting (x
; z
)and (x; z), with the 
urve (3), where (x; z) is a generi
 point in the xz-plane. After some algebrai
 manipulation,�xR = x
 + x�x
~r ;zR = z
 + z�z
~r ; (4)2



where ~r = � jx� x
jpRpx + jz � z
jpRpz �1=p : (5)Then, sin
e R(x; z) = r(xR; zR), R = r=~r, where r = p[(x � x
)2 + (z � z
)2℄.To de�ne the slopes of the anomaly, it is useful to keep the same shape that is used for the 1-D 
ase for r > R, thatis f(r) = A1 + ( r�R )2 : (6)Finally, the 2-D anomaly fun
tion is de�ned asva(r) = �A; r � Rf(r �R); otherwise (7)As in the 1-D 
ase, va(r) is 
ontinuous up to the �rst derivative, ex
ept for p � 1. The 
exibility of this modelrepresentation and the meaning of all the parameters required to de�ne the 2-D anomaly, are illustrated in Figure 1bfor various p, (x
; z
) = (0; 0), Rx = 1:0, and Rz = 0:5. Noti
e how the anomaly takes on di�erent shapes as p varies.The shape of the anomaly 
an be 
hanged easily by adjusting the appropriate parameters for the 
at region, alongwith the fa
tor �. For example, values of p smaller than or equal to one 
an also be sele
ted. The resulting 
at regiontakes on a diamond-like shape. For p = 2 the 
at region be
omes an ellipse (or a 
ir
le), and for p!1 it be
omes are
tangle of size 2Rx � 2Rz.In addition, the whole anomaly is rotated an angle � around the axis normal to the xz-plane passing through its
enter. This is done using the transformation�x0 = x
 + (x� x
) 
os � � (z � z
) sin �z0 = z
 + (x� x
) sin � + (z � z
) 
os �; (8)where (x0; z0) are the new 
oordinates in the rotated frame. Finally, a linear ba
kground 
an also be in
luded:vb(x; z) = v0 + gx(x� xmin) + gz(z � zmin); (9)where v0 is the ba
kground velo
ity, and gx and gz are the velo
ity gradients in ea
h dimension. The total number ofparameters is K = 11. That is, number of anomaly parameters + number of ba
kground 
oeÆ
ients. Then, the modelspa
e 
an be expressed as the K-length ve
tor given bym = fA; x
; z
; Rx; Rz; p; �; �; v0; gx; gzg: (10)The des
ribed strategy for representing 2-D anomaly stru
tures 
an be readily extended for dealing with 3-D models.In this 
ase one 
an use the same formulation as in the 2-D 
ase, with the addition of extra parameters su
h as y
,Ry, �, and gy, for the 
enter, s
ale, azimuth, and velo
ity gradient, respe
tively.3 Forward modelingI adopted the �nite-di�eren
e (FD) method (Vidale, 1988; Aldridge and Oldenburg, 1993) to 
ompute the traveltimesgiven a velo
ity model and a sour
e-re
eiver geometry. Raypaths are not required sin
e the SA inversion is based onthe 
omputation of the traveltimes only. The FD method is based on the solution of the eikonal equation by means of�nite-di�eren
es. On
e a model parameterization has been 
hosen, the velo
ity �eld is sampled over an equally spa
edgrid of Nx � Nz square 
ells, vij = v(xi; zj), where xi = xmin + (i � 1)h, i = 1; � � � ; Nx, and zi = zmin + (j � 1)h,j = 1; � � � ; Nz, and v(x; z) = vb(x; z) + va(x; z) (11)The \sampling" pro
ess is repeated at ea
h iteration after the 
orresponding parameters have been updated by theSA algorithm. 3



4 Inverse modelingThe traveltime inversion problem is 
ast as a nonlinear optimization problem. For this purpose, I de�ne the 
ostfun
tion �(m) = 1N NXn=1wnjT on � T 
n(m)jq (12)where wn are weights, and N is the number of observations. This equation expresses the mis�t between the observedand 
al
ulated traveltimes. In general, q = 2 and wn = 1, whi
h leads to a standard least-squares optimization. Butother values for q and wn 
an also be used. The obje
tive is to minimize equation (12) with respe
t to m, su
h that�(m) � �tol = �q ; (13)where �tol is a toleran
e 
ost asso
iated with the observational errors, and � is the expe
ted mis�t. Note that � hasthe same units as traveltimes. In general, an estimate of the right-hand side of equation (13) is available, so � is ameasure of the goodness-of-�t of the model to the observed data.In addition to minimizing �(m), I spe
ify a set of bounding 
onstraints of the formAk � mk � Bk; k = 1; � � � ;K (14)This is to avoid undesirable models that may lead to erroneous velo
ity �elds (e.g. negative velo
ity values). Also,they may be used to spe
ify some prior geophysi
al knowledge about the underlying model (e.g. an approximatelo
ation of the anomaly), and to \freeze" a 
ertain model parameter by setting Ak = Bk, for some k, in 
ase it isknown by other means.Due to the severe nonlinearities introdu
ed by the sele
ted parameterization, gradient-based te
hniques for mini-mizing equation (12) are prone to 
onverge to a lo
al minimum. This fa
t 
an be visualized by 
onsidering parameterssu
h as x
 and z
. By slighting 
hanging one of those parameters, some raypaths may or may not traverse the anomaly.This e�e
t might produ
e abrupt 
hanges and/or dis
ontinuities in the 
ost fun
tion, spe
ially when the borders of theanomaly are sharp. So, instead of using gradient-based methods, I 
arry out the minimization of �(m) by means ofVFSA. VFSA, an improved SA method, is a versatile and eÆ
ient method for �nding the global minimum of arbitrarynonlinear obje
tive fun
tions and it only requires one to solve the forward problem at ea
h iteration. Details of themethod will not be given here, and the reader is referred to (Ingber, 1989)5 ExamplesThree models representing various buried stru
tures were 
onsidered (refer to Figure 2). Model 1 and Model 3 illustrateanomaly bodies with sharp velo
ity 
ontrasts, while Model 2 represents a smooth anomaly body. Traveltimes aregenerated using the FD method over a 100 � 100 grid. Distan
es are given in meters, traveltimes in millise
onds,and velo
ities in kilometers per se
ond. The a
quisition geometry 
onsists of several sour
es and re
eivers distributeduniformly along the surfa
e and two verti
al boreholes. Both 
rosswell and well-to-surfa
e (VSP) data were 
olle
tedusing: (1) 5 sour
es in ea
h well and 5 re
eivers on the surfa
e (VSP data), and (2) 5 sour
es in the left well and 5re
eivers in the right well (
rosswell data).In the simulations below, data are 
ontaminated with uniform random noise with zero mean and amplitude �b,where b is a per
entage of the maximum observed traveltime. Assuming all weights are equal to one in equation (12),the expe
ted mis�t redu
es to � = b=(q+1)1=q. For q = 2, � = b=p3. In the inversion, the SA iteration stopped whenthe 
ost fun
tion rea
hed the expe
ted mis�t (13), or after a maximum number of iterations (3000 by default). Ea
hiteration involves the solution of the forward problem on
e. Initial parameter values are sele
ted at random from thespe
i�ed sear
h limits. For simpli
ity, the velo
ity gradients gx and gz are set equal to zero in all 
ases.For illustrative purposes only, SA solutions are 
ompared with linearized (LIN) solutions (Aldridge and Oldenburg,1993). This approa
h utilizes a standard 
ell parameterization to represent the model. Though this representation isable to a

ommodate a larger 
lass of velo
ity stru
tures than the s
heme proposed here, the smoothness imposed bythe regularization (to alleviate the nonuniqueness and instability of the inverse problem) favors smooth solutions.4
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Figure 2: Anomaly models (and raypath 
overage) used in the traveltime inversion.Model 1 Model 2Parameter True Mean True Mean Sear
h rangeA (km/s) 0.5 0:5� 0:0 0.5 0:5� 0:0 0{1x
 (m) 40.0 40:5� 1:2 50.0 50:7� 0:6 10{90z
 (m) 40.0 40:0� 0:5 40.0 39:7� 0:6 10{90Rx (m) 15.0 11:3� 2:1 20.0 22:4� 2:0 0{50Rz (m) 25.0 19:0� 3:7 10.0 10:8� 1:2 0{50p 4.0 5:3� 1:9 2.0 2:4� 0:3 1{10� 0.0 0:3� 0:2 0.5 0:3� 0:1 0{1� (deg) 60.0 63:0� 4:7 20.0 18:8� 3:7 0{90v0 (km/s) 2.0 2:0� 0:0 2.0 2:0� 0:0 1{3Table 1: Estimated model parameters after 3000 iterations in Models 1 and 2 (10 runs).Model 1Model 1 illustrates a high 
ontrasting anomaly model that sits on a 
onstant velo
ity ba
kground �eld (see Figure 2).The velo
ity of the anomaly is 2.5 km/s and the ba
kground velo
ity is 2.0 km/s. Traveltimes were then 
ontaminatedwith 1% random noise (b = �0:61), whi
h yields � ' 0:35 ms. Figure 3 shows the inversion using the SA approa
h(10 independent realizations2), and Table 1 summarizes the results. In general, the expe
ted mis�t was a
hievedafter 2000-3000 iterations, as shown in Figure 4. It 
an be seen that the true model shape and size were re
overedquite a

urately in most 
ases. The �gure also depi
ts the inversion using the linearizing approa
h. The LIN solutiona
hieved the expe
ted mis�t, too, but the resulting model is smoother than the SA solution. Due to the low raypath
overage, the shape and size of the anomaly was not re
overed as a

urately as in the SA 
ase. This 
an be betterappre
iated by inspe
ting the error models whi
h are also depi
ted in Figure 3. Red areas (errors equal or larger than10%) dominate a large part of the LIN error model. These models were 
omputed byerror model = true model� re
overed modeltrue model � 100%: (15)Model 2Model 2 represents a smooth ellipti
al body embedded in a 
onstant ba
kground velo
ity (Figure 2). The ba
kgroundvelo
ity is 2.0 km/s, and the maximum velo
ity of the anomaly body is 2.5 km/s. The results of the inversion are shown2Independent realizations were obtained by feeding the random number generator that governs the SA pro
ess with di�erent seeds.5



1 2 3 4 5

109876

1.7 2.62.2 1.7 2.62.2 1.7 2.62.2 0 105 0 105

0

50

100

de
pt

h 
(m

)

50 100
offset (m)

0

0

50

100

de
pt

h 
(m

)

50 100
offset (m)

0 50 100
offset (m)

0 50 100
offset (m)

0 50 100
offset (m)

0

velocity (km/s) velocity (km/s) velocity (km/s) error (%)error (%)

0

50

100

de
pt

h 
(m

)

True Mean SA LIN SA error LIN error

Figure 3: Traveltime inversion in Model 1. The numbered panels show 10 independent SA inversions.
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Figure 5: Traveltime inversion in Model 2. The numbered panels show 10 independent SA inversions.in subsequent panels of Figure 5 and summarized in Table 1. The random noise has b = 0:60 ms, whi
h 
orrespondsto an expe
ted mis�t � ' 0:35 ms. When 
ompared to the LIN inversion, both results are in good agreement withthe true model, though the SA solution appears to be somehow smoother and 
loser to the original model.Model 3In this experiment, two obje
ts with sharp velo
ity 
ontrasts were embedded in a 
onstant ba
kground velo
ity of 2.0km/s, as shown in Figure 2. The velo
ities of the stru
tures are 1.75 km/s and 2.5 km/s. Here, the random noisehas b = 0:64 ms (� ' 0:37 ms). The results of the inversion using SA after 3000 iterations are shown in Figure 6 andTable 2. Sin
e the LIN approa
h imposes smoothness for stabilizing the inversion, the re
onstru
ted model is not asa

urate as the SA solution. The spreading around the low velo
ity obje
t is evident due to the poor raypath 
overagein this area.In the previous examples, the number of buried obje
ts was known a priori. In pra
ti
e, one might guess thisnumber from observing the LIN solution. When there is no 
lue about how many buried stru
tures to look for, asimple strategy would be to perform su

essive runs seeking for an in
reasing number of anomaly stru
tures. Whenthe expe
ted mis�t is a
hieved, the solution obtained so far might be the 
orre
t. The idea is to sear
h for the leastnumber of obje
ts that �t the data. Clearly, the issue of looking for a wrong number of buried obje
ts needs furtherinvestigation.6 Con
lusionsI have demonstrated the ability of the des
ribed traveltime tomography pro
edure for imaging anomaly stru
tures. Thetraveltime inverse problem is 
ast as a 
onstrained nonlinear optimization problem, whi
h is solved by means of VFSA7



Body #1 Body #2Parameter True Mean True Mean Sear
h rangeA (km/s) 0.5 0:5� 0:0 -0.25 �0:16� 0:1 0{1/-1{+1x
 (m) 60.0 61:2� 0:6 20.0 23:6� 3:7 50{80/10{50z
 (m) 20.0 20:1� 0:3 60.0 61:1� 2:2 10{50/50{80Rx (m) 7.5 5:9� 0:7 7.5 12:2� 4:2 5{30Rz (m) 21.0 17:7� 2:1 21.0 20:6� 2:9 5{30p 10.0 7:1� 2:7 10.0 6:2� 3:1 2{12� 0.0 0:1� 0:1 0.5 0:3� 0:1 0{0.5� (deg) 90.0 89:9� 1:7 0.0 �8:6� 28:4 -90{+90v0 (km/s) 2.0 2:0� 0:0 { { 1{3Table 2: Estimated model parameters after 3000 iterations in Model 3 (10 runs).in an attempt to �nd the global minimum regardless the initial model. The results of the inversion using syntheti
 dataare in very good agreement with the original models. The main drawba
k of the traveltime inversion problem presentedin this work relies perhaps in the fa
t that it is a time 
onsuming pro
ess. As 
ompared to linearizing methods, whi
husually require just a few iterations (3-10), the SA approa
h requires a mu
h larger number (1500-3000). For the sizeof the models used here, this represented a few minutes in a Sun Ultra 1 workstation. The methodology 
an be readilyextended to deal with 3-D models.7 A
knowledgmentThis resear
h was partially funded by the Consortium for the Development of Spe
ialized Seismi
 Te
hniques (CDSST),University of British Columbia, Canada. I a
knowledge support from Fa
ultad de Cien
ias Astron�omi
as y Geof��si
as(Universidad Na
ional de La Plata), Agen
ia Na
ional de Promo
i�on Cient���
a y Te
nol�ogi
a (BID 802/OC{AR) andConsejo Na
ional de Investiga
iones Cient���
as y T�e
ni
as (PIP 0363/98), Argentina.8 Referen
esAldridge, D., and Oldenburg, D., 1993, Two dimensional tomography inversion with �nite-di�eren
e traveltimes: J.Seism. Expl., 2, 257{274.B�ohm, G., and Vesnaver, A., 1999, In quest of the grid: Geophysi
s, 64, no. 4, 1116{1125.B�ohm, G., Rossi, G., and Vesnaver, A., 1997, 3-D adaptive tomography by Voronoi polygons: 67th Ann. Internat.Mtg., So
. Expl. Geophys., Expanded Abstra
ts, 2019{2022.Bois, P., Porte, M. L., Lavergne, M., and Thomas, G., 1972, Well-to-well seismi
 measurements: Geophysi
s, 37, no.3, 471{480.Bregman, N., Bailey, R., and Chapman, C., 1989, Crosshole seismi
 tomography: Geophysi
s, 54, 200{215.Chunduru, R., Sen, M., Sto�a, P., and Nagendra, R., 1995, Non-linear inversion of resistivity pro�ling data form someregular geometri
al bodies: Geophys. Prosp., 43, 979{1003.Ingber, L., 1989, Very fast simulated re-annealing: Mathl. Comput. Modelling, 12, 967{973.Mi
helena, R., and Harris, J., 1991, Tomographi
 traveltime inversion using natural pixels: Geophysi
s, 56, no. 5,635{644.Mi
helini, A., 1995, An adaptive-grid formalism for traveltime tomography: Geophys. J. Int., 121, 489{510.Nolet, G., Ed., 1987, Seismi
 tomography with appli
ations in global seismology and exploration geophysi
s D. Reidel,Dordret
ht, The Netherlands. 8



1 2 3 4 5

109876

1.7 2.62.2 1.7 2.62.2 1.7 2.62.2 0 105 0 105

0

50

100

de
pt

h 
(m

)

50 100
offset (m)

0

0

50

100

de
pt

h 
(m

)

50 100
offset (m)

0 50 100
offset (m)

0 50 100
offset (m)

0 50 100
offset (m)

0

velocity (km/s) velocity (km/s) velocity (km/s) error (%)error (%)

0

50

100

de
pt

h 
(m

)
LIN errorSA errorLINMean SATrue

Figure 6: Traveltime inversion in Model 3. The numbered panels show 10 independent SA inversions.Sen, M., Bhatta
harya, B., and Sto�a, P., 1993, Nonlinear inversion of resistivity sounding data: Geophysi
s, 58,496{507.Velis, D. R., and Ulry
h, T. J., 1995, Traveltime tomography using very fast simulated annealing: 65th AnnualInternat. Mtg., So
. Expl. Geophys., Expanded Abstra
ts, 1055{1057.Velis, D. R., 1998a, Appli
ation of simulated annealing to some seismi
 problems: Ph.D. thesis, University of BritishColumbia, Van
ouver, Canada.||{ 1998b, Nonlinear traveltime inversion: a parametri
 approa
h: 68th Ann. Internat. Mtg., So
. Expl. Geophys.,Expanded Abstra
ts, 1720{1723.Vesnaver, A., 1994, Towards the uniqueness of tomographi
 inversion solutions: J. Seis. Expl., 3, 323{334.Vidale, J., 1988, Finite-di�eren
e 
al
ulation of traveltimes: Bull. Seis. So
. Am., 78, 2062{2076.

9


