
Traveltime inversion for 2-D anomaly struturesDanilo R. Velis1(Aepted in Geophysis, February 13, 2001)AbstratThis work presents a traveltime inversion method that utilizes parametri funtions for representing 2-D anomalystrutures. These funtions are desribed by a small set of unknown parameters whih are in turn obtained aftersolving a highly nonlinear optimization problem via simulated annealing (SA). The proedure favors neither smoothnor high ontrasting anomalies and keeps the number of unknowns very small so as to make the problem tratableusing SA. Yet, the strategy allows one to aommodate a large lass of veloity models. Results indiate thatthis new approah typially yields better images ompared with a standard linearized inversion based on a ellparameterization sheme.1 IntrodutionTraveltime tomography is a valuable tool for imaging the Earth subsurfae. Curved ray traveltime tomography wasoriginally developed by Bois et al. (1972) for estimating the veloity distribution between two wells. As opposed tostraight ray traveltime tomography, urved ray traveltime tomography is a highly nonlinear problem. This is due to thefat that the arrival-times are nonlinearly related to the unknown veloity �eld. In other words, not only the veloitydistribution is unknown, but also the raypaths. Usually, the problem is solved using linearizing tehniques in aniterative fashion, where the veloity �eld is represented by a network of ells with onstant veloity. In general, a goodstarting model is required and some form of regularization or model onstraints must be introdued in the objetivefuntion to stabilize the solution and to minimize the artifats generated by the inversion, for the nonuniquenessassoiated with this underdetermined inverse problem (Nolet, 1987; Bregman et al., 1989). The main diÆulty omesfrom the fat that usually the ray density in some regions of the grid is very low (Vesnaver, 1994).The use of basis funtions di�erent from a rigid grid of retangular ells o�er an interesting approah to solve thetomography problem. In many ases, it is possible to obtain good �ts to the true model and to inhibit the reationof inversion artifat using relative oarse meshes or appropriate parametri representations. Mihelini (1995), forexample, uses and adaptive B-spline gridding proedure where the node positions are optimized together with theveloity values. Velis and Ulryh (1995) arry out this optimization by means of SA. Sen et al. (1993) also ombineB-splines and SA, but for the inversion of resistivity data. Natural pixels have been used by Mihelena and Harris(1991) to also signi�antly redue the number of degrees of freedom in traveltime tomography. Other strategies makeuse of adaptive irregular grids to inrease the number of pixels in areas well onstrained by the data (high ray density),and to derease their number in poorly overed domains (B�ohm et al., 1997; B�ohm and Vesnaver, 1999).In this work I use parametri funtions for de�ning 2-D anomaly strutures, either smooth or high ontrasting,using a few adjustable parameters (Velis, 1998b; Velis, 1998a). The inverse problem is then ast as a nonlinearoptimization problem where the unknowns are the enter of the anomaly, size, shape, et. These parameters, whihare omplemented by a bakground veloity model (e.g. a linear trend), are obtained by means of SA. The oeÆientsof the trend represent extra parameters in the traveltime inversion. Chunduru et al. (1995) also use SA to estimatethe parameters de�ning 2-D geometrial bodies in a resistivity inversion ontext. But these strutures are partiularases of the parameterization sheme adopted in this work to solve the tomography problem.The parametri funtions introdue strong nonlinearities into the optimization problem. Besides the resultingobjetive funtion (mis�t between observed and alulated arrival times) is multimodal and rather ill-behaved. Toavoid premature onvergene and loal minima, I make use of very fast simulated annealing (VFSA) (Ingber, 1989) to�nd the global minimum of the objetive funtion. Traveltimes at eah iteration are omputed using a �nite di�erenemethod (Vidale, 1988; Aldridge and Oldenburg, 1993). The strategy may �nd appliation in mining and arhaeologyprospetion, as well as in other near surfae studies.1Departamento de Geof��sia Apliada, Observatorio Astron�omio, Paseo del Bosque s/n, La Plata 1900, Argentina. E-mail:velis�faglp.unlp.edu.ar
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Figure 1: (a) One-dimensional veloity anomaly funtion for various slopes. (b) Two-dimensional veloity anomalyfuntion for various shape parameters (at region only).2 Model representationThe parameterization sheme adopted in this paper for representing a 2-D veloity �eld, v(x; z), is intended to o�er analternative to ell parameterization so as to redue the number of parameters to a minimum. Yet, it allows a ertainexibility to aommodate omplex strutures.I onstruted 2-D anomalies based on 1-D funtions. Essentially, the anomaly is represented by two separate parts:(1) a \at" region of width 2R and amplitude A; and (2) the \slopes" at eah side of the at region. Let x = x bethe enter of the 1-D anomaly, then I de�ne its veloity asva(x) = �A; jx� xj � Rf(jx� xj �R); otherwise (1)where f(x) = A1 + ( x�R )2 ; � > 0 (2)This funtion has its maximum, A, at x = 0, and tends to zero asymptotially as x ! �1. The fator �, adimensionless onstant, is de�ned in suh a way that �R is the distane from the enter at whih the maximum off(x) dereases by a fator of two. That is, f(j�Rj) = f(0)=2 = A=2. This parameter is a measure of the width of thefuntion f(x). As a result, it ontrols the slopes of funtion va(x).Figure 1a shows a series of 1-D anomalies with unit amplitude and unit width, entered at x = 0. Notie howthe slopes of va(x) vary with di�erent values of �. For � ! 0, f(x) ! 0, and the anomaly redues to a boxar. For�!1, f(x)! A, and the \anomaly" is at for all x. It is important to remark that equation (1) is ontinuous anddi�erentiable everywhere, even at x = x �R, sine f(0) = A, and f 0(0) = 0. Equation (1) allows one to model eithersmooth or high ontrasting 1-D anomalies, using only 4 parameters, namely x, A, R, and �.In 2-D, one an make use of equation (1) to onstrut 2-D anomaly funtions with similar features. Let's rede�nethe \radius" of the at region, R, as the distane between the enter of the anomaly, (x; z), and the following urve:jx� xjpRpx + jz � zjpRpz = 1; p > 0: (3)Here I have introdued a new parameter, p, that helps to ontrol the shape of the at region boundary. Notie thatfor p = 2, equation (3) beomes an ellipse of enter (x; z) and semiaxes Rx and Rz. Further, if Rx = Rz, it beomesa irle. In pratie, R is alulated by �nding the intersetion point, (xR; zR), between the line onneting (x; z)and (x; z), with the urve (3), where (x; z) is a generi point in the xz-plane. After some algebrai manipulation,�xR = x + x�x~r ;zR = z + z�z~r ; (4)2



where ~r = � jx� xjpRpx + jz � zjpRpz �1=p : (5)Then, sine R(x; z) = r(xR; zR), R = r=~r, where r = p[(x � x)2 + (z � z)2℄.To de�ne the slopes of the anomaly, it is useful to keep the same shape that is used for the 1-D ase for r > R, thatis f(r) = A1 + ( r�R )2 : (6)Finally, the 2-D anomaly funtion is de�ned asva(r) = �A; r � Rf(r �R); otherwise (7)As in the 1-D ase, va(r) is ontinuous up to the �rst derivative, exept for p � 1. The exibility of this modelrepresentation and the meaning of all the parameters required to de�ne the 2-D anomaly, are illustrated in Figure 1bfor various p, (x; z) = (0; 0), Rx = 1:0, and Rz = 0:5. Notie how the anomaly takes on di�erent shapes as p varies.The shape of the anomaly an be hanged easily by adjusting the appropriate parameters for the at region, alongwith the fator �. For example, values of p smaller than or equal to one an also be seleted. The resulting at regiontakes on a diamond-like shape. For p = 2 the at region beomes an ellipse (or a irle), and for p!1 it beomes aretangle of size 2Rx � 2Rz.In addition, the whole anomaly is rotated an angle � around the axis normal to the xz-plane passing through itsenter. This is done using the transformation�x0 = x + (x� x) os � � (z � z) sin �z0 = z + (x� x) sin � + (z � z) os �; (8)where (x0; z0) are the new oordinates in the rotated frame. Finally, a linear bakground an also be inluded:vb(x; z) = v0 + gx(x� xmin) + gz(z � zmin); (9)where v0 is the bakground veloity, and gx and gz are the veloity gradients in eah dimension. The total number ofparameters is K = 11. That is, number of anomaly parameters + number of bakground oeÆients. Then, the modelspae an be expressed as the K-length vetor given bym = fA; x; z; Rx; Rz; p; �; �; v0; gx; gzg: (10)The desribed strategy for representing 2-D anomaly strutures an be readily extended for dealing with 3-D models.In this ase one an use the same formulation as in the 2-D ase, with the addition of extra parameters suh as y,Ry, �, and gy, for the enter, sale, azimuth, and veloity gradient, respetively.3 Forward modelingI adopted the �nite-di�erene (FD) method (Vidale, 1988; Aldridge and Oldenburg, 1993) to ompute the traveltimesgiven a veloity model and a soure-reeiver geometry. Raypaths are not required sine the SA inversion is based onthe omputation of the traveltimes only. The FD method is based on the solution of the eikonal equation by means of�nite-di�erenes. One a model parameterization has been hosen, the veloity �eld is sampled over an equally spaedgrid of Nx � Nz square ells, vij = v(xi; zj), where xi = xmin + (i � 1)h, i = 1; � � � ; Nx, and zi = zmin + (j � 1)h,j = 1; � � � ; Nz, and v(x; z) = vb(x; z) + va(x; z) (11)The \sampling" proess is repeated at eah iteration after the orresponding parameters have been updated by theSA algorithm. 3



4 Inverse modelingThe traveltime inversion problem is ast as a nonlinear optimization problem. For this purpose, I de�ne the ostfuntion �(m) = 1N NXn=1wnjT on � T n(m)jq (12)where wn are weights, and N is the number of observations. This equation expresses the mis�t between the observedand alulated traveltimes. In general, q = 2 and wn = 1, whih leads to a standard least-squares optimization. Butother values for q and wn an also be used. The objetive is to minimize equation (12) with respet to m, suh that�(m) � �tol = �q ; (13)where �tol is a tolerane ost assoiated with the observational errors, and � is the expeted mis�t. Note that � hasthe same units as traveltimes. In general, an estimate of the right-hand side of equation (13) is available, so � is ameasure of the goodness-of-�t of the model to the observed data.In addition to minimizing �(m), I speify a set of bounding onstraints of the formAk � mk � Bk; k = 1; � � � ;K (14)This is to avoid undesirable models that may lead to erroneous veloity �elds (e.g. negative veloity values). Also,they may be used to speify some prior geophysial knowledge about the underlying model (e.g. an approximateloation of the anomaly), and to \freeze" a ertain model parameter by setting Ak = Bk, for some k, in ase it isknown by other means.Due to the severe nonlinearities introdued by the seleted parameterization, gradient-based tehniques for mini-mizing equation (12) are prone to onverge to a loal minimum. This fat an be visualized by onsidering parameterssuh as x and z. By slighting hanging one of those parameters, some raypaths may or may not traverse the anomaly.This e�et might produe abrupt hanges and/or disontinuities in the ost funtion, speially when the borders of theanomaly are sharp. So, instead of using gradient-based methods, I arry out the minimization of �(m) by means ofVFSA. VFSA, an improved SA method, is a versatile and eÆient method for �nding the global minimum of arbitrarynonlinear objetive funtions and it only requires one to solve the forward problem at eah iteration. Details of themethod will not be given here, and the reader is referred to (Ingber, 1989)5 ExamplesThree models representing various buried strutures were onsidered (refer to Figure 2). Model 1 and Model 3 illustrateanomaly bodies with sharp veloity ontrasts, while Model 2 represents a smooth anomaly body. Traveltimes aregenerated using the FD method over a 100 � 100 grid. Distanes are given in meters, traveltimes in milliseonds,and veloities in kilometers per seond. The aquisition geometry onsists of several soures and reeivers distributeduniformly along the surfae and two vertial boreholes. Both rosswell and well-to-surfae (VSP) data were olletedusing: (1) 5 soures in eah well and 5 reeivers on the surfae (VSP data), and (2) 5 soures in the left well and 5reeivers in the right well (rosswell data).In the simulations below, data are ontaminated with uniform random noise with zero mean and amplitude �b,where b is a perentage of the maximum observed traveltime. Assuming all weights are equal to one in equation (12),the expeted mis�t redues to � = b=(q+1)1=q. For q = 2, � = b=p3. In the inversion, the SA iteration stopped whenthe ost funtion reahed the expeted mis�t (13), or after a maximum number of iterations (3000 by default). Eahiteration involves the solution of the forward problem one. Initial parameter values are seleted at random from thespei�ed searh limits. For simpliity, the veloity gradients gx and gz are set equal to zero in all ases.For illustrative purposes only, SA solutions are ompared with linearized (LIN) solutions (Aldridge and Oldenburg,1993). This approah utilizes a standard ell parameterization to represent the model. Though this representation isable to aommodate a larger lass of veloity strutures than the sheme proposed here, the smoothness imposed bythe regularization (to alleviate the nonuniqueness and instability of the inverse problem) favors smooth solutions.4



ve
lo

ci
ty

 (k
m

/s
)

1.7

2.2

2.6

Model 3Model 1 Model 2

0 50 100
offset (m)

0 50 100
offset (m)

0

50

100
0 50 100

offset (m)

de
pt

h 
(m

)

Figure 2: Anomaly models (and raypath overage) used in the traveltime inversion.Model 1 Model 2Parameter True Mean True Mean Searh rangeA (km/s) 0.5 0:5� 0:0 0.5 0:5� 0:0 0{1x (m) 40.0 40:5� 1:2 50.0 50:7� 0:6 10{90z (m) 40.0 40:0� 0:5 40.0 39:7� 0:6 10{90Rx (m) 15.0 11:3� 2:1 20.0 22:4� 2:0 0{50Rz (m) 25.0 19:0� 3:7 10.0 10:8� 1:2 0{50p 4.0 5:3� 1:9 2.0 2:4� 0:3 1{10� 0.0 0:3� 0:2 0.5 0:3� 0:1 0{1� (deg) 60.0 63:0� 4:7 20.0 18:8� 3:7 0{90v0 (km/s) 2.0 2:0� 0:0 2.0 2:0� 0:0 1{3Table 1: Estimated model parameters after 3000 iterations in Models 1 and 2 (10 runs).Model 1Model 1 illustrates a high ontrasting anomaly model that sits on a onstant veloity bakground �eld (see Figure 2).The veloity of the anomaly is 2.5 km/s and the bakground veloity is 2.0 km/s. Traveltimes were then ontaminatedwith 1% random noise (b = �0:61), whih yields � ' 0:35 ms. Figure 3 shows the inversion using the SA approah(10 independent realizations2), and Table 1 summarizes the results. In general, the expeted mis�t was ahievedafter 2000-3000 iterations, as shown in Figure 4. It an be seen that the true model shape and size were reoveredquite aurately in most ases. The �gure also depits the inversion using the linearizing approah. The LIN solutionahieved the expeted mis�t, too, but the resulting model is smoother than the SA solution. Due to the low raypathoverage, the shape and size of the anomaly was not reovered as aurately as in the SA ase. This an be betterappreiated by inspeting the error models whih are also depited in Figure 3. Red areas (errors equal or larger than10%) dominate a large part of the LIN error model. These models were omputed byerror model = true model� reovered modeltrue model � 100%: (15)Model 2Model 2 represents a smooth elliptial body embedded in a onstant bakground veloity (Figure 2). The bakgroundveloity is 2.0 km/s, and the maximum veloity of the anomaly body is 2.5 km/s. The results of the inversion are shown2Independent realizations were obtained by feeding the random number generator that governs the SA proess with di�erent seeds.5
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Figure 3: Traveltime inversion in Model 1. The numbered panels show 10 independent SA inversions.
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Figure 4: VFSA onvergene after 3000 iterations (10 independent realizations).6
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Figure 5: Traveltime inversion in Model 2. The numbered panels show 10 independent SA inversions.in subsequent panels of Figure 5 and summarized in Table 1. The random noise has b = 0:60 ms, whih orrespondsto an expeted mis�t � ' 0:35 ms. When ompared to the LIN inversion, both results are in good agreement withthe true model, though the SA solution appears to be somehow smoother and loser to the original model.Model 3In this experiment, two objets with sharp veloity ontrasts were embedded in a onstant bakground veloity of 2.0km/s, as shown in Figure 2. The veloities of the strutures are 1.75 km/s and 2.5 km/s. Here, the random noisehas b = 0:64 ms (� ' 0:37 ms). The results of the inversion using SA after 3000 iterations are shown in Figure 6 andTable 2. Sine the LIN approah imposes smoothness for stabilizing the inversion, the reonstruted model is not asaurate as the SA solution. The spreading around the low veloity objet is evident due to the poor raypath overagein this area.In the previous examples, the number of buried objets was known a priori. In pratie, one might guess thisnumber from observing the LIN solution. When there is no lue about how many buried strutures to look for, asimple strategy would be to perform suessive runs seeking for an inreasing number of anomaly strutures. Whenthe expeted mis�t is ahieved, the solution obtained so far might be the orret. The idea is to searh for the leastnumber of objets that �t the data. Clearly, the issue of looking for a wrong number of buried objets needs furtherinvestigation.6 ConlusionsI have demonstrated the ability of the desribed traveltime tomography proedure for imaging anomaly strutures. Thetraveltime inverse problem is ast as a onstrained nonlinear optimization problem, whih is solved by means of VFSA7



Body #1 Body #2Parameter True Mean True Mean Searh rangeA (km/s) 0.5 0:5� 0:0 -0.25 �0:16� 0:1 0{1/-1{+1x (m) 60.0 61:2� 0:6 20.0 23:6� 3:7 50{80/10{50z (m) 20.0 20:1� 0:3 60.0 61:1� 2:2 10{50/50{80Rx (m) 7.5 5:9� 0:7 7.5 12:2� 4:2 5{30Rz (m) 21.0 17:7� 2:1 21.0 20:6� 2:9 5{30p 10.0 7:1� 2:7 10.0 6:2� 3:1 2{12� 0.0 0:1� 0:1 0.5 0:3� 0:1 0{0.5� (deg) 90.0 89:9� 1:7 0.0 �8:6� 28:4 -90{+90v0 (km/s) 2.0 2:0� 0:0 { { 1{3Table 2: Estimated model parameters after 3000 iterations in Model 3 (10 runs).in an attempt to �nd the global minimum regardless the initial model. The results of the inversion using syntheti dataare in very good agreement with the original models. The main drawbak of the traveltime inversion problem presentedin this work relies perhaps in the fat that it is a time onsuming proess. As ompared to linearizing methods, whihusually require just a few iterations (3-10), the SA approah requires a muh larger number (1500-3000). For the sizeof the models used here, this represented a few minutes in a Sun Ultra 1 workstation. The methodology an be readilyextended to deal with 3-D models.7 AknowledgmentThis researh was partially funded by the Consortium for the Development of Speialized Seismi Tehniques (CDSST),University of British Columbia, Canada. I aknowledge support from Faultad de Cienias Astron�omias y Geof��sias(Universidad Naional de La Plata), Agenia Naional de Promoi�on Cient���a y Tenol�ogia (BID 802/OC{AR) andConsejo Naional de Investigaiones Cient���as y T�enias (PIP 0363/98), Argentina.8 ReferenesAldridge, D., and Oldenburg, D., 1993, Two dimensional tomography inversion with �nite-di�erene traveltimes: J.Seism. Expl., 2, 257{274.B�ohm, G., and Vesnaver, A., 1999, In quest of the grid: Geophysis, 64, no. 4, 1116{1125.B�ohm, G., Rossi, G., and Vesnaver, A., 1997, 3-D adaptive tomography by Voronoi polygons: 67th Ann. Internat.Mtg., So. Expl. Geophys., Expanded Abstrats, 2019{2022.Bois, P., Porte, M. L., Lavergne, M., and Thomas, G., 1972, Well-to-well seismi measurements: Geophysis, 37, no.3, 471{480.Bregman, N., Bailey, R., and Chapman, C., 1989, Crosshole seismi tomography: Geophysis, 54, 200{215.Chunduru, R., Sen, M., Sto�a, P., and Nagendra, R., 1995, Non-linear inversion of resistivity pro�ling data form someregular geometrial bodies: Geophys. Prosp., 43, 979{1003.Ingber, L., 1989, Very fast simulated re-annealing: Mathl. Comput. Modelling, 12, 967{973.Mihelena, R., and Harris, J., 1991, Tomographi traveltime inversion using natural pixels: Geophysis, 56, no. 5,635{644.Mihelini, A., 1995, An adaptive-grid formalism for traveltime tomography: Geophys. J. Int., 121, 489{510.Nolet, G., Ed., 1987, Seismi tomography with appliations in global seismology and exploration geophysis D. Reidel,Dordretht, The Netherlands. 8
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Figure 6: Traveltime inversion in Model 3. The numbered panels show 10 independent SA inversions.Sen, M., Bhattaharya, B., and Sto�a, P., 1993, Nonlinear inversion of resistivity sounding data: Geophysis, 58,496{507.Velis, D. R., and Ulryh, T. J., 1995, Traveltime tomography using very fast simulated annealing: 65th AnnualInternat. Mtg., So. Expl. Geophys., Expanded Abstrats, 1055{1057.Velis, D. R., 1998a, Appliation of simulated annealing to some seismi problems: Ph.D. thesis, University of BritishColumbia, Vanouver, Canada.||{ 1998b, Nonlinear traveltime inversion: a parametri approah: 68th Ann. Internat. Mtg., So. Expl. Geophys.,Expanded Abstrats, 1720{1723.Vesnaver, A., 1994, Towards the uniqueness of tomographi inversion solutions: J. Seis. Expl., 3, 323{334.Vidale, J., 1988, Finite-di�erene alulation of traveltimes: Bull. Seis. So. Am., 78, 2062{2076.
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