
KRolog: A Prolog based interface for the Khepera robots

Edgardo Ferretti
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)

Universidad Nacional de San Luis
Ej ército de los Andes 950 - Local 106, (5700) - San Luis - Argentina

ferretti@unsl.edu.ar

Marcelo Errecalde
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)

Universidad Nacional de San Luis
Ej ército de los Andes 950 - Local 106, (5700) - San Luis - Argentina

merreca@unsl.edu.ar

and

Guillermo Simari
Departamento de Ciencias e Ingenierı́a de la Computacíon

Universidad Nacional del Sur
Av. Alem 1253, (8000) Bah́ıa Blanca, Argentina

grs@cs.uns.edu.ar

ABSTRACT
In this paper we presentKRologa Prolog based inter-
face to work with simulated and realKheperarobots.
The interface hides low-level robot-computer com-
munication and provides a high-order set of predi-
cates to develop programs in a declarative manner.
This paper describes the software we have developed
to support the hardware platform we use in cognitive
robotics research at the LIDIC.
Keywords: Khepera, Webots, Prolog, Cognitive
Robotics, Coordination models.

1. INTRODUCTION
One of the main objectives of the research line “Intel-
ligent Agents” of the LIDIC, is the design, implemen-
tation, and application of high-level multi-agent coor-
dination models. This study is carried out through a
theoretic and practical approach. The confrontation
with the real world is done using a group ofKhep-
era 2 [1] mobile robots, with capabilities to pick and
transport objects and perform different kinds of en-
vironment sensing. Moreover, before the direct ex-
perimentation with the robots we also perform robots
simulations withWebots[2], a 3D realistic profes-
sional simulator. Furthermore, the use of this sim-
ulator allows us to model situations with more than
three robots, the number of robots that we have at the
laboratory.

Our aim is to develop deliberative agents to con-
trol the robots coordination, and many of the aspects
related to the robots’ behavior require an expressive

representation language that easily reflect the deci-
sion processes made by the agents. At this end, we
decided to develop an interface in Prolog, a program-
ming language that has already been used to develop
applications in the field of cognitive robotics [3, 4].

In this way, the use of this interface allow us to ig-
nore the low-level details related with the robots (e.g.
dealing with the size of the robot, the steering an-
gles needed, the slippage of the wheels, sensors noise,
etc.), and helps us to concentrate on the high-level
problem specification.

2. KHEPERA 2 ROBOT OVERVIEW
TheKhepera 2robot, is a miniature mobile robot that
allows confrontation to the real world of algorithms
developed in simulation for trajectory execution, ob-
stacle avoidance, pre-processing of sensory informa-
tion, hypothesis on behaviors processing, among oth-
ers. Its small size (60 mm diameter, 30 mm height),
light weight (approx. 70 grams), and compact shape
are ideal for micro-world experimentation. TheKhep-
era 2has eight infrared sensors to sense both ambient
light levels and proximity to nearby objects. It also
has two DC motors that are capable of independent
variable speed motion, allowing the robot to move
forward, backward, and complete a variety of turns
at different speeds.

As can be observed in Figure 1, theKhepera 2has
several extension modules that can be plugged into
the top of the robot. These include an arm with a grip-
per, a linear vision system, and a matrix vision cam-



era. TheKhepera 2has an on-board Motorola 68331
(25MHz) processor, 512 KB RAM, 512 KB Flash
memory programmable via serial port, and recharge-
able NiMH batteries that allows it up to 60 minutes of
autonomy. Thus, theKheperahas sufficient sensors
and actuators to ensure that it can be programmed to
complete a wide variety of tasks.

When connected to a host computer through the
serial port, theSemCor control protocol is used to
send control messages to the robot. As the robot may
need to send an answer message to the host, ASCII
messages are used to communicate between them.
Each interaction consist of:

• A command, beginning with one or two ASCII
capital letters and followed, if necessary, by
numerical or literal parameters separated by a
comma and terminated by a carriage return or
a line feed, sent by the host computer to the
Khepera 2robot.

• A response, beginning with the same one or
two ASCII letters of the command but in lower
case and followed, if necessary, by numerical
or literal parameters separated by a comma and
terminated by a carriage return and a line feed,
sent by theKheperato the host computer.

During the entire communication, the host computer
acts as a master and the robot as a slave. All commu-
nications are initiated by the master.

Code can also be uploaded into theKhepera’s
memory for a standalone execution. Programs writ-
ten in C language or in M68000 assembly language,
can be compiled under many environments using a
cross compiler and uploaded in RAM or flashed in
non volatile memory. A complete API is available,
either in C or assembly language, for programs to in-
terface with the robot hardware.

3. THE KROLOG INTERFACE
TheKRologinterface is currently developed as aCiao
Prolog [5] module running under the Linux operating
system. To our view,Ciao is one of the most com-
plete Prolog systems that allows the programmer to
use sockets, multi-threads, Java and C embedded code
in Prolog programs and vice versa, among others. In
addition, it provides a fully integrated programming
environment with the text editorEmacs, that allows
the programmer to run, debug, compile, and syntax
correction of Prolog programs.

This interface uses theKRobot class[6] to man-
age the serial port communication with the robot. The
KRobot classdeveloped by Harlan et al., hides low-
level robot-computer communication and allows de-
velopers to focus on robot/environment interaction.

As our interface has been programmed in Prolog,
it extends the functionalities provided by theKRobot
class in that it allows representing the knowledge

about the world in a declarative manner, and to de-
rive new representations of the world, and use them
to deduce what to do.

In Figure 2 theKRologinterface scheme is shown.
As can be observed it has a three layer architecture
and it is able to interact with real robots and simulated
ones. This interface has been designed to communi-
cate withWebotsin the same way it does with the real
Khepera 2robots.

Next, we describe in details this three layers that
compose our interface.

The low level communication layer
This layer handles all the details related with se-

rial communication among the robots and the high-
level predicates of our interface. This layer is com-
posed by two modules, one for the real robots and
another for interfacing the simulator.

The KRobot class
The KRobot classis the base building block for

the module that communicates with the robots. This
C++ class maintains the information of the robot’
state and provides a set of methods equivalent to
the SemCor protocol commands. For instance, the
command to read from the proximity sensors situated
around the robot is:
N
where to this command theKheperawould respond
with the following string, if it had hit an object by its
front part:
n,0,259,1023,1023,278,0,0,0
The response is returned as a C-style string and must
be parsed to determine the values of each of the prox-
imity sensors.

In contrast, if we want to read the proximity sen-
sors of aKhepera 2robot associated with an ob-
ject r of the typeKRobot , we just have to invoke
the methodr.readProxSensors(); and it saves
these values in an internal structure of the object.
Then, each of these sensor values can be accessed
by the methodr.getProxSensor(i); with 0 ≤
i ≤ 7.

Webots interface
In Webots, the DifferentialWheels node

defines any differentially wheeled robot. Thus,
the Khepera 2 robot is an instance of the
DifferentialWheels node with its fields com-
pleted to match its shape and functionalities.

In this way, the module that handles the commu-
nication between the Prolog interpreter and the simu-
lator translates the predicates available in theKRolog’
API, to their respective commands of theWebots’
controllers API.

The interconnection layer
The development of this layer adheres the

paradigm of a TCP/IP connection-oriented protocol,
using Berkeley sockets.



Figure 1:Khepera 2robot and its accessories

Figure 2: TheKRologinterface scheme

In Section 2 was mentioned that during the entire
communication, the host computer acts as a master
and the robot as a slave, and that all the communi-
cations were initiated by the master. In consequence,
the robots’ control modules were programmed with
the corresponding code of a server, while the predi-
cates available in the API are seen as clients.

When the API’s predicates should sent a com-
mand to a real or simulated robot, they launch a tem-
porary client (programmed in C) that communicates
to the server (the real or simulated robot) and waits for
its answer. This operation is repeated as many times
as predicates are used in the Prolog code that controls
the robots behavior. In Figure 3, this communication
process is depicted.

As a final remark, one advantage of using TCP/IP
sockets to develop this layer, is that it makes it pos-
sible to interact with a global camera (that covers the
robots’ world) and its video and command communi-

cation servers that process the images it obtains, and
generate information packets that are then made avail-
able to be used by the agents that control the robots.
For instance, one alternative would be using theDo-
raemonvideo server [7], the one used in the E-League
competition [8].

The API

The API is composed by 24 predicates, one for
eachKRobot class’methods. As all theSemCor
commands after being issued receive a result or a
confirmation from theKheperarobots, all the pred-
icates have a variable as parameter that matches
this answer. Those variables namedOutb matches
boolean values,Outint matches integer values,
while Outlist matches list of atoms. These pred-
icates are used without distinction to communicate
with a real or simulated robot. Next, we can see the
predicates and a brief explanation for each one:



Figure 3: Functioning of the interconnection layer

• reset(Outb) : Resets the wheel counters to
zero. Sets speed and acceleration to default set-
tings.

• moveForward(Lw,Rw,Outb) : Makes the
robot’ left and right motors to move forward in-
definitely at speedsLw andRw, respectively.

• moveForwardDistance(D,Outb) : Makes
robot move forwardDmillimeters.

• moveBackward(Lw,Rw,Outb) : Makes the
robot’ left and right motors to move backward
indefinitely at speedsLw andRw, respectively.

• moveBackwardDistance(D,Outb) : Makes
robot move backwardDmillimeters.

• stop(Outb) : Stops the robot’ movement.

• turnLeft(Dg,Outb) : Makes robot turn left
Dg degrees passed as parameter.

• turnRight(Dg,Outb) : Makes robot turn
right Dg degrees passed as parameter.

• getLeftWheelCounter(Outint) : Reads
and returns the left wheel counter.

• getRightWheelCounter(Outint) : Reads
and returns the right wheel counter.

• getLeftWheelSpeed(Outint) : Reads and
returns the speed and direction (+/-) of the left
wheel/motor in mm/sec.

• getRightWheelSpeed(Outint) : Reads and
returns the speed and direction (+/-) of the right
wheel/motor in mm/sec.

• setWheelSpeed(Ls,Rs,Outb) : Sets toLs
andRs the left and right motors’ speed and di-
rection (+/-) in mm/sec.

• getLeftWheelAcceleration(Outint) :
Reads the acceleration of left wheel/motor in
mm/sec2.

• getRightWheelAcceleration(Outin) :
Reads the acceleration of right wheel/motor
in mm/sec2.

• setWheelAcceleration(La,Ra,Outb) :
Sets toLa and Ra the left and right motors’
acceleration and direction (+/-) in mm/sec2.

• readLightSensors(Outb) : Reads the val-
ues of each of the eight light sensors.

• writeLightSensors(Outb) : Displays the
values of the eight light sensors.

• getLightSensor(Ls,Outint) : Gets the
value of the requested light sensorLs .

• readProxSensors(Outb) : Reads the values
of each of the eight proximity sensors.

• writeProxSensors(Outb) : Displays the
values of the proximity sensors.

• getProxSensor(Ps,Outint) : Gets the
value of the requested proximity sensorPs.



• getAllLightSensors(Outlist) : Return
all the light sensors’ values in a list.

• getAllProxSensors(Outlist) : Return all
the proximity sensors’ values in a list.

Even though this interface has not been tested un-
der the Windows operating system, we think that its
code should be easily ported becauseCiao andWe-
botsversions for Windows exist. Only the serial port
definition should be changed from/dev/ttyS0 to
COM1.

4. FUTURE DEVELOPMENTS OF
THE KROLOG INTERFACE

As further developments in theKRologinterface, we
plan to extend the interface to be able to control real
and simulated robots plugged with gripper-arms and
linear and matrix vision systems. In consequence, we
will have to add new classes to Harlan et al. C++
interface with one class per extension module, and
methods for eachSemCor command of the k213 lin-
ear vision extension turret, k6300 matrix vision ex-
tension turret, and the gripper-arm extension turret.

In second place, we are going to extend the low-
level layer to allow the communication among the
robots. This is a key feature to develop coordination
models. However, as we are interested in developing
coordination models where point to point and broad-
cast explicit communication exist, only this kind of
facilities will be provided. In this way, this interface
would also be useful to those researchers that have the
Khepera’radio base module, because the robots could
communicate among them in a wireless mode.

Finally, as our aim is to useDefeasible Logic Pro-
gramming(DeLP) [9] to build applications that deal
with incomplete and contradictory information in dy-
namic domains, we will try to interconnect an existent
DeLP interpreter [10, 11] with our interface.

5. CONCLUSIONS
In this paper we have presented a flexible interface
that helps researchers, teachers, and students in the
development of Prolog based applications for the
Kheperarobots. The interface hides low-level robot-
computer communication and provides a high-order
set of predicates to help us to concentrate on the high-
level problem specification.

Besides, it has the advantage of communicating
with Webotsin the same way it does with the real
Khepera 2robots.

6. ACKNOWLEDGMENTS
We thank the National University of San Luis and the
ANPCYT for their unstinting support.

7. REFERENCES
[1] K-Team, “Khepera 2.” http://www.k-team.com.

A miniature mobile robot designed as a research
and teaching tool.

[2] O. Michel, “Webots: Professional mobile robot
simulation,”Journal of Advanced Robotics Sys-
tems, vol. 1, no. 1, pp. 39–42, 2004.

[3] A. J. Garćıa, G. I. Simari, and T. Delladio, “De-
signing an agent system for controlling a robotic
soccer team,” inX Congreso Argentino de Cien-
cias de la Computación, 2004.

[4] H. J. Levesque and M. Pagnucco, “Legolog:
Inexpensive experiments in cognitive robotics,”
in The Second International Cognitive Robotics
Workshop, (Berlin, Germany), pp. 104–109, Au-
gust 2000.

[5] F. Bueno, D. Cabeza, M. Carro,
M. Hermenegildo, P. Ĺopez-Garćıa, and
G. Puebla, “The ciao prolog system. reference
manual,” Tech. Rep. CLIP3/97.1, School of
Computer Science, Technical University of
Madrid (UPM), August 1997. Available from
http://www.clip.dia.fi.upm.es/.

[6] R. M. Harlan, D. B. Levine, and S. McClarigan,
“The khepera robot and the krobot class: a plat-
form for introducing robotics in the undergradu-
ate curriculum,”SIGCSE Bulletin, vol. 33, no. 1,
pp. 105–109, 2001.

[7] B. Vosseteig, J. Baltes, and J. Ander-
son, “Robocup e-league video server.”
http://sourceforge.net/projects/robocup-video.

[8] “Oficial e-league webpage.”
http://agents.cs.columbia.edu/eleague/.

[9] A. J. Garćıa and G. R. Simari, “Defeasi-
ble logic programming: an argumentative ap-
proach,”Theory and Practice of Logic Program-
ming, vol. 4, no. 2, pp. 95–138, 2004.

[10] A. J. Garćıa and G. R. Simari, “Un compilador
para la programación en ĺogica rebatible,” in
III Congreso Argentino de Ciencias de la Com-
putacíon, 1997.

[11] A. J. Garćıa, “La programacíon en ĺogica rebati-
ble su definicíon téorica y computacional,” Mas-
ter’s thesis, Departamento de Ciencias e Inge-
nieŕıa de la Computación, Universidad Nacional
del Sur, Bah́ıa Blanca, Argentina, 1997.


