
Analyzing the Interaction between Actions and

Arguments in Partial Order Planning

Diego R. Garćıa Alejandro J. Garćıa Guillermo R. Simari

Laboratorio de Investigación y Desarrollo de Inteligencia Artificial
Departamento de Ciencias e Ingenieŕıa de la Computación, Universidad Nacional del Sur

Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)

Email: {drg,ajg,grs}@cs.uns.edu.ar

ABSTRACT

This research line involves the study of the interaction
of arguments and actions when they are combined to
construct plans using Partial Order Planning tech-
niques. When actions and arguments are combined
new types of interferences appear in the plans. This
interferences need to be identified and resolved in or-
der to obtains valid plans.

Keywords: Defeasible Reasoning, Partial
Order Planning.

1 INTRODUCTION

In previous work [2, 6, 5, 4], we have introduced a
formalism where agents represent their knowledge
about their environment using the language of
Defeasible Logic Programming (DeLP) [1], and
have a set of actions that they can execute in
order to change the environment where they are
performing their tasks. In the Appendix A we
include a brief description of this formalism.

The agent’s knowledge base will be represented
by a defeasible logic program P = (Ψ, ∆), where
Ψ should be a consistent set of facts, and ∆ a set
of defeasible rules.

A simple formulation of a planning problem de-
fines three inputs [7]: a description of the initial
state of the world in some formal language, a de-
scription of the agent’s goal, and a description of
the possible actions that can be performed. The
initial state is the agent’s current representation
of the world, and in our case it will be the set Ψ.
In order to achieve its goals, the agent will start in
the initial state Ψ and it will execute a sequence
of actions transforming Ψ into Ψ′. The agent’s
goals will be represented as a set G of literals.
The agent will satisfy its goals when through a se-
quence of actions it reaches some state Ψ′ where
each literal of G is warranted.

Partially supported by Consejo Nacional de Investiga-
ciones Cient́ıficas y Técnicas (CONICET) PIP 5050, and
Agencia Nacional de Promoción Cient́ıfica y Tecnológica
(PICT 2002, Nro. 13096)

2 ARGUMENTATION IN PARTIAL
ORDER PLANNING

The argumentation formalism allow an agent to
represent it’s knowledge about it’s environment.
In particular, it define the actions an agent can
perform, when an action is applicable and how
to compute its effects. However, it does not de-
scribe how to construct a plan for achieving the
agent’s goals. In a previous work [2] we intro-
duce the study of the combination of this formal-
ism with Partial Order Planning techniques in or-
der to provide the agent with the ability to built
plans.

The basic idea behind a regression Partial Or-
der Planning (POP) algorithm [3] is to search
backwards through plan space instead of state
space, as state-based planners do. The planner
starts with an initial plan that consist solely of a
start step (whose effects encode the initial state
conditions) and a finish step (whose precondi-
tions encode the goals) (see Figure 1(a)). Then it
attempts to complete this initial plan by adding
new steps (actions) and constrains until all step’s
preconditions are guaranteed to be satisfied. The
main loop in the POP algorithm makes to type
of choices:

• Supporting unsatisfied preconditions: all
steps effects that could possibly be con-
strained to unify with the desired proposition
are considered. It choose one step nondeter-
ministically and then adds a causal link to
the plan to record that the precondition is
achieved by the chosen step.

• Resolve threats: If a step might possibly
interfere with the precondition being sup-
ported by a casual link, it nondetermin-
istically chooses a method to resolve the
threat: either by reordering steps in the plan
(adding ordering constraints), posting addi-
tional subgoals, or by adding new equality
constraints.



In our argumentation formalism (see Appendix
A), and action is applicable if every precondition
of the action has a warrant built from the agent’s
current knowledge base, and every constraint fails
to be warranted. To combine this formalism with
POP, we must consider the use of arguments for
supporting unsatisfied preconditions, besides ac-
tions. The combined use of argumentation and
actions to build plans introduces new issues not
present in the traditional POP algorithm that
need to be addressed. In this work we will fo-
cus on analyzing the interaction between actions
and arguments.

As we will describe below, arguments can not
be constructed from a set of facts, as usual, be-
cause at the moment of the argument construc-
tion it is impossible to know which literals are
true. The following definitions are introduced for
identifying this set of literals.

Definition 1 [Heads-Bodies-Literals] Given
an argument structure 〈B, h〉, heads(B) is the set
of all literals that appear as heads of rules in B.
Similarly, bodies(B) is the set of all literals that
appear in the bodies of rules in B. The set of all
literals a appearing in B, denoted literals(B) is
the set heads(B) ∪ bodies(B)

Definition 2 [Argument base] Given an argu-
ment structure 〈B, h〉 we will say that the base of
B is set base(B) = bodies(B) − heads(B).

Definition 3 [Conclusion] Given an argument
structure 〈B, h〉 we will say that the conclusion
of B is the set conclusion(B) = heads(B) −
bodies(B).

Example 1 Given the argument structure 〈B, b〉
where B= { (b –≺ c, d), (c –≺ e) }, the correspond-
ing sets are:

heads(B) = {b, c}
bodies(B) = {c, d, e}
literals(B) = {b, c, d, e}
base(B) = {d, e}
conclusion(B) = {b}

Following, we will present an example to illus-
trate the POP algorithm and introduce the ba-
sic terminology and graphical representation that
will be used in the rest of the paper. For simplic-
ity, we present a propositional planning problem
that defines actions without constraints.

Example 2 Suppose that an agent has the fol-
lowing knowledge base: Ψ = {e, f, h} and ∆= {
(b –≺ c, d) }. The agent’s goal is G = {a, g}, and
the available actions are:

{a} A1←− {b}, not {} {c} A2←− {e}, not {}
{d} A3←− {f}, not {} {g} A4←− {h}, not {}

Figure 1: Different partial plans for Example 2

Figure 1 shows different (and possibly incom-
plete) plans obtained from choosing different al-
ternatives to achieve the unsatisfied precondi-
tions. The square nodes represent action steps.
The squares labeled start and finish represent
the start and finish steps respectively. The liter-
als that appear below a step represent the precon-
ditions of that step, and the literals that appear
above represent its effects. The solid arrows in the
figure represent causal links and dashed arrows
represent ordering constrains. Causal links are
used to explicity record the source for each propo-
sition during planning. Ordering constraints are
used to explicity establish an order between two
steps. By definition the start step come before
the finish step and the rest of the steps are con-
strained to come after the start step and before
the finish step. All causes are constrained to
come before their effects, so a causal link also
represent an ordering constraint. Finally, the tri-
angles represents arguments. The literal at the
top of the triangle is the conclusion of the argu-
ment (Definition 3), and the literals at the base
of the triangle represent the base of the argument
(Definition 2).

Figure 1(a) shows the initial plan. Figure 1(b)
shows an incomplete plan where only actions (not
arguments) were considered to achieve the unsat-
isfied preconditions. Initially the are two unsatis-
fied preconditions: a and g, and the only possible
way to satisfy them is by actions A1 and A4 re-
spectively. Introducing this two steps add new
unsatisfied subgoals b and h (the preconditions of
A1 and A4). The start step achieve h so no new
step is needed: a casual link is added. Observe



finally that b remains unsatisfied, because none of
the actions available achieve this precondition.

However, note that from the rules ∆ of the
agent’s knowledge base it is possible to construct
the (potential) argument B={ (b –≺ c, d) } that
supports b. Therefore, an alternative way to
achieve b would be to use B for supporting b, and
then to find a plan for satisfying all the literals
in the base of B (base(B) = {c, d}). Figure 1(c)
shows this situation. The argument B is chosen
to support b and actions A2 and A3 are selected
to satisfy c and d respectively. The preconditions
of both actions are achieved by the start step, so
the corresponding causal links are added and a
plan is obtained.

Note that B={ b –≺ c, d } is a “potential argu-
ment” because it is conditioned to the existence
of a plan that satisfy its base. This argument can
not be constructed from a set of facts, as usual.
The reason is that at the moment of the argument
construction it is impossible to know which liter-
als are true, because they depend on steps that
will be chosen later in the planning process.

3 INTERACTION BETWEEN
ACTIONS AND ARGUMENTS

As mentioned before, the classical POP algorithm
has to find and resolve threats present in the
plan, that is, actions that might interfere with the
precondition being supported by another action.
Figure 2(a) shows a threat: the precondition a of
A2, supported by A1, is threatened by the action
A3 because it negates a. Note that a is an effect
of A3, where a stands for the complement of a
with respect to strong negation, i.e. p is ∼p, and
∼p is p.

Figure 2: In (a) an action threaten the precon-
dition supported by another action. In (b) the
threat is solved by demotion. In (c) the threat is
solved by promotion

The way to resolve this threat is to add an or-
dering constraint to make sure that A3 is not ex-

ecuted between A2 and A1. There are two alter-
natives: A3 is forced to come before A2 (called
demotion, see figure 2(b)) or A3 is forced to come
after A1 (called promotion, see figure 2(c)).

When actions and arguments are combined to
construct plans, new types of interferences appear
that need to be identified and resolved in order to
obtain a valid plan. Consider the situation shown
in figure 3. In this case, the action A3 interfere
with the argument B because it negates a literal
present in the argument. Note that n is an effect
of A3, where n ∈ literals(B) (see definition 1).
The argument step B was added to the plan to
support the precondition b of the action step A1.
If A3 make n true before A1 is executed the ar-
gument B will not exist at the moment a warrant
for b is needed to execute A1.

Figure 3: An action threaten and argument

Another thing to consider is that the existence
of the argument B is not enough to have a warrant
for b, because B could be defeated by a counter-
argument. This situation is shown in figure 4.

Figure 4: An argument is defeated

In this case the argument B is defeated by C.
Then, the literal b will not be warranted and the
action A3 will not be able to be executed.



4 CONCLUSIONS

We have analyzed the interaction between actions
and arguments within partial order plans, in or-
der to identify destructive interferences that can
make a plan invalid. New types of interferences
not present in classical Partial Order Planning
have been found. We have to explore how this
new interferences can be resolved and how the
Partial Order Planning algorithm can be modi-
fied to introduce this new ideas.

APPENDIX A: ACTIONS AND
DEFEASIBLE ARGUMENTATION

In DeLP, a literal L is warranted from the agent’s
knowledge base if there exists a non-defeated ar-
gument A supporting L. An argument structure
A for a literal L, denoted 〈A, L〉, is a minimal
and consistent set of defeasible rules that allows
to infer L. In order to establish whether 〈A, L〉 is
a non-defeated argument, a dialectical analysis is
performed by considering counter-arguments that
could be defeaters for 〈A, L〉.

Besides its knowledge base, an agent will have
a set of actions Γ that it may use to change its
world. Once an action has been applied, the effect
of the action will change the set Ψ. The formal
definitions that were introduced in [4] are recalled
below.

Definition 4 [Action] An action A is an or-
dered triple 〈X, P, C〉, where X is a consistent set
of literals representing consequences of executing
A, P is a set of literals representing preconditions
for A, and C is a set of constraints of the form
not L, where L is a literal. We will denote ac-
tions as follows:

{X1, . . . , Xn}
A←− {P1, . . . , Pm}, not {C1, . . . , Ck}

Notice that the notation not {C1, . . . , Ck} repre-
sents {not C1, . . . , not Ck}.

The condition that must be satisfied before an
action A = 〈X, P, C〉 can be executed contains two
parts: P, which mentions the literals that must
be warranted, and C, which mentions the literals
whose negations must not be warranted. In this
way, the satisfaction of the preconditions could
also depend on the fact that some information is
unknown (un-warranted).

Definition 5 [Applicable Action] Let K =
(Ψ, ∆) be an agent’s knowledge base. Let Γ be
the set of actions available to this agent. An ac-
tion A in Γ, defined as before, is applicable if
every precondition Pi in P has a warrant built
from (Ψ, ∆) and every constraint Ci in C fails to
be warranted.

Definition 6 [Action Effect] Let K = (Ψ, ∆)
be an agent’s knowledge base. Let Γ be the set
of actions available to this agent. Let A be an
applicable action in Γ defined by:

{X1, . . . , Xn}
A←− {P1, . . . , Pm}, not {C1, . . . , Ck}

The effect of executing A is the revision of Ψ by
X, i.e. Ψ∗X = Ψ∗{X1,...,Xn}. Revision will consist
of removing any literal in Ψ that is complemen-
tary of any literal in X and then adding X to the
resulting set. Formally:

Ψ∗X = Ψ∗{X1,...,Xn} = (Ψ− X) ∪ X

where X represents the set of complements of
members of X.

In [4], we have shown that the interaction be-
tween actions and the defeasible argumentation
formalism is twofold. On one hand, as stated by
Definition 5, defeasible argumentation is used for
testing preconditions and constraints through the
warrant notion. On the other hand, actions may
be used by agents in order to change the world
(actually the set Ψ) and then have a warrant for
a literal L that has no warrant from the current
knowledge base (Ψ, ∆).

References

[1] Garćıa, A. J., and Simari, G. R. Defea-
sible logic programming: An argumentative
approach. Theory and Practice of Logic Pro-
gramming 4, 1 (2004), 95–138.

[2] Garcia, D. R., Simari, G. R., and Gar-
cia, A. J. Combining Partial Order Planning
with Defeasible Argumentation. In Proceed-
ings of the VII Workshop de Investigadores en
Ciencias de la Computación (WICC 2005).
(May 2005), Universidad Nacional de Rio
Cuarto, Provincia de Córdoba, Argentina.,
pp. 354–358.

[3] Penberthy, J., and Weld, D. S. UCPOP:
A Sound, Complete, Partial Order Planner for
ADL. In In Proc. of the 3rd. Int. Conf. on
Principles of Knowledge Representation and
Resoning, 113-124. (1992).

[4] Simari, G. R., and Garćıa, A. J. Actions
and arguments: Preliminaries and examples.
In Proceedings of the VII Congreso Argentino
en Ciencias de la Computación (Oct. 2001),
Universidad Nacional de la Patagonia San
Juan Bosco, El Calafate, Argentina, pp. 273–
283. ISBN 987-96-288-6-1.



[5] Simari, G. R., and Garćıa, A. J. Using
defeasible argumentation in progression and
regression planning: Some preliminary explo-
rations. In Proceedings of the VIII Congreso
Argentino en Ciencias de la Computación
(Oct. 2002), Universidad de Buenos Aires, Ar-
gentina, pp. 273–283.

[6] Simari, G. R., Garćıa, A. J., and Capo-

bianco, M. Actions, Planning and Defeasi-
ble Reasoning. In In Proceedings of the 10th
International Workshop on Non-Monotonic
Reasoning (NMR2004) (2004), pp. 377–384.
ISBN. 92-990021-0-X.

[7] Weld, D. S. Recent advances in AI planning.
AI Magazine 20, 2 (1999), 93–123.


