Towards the verification of RAISE specifications
through Model Checking

Juan I. Perna
Software Engineering Group
Universidad Nacional de San Luis
San Luis — Argentina
jiperna@unsl.edu.ar

Chris W. George
International Institute for Software Technology
United Nations University
Macao, SAR — China

cwg@iist.unu.edu

Abstract

Ensuring the correctness of a given software com-
ponent has become a crucial aspect in Software
Engineering and the Model Checking technique
provides a fully automated way to achieve this
goal. In particular, the usage of Model Check-
ing in formal languages has been reinforced in
the last decades because the specifications them-
selves provide an abstraction of the problem un-
der study (whether created by abstraction from
the software or by hand) and the properties vali-
dated at the specification level can be warrantied
to be preserved until implementation.

In this paper we focus on the main issues
for adding Model Checking functionalities to the
RAISE specification language and present the
most important characteristics of our current ap-
proach for doing so. An outline of the main issues
and problems faced in the process and possible
ways to solve them are also presented.

Keywords: Model Checking, RAISE, for-
mal methods, verification techniques.

Introduction

The utilization of Model Checking techniques for
software components verification has been sub-
ject of significant research and study during the
last decade [1, 2]. This increasing popularity of
Model Checking is due to the high level of au-
tomation achieved (compared to other verifica-

tion techniques such as testing or validation by
proof) and to the ability of producing counterex-

amples when a given property is not satisfied.

Regardless of its context of application, the
model checking technique is based on the explo-
ration of all possible reachable states by the sys-
tem under study and the verification of the sat-
isfaction of properties (expressed in a sub logic
of the CTL family [3, 2]) on those states. Due
to this exhaustive exploration of the state space
of the problem, Model Checking suffers from the
state explosion problem (i.e. the size of the com-
putation increases exponentially with respect to
the size of the original problem). As the state
explosion problem is a major limitation for the
applicability of model checking in real problems
(due to their complexity and size), several tech-
niques have been developed to cope with this is-
sue. In particular, symbolic model checking [4, 1]
and abstraction [5, 6] are the most used ones.

In the context of formal or rigorous methods
for software development, several attempts have
been made to incorporate Model Checking tech-
niques given the advantage that software speci-
fications are, essentially, abstractions of the de-
sired system. In particular, there have been sev-
eral approaches to the incorporation of model
checking techniques in order to verify whether a
given property is preserved throughout the whole
development process or at a certain abstraction
stage. Some well known examples of the incorpo-
ration of model checking functionalities into for-
mal languages such as Z [7, 8] or process algebras
[9] such as CSP [10, 11] can be analyzed from
[12, 13, 14].

Regarding RAISE [15], no support for model
checking is currently provided. In particular,

RAISE provides several tools regarding verifica-
tion, such as code generators to several lan-
guages in order to run the specification’s code;
test cases (including test coverage analysis and
mutation testing) and a translator to PVS so
important properties or invariants from the spec-
ification can be proved correct. However rela-
tively easy to do, testing is necessarily incom-
plete and it only allows the user to gain certain
confidence about the possible satisfaction of the
desired properties. Proofs, on the other hand,
provide certainty and completeness but are very
hard and time consuming to be done.

This work presents an ongoing project to in-
corporate the automated functionalities of model
checking to the RAISE language and some pre-
liminary results on the development of an auto-
mated tool to carry out the verification of PLTL
assertions over a given specification.

Model Checking engine

In the context of RAISE[15], software is specified
in a step-wise way. In particular, the develop-
ment process (following the RAISE development
method[16]) is carried out as a sequence of steps,
starting from the specification of the system at
a high level of abstraction and progressing by
successively adding details towards a more con-
crete (and thereby closer to the implementation)
specification. This way of development (getting
closer to the implementation by decreasing the
level of abstraction) is particularly suitable for
model checking because it allows the verification
of properties in early stages in the development
process, where an abstract level description is ob-
tained for free with the specification (actually,
the specification itself is the abstract descrip-
tion of the system under study). Once verified,
the RAISE development process warranties the
preservation of the properties until the actual im-
plementation of the system.

Given that RAISE specifications can provide a
complete yet abstract description of the system
under study, a design decision must be made at
this point: to develop another model checking
engine (customized particularly for RAISE) or to
try to use one of the currently available model
checking engines.

About developing a brand new model check-
ing engine for RAISE, it has the advantages of
eventual better efficiency (compared with other
more general model checkers if some particular-
ities from RAISE’s language can be used in or-
der to achieve more efficient algorithms) and a
closer fit of the model checker’s language with
RAISE’s one (no additional syntactic or seman-
tic restrictions but the ones inherent to the model

checking techniques). On the other hand, using
an already developed model checker provides the
security of a well tested verification engine com-
bined with the possible advantages from future
developments of these tools that can be immedi-
ately used if backward compatibility is preserved
in the model checker.

In order to allow a proper evaluation of the
real implications of the usage of a third party
model checker, several model checkers were eval-
uated to analyze the real restrictions that a gen-
eral purpose model checking engine will impose if
used to verify properties in RAISE specifications.
Towards this goal, SPIN [17], Symbolic Analysis
Laboratory (SAL) [18] and SMV [4] were anal-
ysed. The first differs from the others in that it
is based in the construction of an explicit state
representation of the system, while the others are
based on the symbolic approach to model check-
ing.

The modelling language provided by the model
checkers was also taken into account (the ex-
pressiveness of this language has a major impact
on the kind of constructs that can be translated
into it). In this direction, both SPIN’s language
(PROMELA) and SMV’s one are imperative and
not very suitable for modelling applicative de-
scriptions. SAL’s language, on the other hand, is
similar to PVS and provides an applicative mod-
elling language combined with very powerful con-
structs to describe transition systems. Another
interesting feature in SAL’s language is that it is
used as a front end to a whole verification tool
set [19] (symbolic, infinite-bounded, backwards
model checkers, deadlock analyzer, simulator and
path finder) that can be used according to the
user’s needs.

Taking into account that SAL’s applicative
language provides enough constructs to encode
most of RAISE syntactic constructs, that it be-
longs to the symbolic model checking family (i.e.
it can, in many cases, avoid the state explosion
problem) and has a good overall performance,
it was chosen as translation target for RAISE’s
specification model checking, discarding in this
way the option of the implementation of a new
model checker.

Under this development decision, the imple-
mentation of the tool to incorporate Model
Checking techniques into RAISE would involve
acquiring information from the specification and
the generation of final code for SAL. In particu-
lar, the new tool can obtain the Abstract Syntax
Tree (AST) created by the already existing type
checker, transform it (probably in more than one
pass over it) into another syntax tree closer to
SAL syntax and then, unparse it into the final
code for the model checker. This process is out-
lined in figure 1.

RSL RSL AST SAL AST
type . AST e
e transformer N
RAISE checker

specification

SAL Input Generated Unparsing

MODEL SAL

CHECKER model

Figure 1: Stages in the translation process

Translation issues

After the choice of using a third-party model
checker, several problems in the translation to
SAL are expected to arise given the logical dif-
ferences between the expressive power of RAISE
and SAL languages (the former is a whole spec-
ification language while the latter is guarded-
command-based transition system language en-
riched with applicative constructs).

Our ongoing research has analysed SAL’s syn-
tactic and semantic expressive power looking for
possible areas where the translation from RAISE
would be problematic.

Following, we present a list of the most impor-
tant issues found and a brief description of each
of them.

e No define-before-use rule in RSL and neces-
sary in SAL. This restriction in the target
language forces the translator to collect all
declarations and sort them according to a
declaration dependency, where a declaration
depends on other declaration if the former
refers to the latter on its definition. This re-
lationship among declarations can be itera-
tively calculated and the declarations sorted
with an algorithm based on [20].

e No support for collections in SAL. As col-

lections (sets, maps and lists) are very com-
monly used data structures in RAISE it is
necessary to devise a way to represent them
inside SAL’s language.
Given the fact that SAL supports lambda-
functions, sets, maps and list can be, then,
represented with lambda functions with ad-
equate domain and range. However elegant
and efficient, this solution may face prob-
lems to represent maps or lists defined by
complex comprehended expressions (for ex-
ample, those maps with a pattern of the form
[el(x) — e2(x) | x: T » p(x)] whereel : T
— Ul,e2: T — U2).

e No support for partial functions in SAL. As

partial functions can be seen as total func-
tions over a more restricted domain, it would
be possible to make the translator use sub-
types in function signatures (to make them
total) or to keep them using a maximal prin-
ciple and assume partial functions will never
be called with arguments outside the domain
that the function is prepared to accept. The
latter approach seems to be more efficient
and, when this assumption does not hold,
the user will receive a run-time error (while
model checking the code).

On the other hand, it would also be possi-
ble to modify the translation and the type
system in order to model check this assump-
tion of subtype correctness. To do so, ev-
ery type in the system should be lifted into
a variant that can hold the type’s normal
value or a special value nav (Not A Value)
to signal the non-satisfaction of a subtype
assumption. As a matter of fact, this ap-
proach can be extended and be used to ver-
ify not only subtype correctness but also the
whole set of confidence conditions (precondi-
tion/postcondition satisfaction, correct ap-
plication of maps and functions, etc.).

No clear Transition System concept in
RAISE. As RAISE was not meant to be
a language to specify transition systems, it
does not provide constructs for doing so. On
the other hand, it is crucial for model check-
ing to have a transition system (or a kripke
transition graph [1]) to be able to calculate
the states reachable by the system.

Trying to extract the transition system in-
herent to a RAISE specifications would be
the ideal solution but, as specifications are
just a set of functions, it would be impossi-
ble to deduce it automatically for the general
case. Even if this were possible, how to de-
termine the initial state of the deduced tran-
sition system is also not clear for the general
case.

To solve this issue, it is planned to incorpo-
rate a whole new construct into the RAISE
language to allow the user to specify the
state variables of the transition system and
the way they change, using guarded com-
mands.

No clear way to express temporal logic prop-
erties in RAISE. Even though RAISE pro-
vides a way to express invariants or proper-
ties over the whole specification by means of
axiom declarations, they were not meant to
express the temporal properties that PLTL

logic provides. Then, allowing the user to
model check properties expressible only by
means of axioms would be too restrictive and
would not be taking full advantage of model
checking verification power.

Taking this into account, a new construct to
express assertions is being added to RAISE
and LTL temporal operators will be avail-
able for the user within its scope.

Limitations

Encoding a whole specification language (which
is devised with the idea of expressiveness in mind)
into a model checking language (which is de-
signed for transition system description and anal-
ysis) will, inevitably, end up in some areas of the
specification language being left outside of the
translation. In the case of this work, the limi-
tations on the translation are mainly regarding
recursion and implicitly defined values.

Recursive types

The only data declaration in SAL that has the
syntactic expressiveness necessary to allow recur-
sive type definitions is the datatype that will
be used to encode RSL variant types during the
translation. However syntactically possible, none
of the SAL tools allow the usage of this construct
if it involves some kind of recursion.

The reason for this restriction is that there
is no way to statically (i.e. during compilation
time) resolve the recursion associated with the
structure in order to calculate the set of possible
values in the type. It is easy to realize that this is
a serious shortcoming that can not be overcome
if it is taken into account that a finite represen-
tation must be available to every type if model
checking techniques are going to be applied. In
particular, symbolic model checking theory relies
on the representation of the system as strings of
binary (boolean in the general case) values and
it is impossible to find a codification for the state
of the system if one of the types that comprises
it has an unknown/undefined size.

Recursive functions

Recursive functions, on the other hand, do not
constitute a serious limitation for model check-
ing techniques but, in general, a way to deter-
mine the depth of the recursion or the so called
measure of the function is required. In the SAL
case, according to the authors in [18], the SAL
type checker was supposed to be able to automat-
ically calculate the measure of a function (pro-
vided that the language was initially devised to

be very simple). This assertion proved to not to
be true in the general case and providing the user

with means to state recursive function measures
is regarded as future work for the SAL develop-
ment team.

Implicitly defined values

Implicitly defined values are a very valuable re-
source when developing abstract specifications
because they allow the introduction of compo-
nents that will be properly defined in successive
refinement steps. On a more conceptual level, im-
plicitly defined values can be seen as a reference
to functionality with underspecified behaviour at
the current level of abstraction.

On the other hand, values are used in in the
model checking paradigm as a mean to define how
the system under study must evolve. In this con-
text, the introduction of undefined values in a
model checking transition system is not conceiv-
able if it is taken into account that undefined be-
haviour would be introduced in the system under
study’s evolution.

Conclusions and future work

We have briefly presented our approach for the
inclusion of model checking functionalities to the
RAISE specification language. In particular, the
main translation problems have been presented,
the possible solutions briefly outlined as well as
the main limitations of the current approach.

Regarding future work, finishing the current
version of the tool and the implementation of a
lifted type system in order to allow confidence
condition verification are our major concerns.

It will also be interesting to explore SAL’s con-
struct implements that allows the usage of model
checking exhaustive state exploration in order to
verify if there is a refinement/abstraction rela-
tionship between two modules. With this con-
struct, it will be possible to actually verify (with-
out the need of a proof) specifications that are
derived from each other.

References

[1] Edmund M. Clarke Jr., Orna Grungberg,
and Doron A. Peled. Model Checking. The
MIT Press, 1999.

[2] B. Berard, M. Bidoit, A. Finkel,
F. Laroussinie, A.Petit, L. Petrucci, Ph.
Schnoebelen, and P. Mackenzie. Systems
and Software Verification, Model Checking
Techniques and Tools. Springer-Verlag,
1998.

3]

Michael R. A. Huth and Mark D. Ryan.
Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge Uni-
versity Press, Cambridge, England, 2000.

Kenneth L. McMillan. Symbolic Model
Checking. Kluwer Academic Publishers,
1993.

S. Graf. Verification of a distributed cache
memory by using abstractions. In Com-
puter Aided Verification, volume 697 of Lec-
tures Notes in Computer Science. 5th Inter-
national Conference in Computer Aided Ver-
ification, Springer, 1994.

Jurgen Dingel and Thomas Filkorn. Model
cheking for infinite state systems using data
abstraction, assumption-commitment style
reasoning and theorem proving. In Pierre
Wolper, editor, Computer Aided Verifica-
tion, volume 939 of Lectures Notes in Com-
puter Science. 7th International Conference
in Computer Aided Verification (CAV ’95),
Springer, 1995.

J.-R. Abrial, S. A. Schuman, and B. Meyer.
Specification language. In R. M. McK-
eag and A. M. Macnaghten, editors, On
the Construction of Programs: An Advanced
Course, pages 343-410. Cambridge Univer-
sity Press, 1980.

J. P. Bowen, R. B. Gimson, and S. Topp-
Jgrgensen. Specifying system implementa-
tions in Z. Technical Monograph PRG-63,
February 1988.

Wan Fokkink. Introduction to Process Alge-
bra. Springer-Verlag, Berlin, Germany, 2000.

C.AR. Hoare. Communicating Sequential
Processes. Prentice Hall International Series
in Computer Science, 1985.

Jonathan P. Bowen and Michael G. Hinchey.
High-Integrity System Specification and De-
sign. Springer Verlag, 1999.

[12]

[15]

[16]

[17]

[18]

[19]

[20]

Graeme Smith and Luke Wildman. Model
Checking Z Specifications Using SAL. In
ZB 2005, pages 85—-103. International Con-
ference of Z and B Users, Springer, 2005.

Formal Systems (Europe) Ltd. Failures-
divergence refinement — FDR 2 user manual,
1997.

Michael Leuschel, Thierry Massart, and An-
drew Currie. How to make FDR spin LTL
model checking of CSP by refinement. Lec-
ture Notes in Computer Science, 2021:99+,
2001.

The RAISE Language Group. The RAISE
Specification Language. Prentice Hall Inter-
national (UK), 1992.

The RAISE Method Group. The RAISE
Development Method. Prentice Hall Inter-
national (UK), 1995.

Gerard J. Holzmann. The SPIN Model
Checker. Addison-Wesley, 2003.

The SAL Language Manual.
http://sal.csl.sri.com/doc/language-
report.pdf.

Leonardo de Moura, Sam Owre, Harald
Ruefl, John Rushby, N. Shankar, Maria
Sorea, and Ashish Tiwari. SAL 2. In Rajeev
Alur and Doron Peled, editors, Computer-
Aided Verification, CAV 2004, volume 3114
of Lecture Notes in Computer Science, pages
496-500, Boston, MA, July 2004. Springer-
Verlag.

Aristides Dasso and Chris George. Translat-
ing RSL into PVS. Technical report, Inter-
national Institute for Software Technology -
United Nations University, 2002.

