Semantic Based Visualization

Martín Larrea
Sergio Martig
Silvia Castro

Departamento de Ciencias e Ingeniería de la Computación
Laboratorio de Investigación en Visualización y Computación Gráfica
Universidad Nacional del Sur
Bahía Blanca, CP 8000, Argentina

ABSTRACT
Visualization is the process of mapping data into visual dimensions to create a visual representation to amplify cognition. A successful visualization allows the user to gain insight into the data in other words to communicate different aspect of the data in an effective way. Even with today’s visualization systems that give the user a considerable control over the visualization process, it can be difficult to produce an effective visualization. A strategy to improve this situation is to guide the user in the selection of the parameters involved in the visualization. Our system goal of the research describe in this work is to develop a visualization that can be adapted to all data domains. By considering the semantic of the data together with the semantic of the stages through the visualization process it is intended to determinate all the characteristics of an effective visualization. This will guide the user through the stages of the visualization pipeline.

Keywords: Semantic, Visualization pipeline.

1. INTRODUCTION
The challenge in visualization is to find a visual metaphor that the user can understand and perceive effectively [1] [2] [3], and to provide interaction methods [4] that make it possible for the user to work with and probe the data as effectively and effortlessly as possible.

Computer technology allows the exploration of big information resources. Huge amount of data are becoming available on networked information systems, ranging from unstructured and multimedia documents to structured data stored in databases. On one side, this is extremely useful and exciting. On the other side, the ever growing amount of information available generates cognitive overload and even anxiety, especially in novice or occasional users. Nowadays, a wide diversity of users access, extract, and display information that is distributed on various sources, which differ in type, form and content. In many cases the users have an active control over the visualization process but even then it is difficult to achieve an effective visualization. For example, since the goal of visualization is to provide a representation which helps them to interpret their data or to communicate meaning, it is important that the mapping from physical to perceptual dimensions be under control. A strategy to improve this situation is to guide the user in the selection of the different parameters involved in the visualization.

The Visualization field has matured substantially during the last decade; new techniques have appeared for different data types in many domains. With the use of visualization becoming more generalized, a formal understanding of the visualization process is needed.

2. RULE-BASED ARCHITECTURE EXAMPLE
There has been some previous work in order to assist the user to improve the discovering process. For example, PRAVDA (Perceptual Rule-Based Architecture for Visualizing Data Accurately) [5] is a rule based architecture for assisting the user in making choices of visualization color parameters. This architecture provides sets of appropriates choices for visualization based on a set of underlying rules [6] [7] which are used to constrain operations i.e., selecting a colormap. Rules incorporate information about data, which is call metadata, such as minimum, maximum, or spatial frequency, and also information supplied by the user.

This architecture also provides for linkages between rules that control different visualization operations, with a choice of parameters for one operation constraining choices that are available for others. For example, if the user selects a colormap, that information is fed back to the operation for selecting contour lines, where rules constrain the parameters of the contour lines depending on which colormap has been selected. Hence, if the contour lines are superimposed over a dark region, as defined by the colormap, legibility rules would constrain the set of color choices to those offering sufficient luminance contrasts to be detectable. This network of linked operations help guide the user through the complex design space of visualization operations.

The key element in this rule based architecture is the use of metadata; system provided metadata, as data type, data range, metadata computed by algorithm, as spatial frequency, and metadata provided by the user. These metadata would, for example, represent the dynamic range of the data or the geometric relationships between objects in the scene.

3. VISUALIZATION PROCESS
The different visualization models presented in the last years cover partially the aspects of the exploration process; Upson [8] and Card [9] models
give an overview of the visualization process but do not offer enough details for the user exploration. Chi model [10] does not describe properly the interactions and Chuah and Roth model [11], presents a detailed definition of the interactions, but does not seem to be enough to cover all the possible applications. In order to overcome these problems we have developed a model that represents all the visualization process stages and the interactions between them and the user. The “Unified Visualization Model” [12] was developed to create an unified conceptual framework, independent from the data domain. This model takes under consideration the characteristics of all visualization areas. The unified model focuses on the visualization processes as well as in the data stages. (see. Figure 1) In this model, the user’s interactions play a central point, because is the user who interacts with the visualization and, based on his/her interpretations of the representation, modifies the image to steer the calculation, remap the data representation in order to better understand its structure, or create a visualization which highlights a particular feature.

![Figure 1. The visualization pipeline](image)

This model is represented by stages along a flow, the flow represent the transformations of data. Each stage is a data stage and the edges are the transformations to move from one stage to the next. The unified model considers five stages and four transformations. The transformations and the stages along this flow are a reflection of the user interaction on the visualization process. We present now a brief description of the stages and transformation in the Unified Visualization Model.

Stage “Raw data”
These are the data from the application domain.

Transformation “Raw data to Abstract Data”
This transformation allows the user to select the data he/she wants to visualize. After the selection, the data moves from the data domain representation to an inner and manageable structure.

Stage “Abstract Data”
All data in this stage will be potentially visualized by the user. Besides this data the user also has the metadata created in the previous transformation.

Transformation “Abstract data to Data to be Visualize”
From the “Abstract data” stage the user will select all the data that will be visualized.

Stage “Data to be Visualize”
These are the data that will be visualized. It can be a subset of the “Abstract data”

Transformation “Visual Mapping”
This transformation allows the user to specify how he/she want to visualize all the data in the previous stage. All the necessary structures to support the spatial substrate, the visual elements and their attributes are created by means of this transformation.

Stage “Visual Mapped Data”
This stage represents all the data to be visualized along with all the necessary information for its visual representation.

Transformation “Visualization Transformation”
This transformation allows the creation on screen of all the data in the “Visual Mapped Data”. This will usually include the application of some visualization technique that supports all the restrictions imposed in the “Visual Mapping” transformation.

Stage “Visualize data”
This is the result from the visualization process. This is the starting point for the user to begin his/her visual exploration and navigation process.

4. **OUR GOAL**
The user is an active participant in the visualization process, and the goal of visualization is to present...
data in a way which helps him/her identify trends, features and patterns, generate hypotheses, and assign meaning to visual information on screen.

Our goal is to develop a visualization model that considers the semantic of the data and of the different stages in the visualization process. By making these considerations, the visualization process will be able to determine the characteristics of an effective visualization guiding the user through the different stages. The metadata will define a higher level characterization of the data which provides a higher level interface to the user, and a higher level input to visualization rules. All the data from the different application domains will be categorized according to [9].

At present, we are surveying the visualization techniques and the different data models and interactions involved. For each technique we will study its interactions under representative application domains. All these techniques will be analyzed in the context of the “Unified Visualization Model” [12]. Taking all this into account we will begin to define the semantic of the stages involved in the visualization process. Our goal is to define an unified semantic for the data model and the process involved. All the final and intermediate results will be publish.

This work is in progress at the “Laboratorio de Investigación y Desarrollo en Visualización y Computación Gráfica”, Computers Sciences and Engineering Department, Universidad Nacional del Sur. This work is close related with the next research projects:

- “Sistemas Inteligentes para apoyo a los Procesos Productivos”, Subproyecto Servicios de WEB e Inteligencia en la WEB, (PAV año 2003 Nro 00076).

In conclusion we consider that a visualization process model with its proper interactions is not sufficient to assure an effective visualization.

To achieve this, a meta-data model for the visualization process, visualization stages, data and interactions also need to be developed.

4. ACKNOWLEDGMENTS

This work was partially supported by the PGI 24/N015, Science and Technology Department of the Universidad Nacional del Sur (SECyT, UNS) and the PICT 2003 Nº 15043, Agencia Nacional de Promoción Científica y Tecnológica.

5. REFERENCES