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Abstract. Metaheuristics based on swarm intelligence simulate the be-
havior of a biological social system like as a flock of birds or a swarm of
bees, and they have achieved important advances for solving optimiza-
tion problems. In this paper, we propose a variant for a particular kind
of those metaheurisitcs: Particle Swarm Optimization (PSO). This mod-
ification arises after discovering a low rate of convergence produced by a
high level of dispersal at the swarm. Finally, we analyzed and compared
the results obtained by an original PSO algorithm and our proposal.
From those, we can see the improvement obtained by our variant since
it allows to explore more the search space.

1 Introduction

Metaheuristics are high level strategies that use different methods for exploring
search spaces and solving problems. Some metaheuristics are known as trajectory
methods, since they perform a trajectory in the search space and their main char-
acteristic is they work with only one solution by iteration. Other metaheuristics
are based on population (a set of solutions at time), they are inspired in differ-
ent social or biological processes. Particularly we work with the Particle Swarm
Optimization (PSO) metaheuristic which is an important area of the Swarm
Intelligence, [1, 2].

Those methods reproduce the behavior of real swarms or insect colonies, that
is they act as intelligent social organizations. In other words, the richness of these
models is accentuated on the high level of social organization, the structural
composition of individuals, the ability to adapt to environmental changes and
provide operational continuity when one or more elements fail individually. Such
social behavior defines movements of the decision variables in the search space
and guiding to optimal solutions.

As the Genetic Algorithms (GAs) [3], PSO consists of an iterative and
stochastic process that operates on a set of potential solutions to solve a given
problem. Specifically, each solution or individual is considered a particle and a
population is considered a swarm of particles. However, PSO uses an operator



movement, which alters the particle throughout the process, instead of evolu-
tionary operators.

The particles need to maintain a minimum distance between them throughout
the process. Besides, each individual should avoid an excessive distance to the
rest of the group. In this way, the individual particle will be attracted to others,
thus avoiding being alone and giving rise to different neighborhoods depending
on the strength of attraction.

Like most metaheuristics based on population, PSO presents some drawbacks
in their original version. That led to researchers to propose small changes to the
configuration of its different parameters, giving rise to several alternative models
of PSO [4]. Furthermore, noteworthy several hybrid versions of PSO have been
developed. In order to do that different functions for updating position and ve-
locity vectors, different procedure of particle selection to retrieve information for
the social component, dynamic updates of parameters, incorporation of opera-
tors and different procedures of swarm initialization have been evaluated and
used [5, 6, 7].

Since the mid '90s to the present, PSO has been used to solve a wide range of
problems. For example: single-objective, multi-objective, engineering problems,
among others [8, 9, 10].

In this paper, we show the behavior of an original binary PSO to optimize
functions. After to study the strengths and weaknesses of PSO, we propose a
new version which incorporates features from other metaheuristics. Particularly
we use characteristics of GAs and CHC (Cross generational elitist selection, Het-
erogeneous recombination, and Cataclysmic mutation)a special kind of GAs [11].
Both PSO versions are evaluated considering four optimization functions, which
represent many optimization problems. We try to provide empirical evidence for
the practical usefulness of this metaheuristic.

The rest of this article is organized as follows. The next describes the original
PSOs. Section 3 introduces and explains our proposal. The section 4 introduces
the optimization functions used to test the PSO algorithms. In section 5 the
experiments and discussions of their results are shown. Finally, the last section
concludes and provides hints on further research.

2 Particle Swarm Optimization and binary codification

As we said above, for PSO, each individual is a particle (p;) and the population is
a swarm of particles (.9). For each particle, the following attributes are identified:
a current position (X;), a current velocity (V;), the best position achieved so far
by each particle (pBest;), and the best solution found so far by its neighbors
(gBest;).

The PSO algorithm starts generating random position and velocity vectors
for each particle. After that, those vectors are updated according to the following
functions:

Vi=W % V; + 91 %71 % (pBest; — X;) + U2 * ra * (9gBest; — X;) (1)

X=X +V; (2)



Algorithm 1 PSOo

S — initializeSwarm()
while not stop condition do
for i = 0; i < size(S); i+ + do
if fitness(X;) is better than fitness(pBest;) then
pBest; — X;
fitness(pBest;) «— fitness(X;)
end if
if fitness(pBest;) is better than fitness(gBest;) then
gBest; «— pBest;
fitness(gBest;) «— fitness(pBest;);
end if
end for
//derivation 0
for i = 0; ¢ < size(S); i + + do
Vi — WV, + 91 xr1 * (pBest; — X;) + 92 * ro x (9Best; — X;)
Xi = X +V;
X; — (4 + Xi)mOdQ
Vi — (34 V;)mods — 1
end for
end while

Where W is the inertia weight [12] that regulates the impact of previous ve-
locity vector on the new vector. ¢ is a coefficient that controls the knowledge
component (91 * ry x (pBest; — X;). This component measures the influence
of the knowledge obtained by a particle (its best position) for calculating its
new velocity vector. While the 95 coefficient controls to the social component
(92xro* (gBest; — X;) which measures the influence of the best position obtained
by all particles for calculating the new velocity vector of a given particle. r; y
ro are random values in the range [0..1].

The origins of PSO are based on a continuous codification, due to its nature
for using operations on gradients. However, there are adjustments to the binary
encoding and permutations of integers [1, 13, 14]. In [14] the authors present a
first adaptation for a binary PSO. Where the position vector is encoded as a
binary string; meanwhile the velocity vector is real. This new version of PSO
uses the same functions to update the velocity vector than the basic algorithm
(see Eq. 1). In order to determine the probabilities for the computation of the
position vector, a sigmoid function is used that maps a velocity value onto the
interval [0,1]. With this adaptation a lot of information is lost and the binary PSO
performance is low in many cases. Clerc in [13] achieves a better performance to
incorporate a new method for computing the position vector: derivation 0. Where
the normalization is done using the modular arithmetic; thus less information is
lost. We use the Clerc’s implementation to develop this work. In the Algorithm 1
a PSO pseudo code with binary codification and derivation 0 is shown, henceforth
we call this version PSOo.

3 Our proposal

In this paper, we propose a PSO adaptation, which we call hybrid Particle Swarm
Optimization (PSOh). This version incorporates to the PSOo, two different tech-
nics: a crossover operator that helps to exploit promising regions of search space,
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and an elitist restart operator that allows to explore new regions of the search
space. The idea behind this adaptation is to achieve a balance between ex-
ploration and exploitation of the search process since the PSOo shows a very
disperse swarm at the end obtaining low quality results.

The crossover operator is one of the main operators of the Genetic Algorithms
[3]. It combines genetic material from two or more individuals (called parents)
to produce new individuals (called children). Particularly for PSOh, we propose
a new crossover operator which is called Social Crossover (SX). SX copies a
position vector fragment from the current global best solution (gBest;) into the
position vector of a given particle. Such fragment is copied in the same place
from which is extracted and its size is random (see Fig. 1). For generating the
rest of the particle, we use the derivation 0 method. In this way significant
information is transferred from the best particle during the search process. This
allows: the exploitation of promising regions of the search space, an important
social influence on a new particle and a faster convergence to the optimum.

While the restart procedure arises from CHC [11] where the population is
restarted keeping the best individual when a population stagnation is detected.
Note that, for CHC, this procedure replaced the mutation operator to provide
a further exploration of the search space. Particularly for PSOh, we propose an
elitist restart operator which, restarts a population proportion (20%) keeping
the best particle. The idea behind this operator is to avoid: the particle swarm
becomes homogeneous and convergence to be local optimum.

For each iteration, PSOh executes the following actions (see Algorithm 2):

1. Update the components of position and velocity vectors using derivation 0
method except the components which are between posl and pos2 positions.
These components are updated using the Social Crossover. In this way, a new
particle is created. This procedure is applied under an 80% of probability.

2. Apply the Elitist Restart Operator with a 20% of probability.



Algorithm 2 PSOh

S — initializeSwarm()
while not stop condition do
for i = 0; i < size(S); i + + do
if fitness(X;) is better than fitness(pBest;) then
pBest; — X;
end if
if fitness(pBest;) is better than fitness(gBest;) then
gBest; <+ pBest;
fitness(gBest;) « fitness(pBest;)
end if
end for
for i = 0; i < size(S); ¢ + + do
if rand(0,1) < 0.8 then
posl «— rand(0, size(X;) — 1)
pos2 — rand(0, size(X;) — 1)
if posl > pos2 then
toExchange(posl, pos2)
end if
Jj=0
while (j >= 0 && j <= posl) || (j >= pos2 && j < size(X,)) do
if j == posl then
j < pos2
end if
//Derivation0
Vi — WV, + 91 xr1 x (pBest; — X;) + 92 x r2 * (gBest;, — X;)
X = Xi+V;
X; — (4 <+ Xi)modz
Vi — (3+ Vi)modg -1
J—=Jj+1
end while
//CrossoverOperator
for j = posl;posl < pos2; j + + do
X, <+ gBest;
end for
else
// Elitist RestartOperator
if X; # gBest then
for j = 0; j < size(S); j + + do
X,; <« rand(0,1)
end for
end if
end if
end for
end while

4 Test Functions

In this paper, we use four different optimization functions to analyze the above
mentioned metaheuristic; they are: Sphere function (f1), Rosenbrock function
(f2), Rastrigin function (f2), Easom function (f4). Those functions have been
chosen since they represent real problems and belong to a function set which is
used to study many optimization methods. All these functions are mapped in
R"™ — R. The characteristics of each function are shown in Table 1.

5 Computational Experiments

In this section, we show the results obtained by applying PSOo and PSOh on
the set of functions presented in section 2. This set of functions presents differ-



Table 1. Function characteristics

Functions
Sphere (f1) Dimenston Size
n = 5(f1s)
F(z) =YY", 27 Search Space
S ={z|Vi: -5.12 =< z; =< 5.12 € R}
Optimum Value Main Characteristics
0.0 unimodal
Rosenbrock (f2) Dimension Size
n =5(f25)
F(X)=Y7"'100* (mf_H - z?)z + (2 —1)2 Search Space
S = {z|Vi: —5.12 =< x; =< 5.12 € R}
Optimum Value Main Characteristics
0.0 dependent variables
Rastrigin (f3) Dimension Size
n = 5(f3s5)
F(X)= (7, —10*cos(2mz;)) + 10 n Search Space
S = {z|Vi: —5.12 =< x; =< 5.12 € R}
Optimum Value Main Characteristics
0.0 multimodal
Easom (f4) Dimension Size
n=2
F(z,y) = —cos(z) * cos(y) * exp(—(z — m)?) — (y — )2 Search Space
S ={-100 =< z,y =< 100 € R}
Optimum Value Main Characteristics
-1 deceptive
Table 2. PSOo and PSOh parameters
Independent runs 30
Swarm Size 64
Neighborhood size 64
Inertia Weight (W) 0.732
Knowledge and Social Coefficients (91, 92 ) 2
Stop Condition 600 generations

ent complexity degrees due to their characteristics (unimodal, multimodal and
deceptive) and dimensions (2D and 5D). These functions are: f1s, f25, f35, f4a.
PSOo and PSOh algorithms were executed using the MALLBA software [15],
which was created by research group from Malaga, La Laguna and Barcelona
Universities. For each algorithmic setting we have performed 30 independent
runs per function and we use an Intel Centrino duo processor with 1.73 Ghz and
1 GB of RAM.

As we said in previous sections, the position vector is a binary string where
24 bits encode a real value. Therefore, for a search space of 5 dimensions, the
position vector of each particle has 120 bits and for 2 dimensions it has 56 bits.

Some parametric values (swarm size, neighborhood size, stop condition) have
been optimized through hand-tuning comparing different values and others pa-
rameters (inertia weight, knowledge and social coefficients) are taken from the
literature. In Table 2 are summarized those values.

We use the following relevant performance variables to analyze the behavior
of each algorithm:

— ABest (Average Best). This value is the average of the best solutions found by each algorithmic
version in each run.
Best (Best). It is the best solution or particle that was found by each algorithmic version.

— APop (Average Population). This value is the average of the solutions in the final population.



Table 3. PSOo and PSOh Results

PSOo
Functions Abest Best |[Abestl Apop AbestT
fls 0.709 £ 0.23 | 0.116 [280.067 42.906 £ 17.25 569.959
f25 48.572 4 25.06[20.055|281.300| 58687.08 4 39657.66 | 551.941
f3s5 12.323 + 2.32 | 7.809 [337.733 92.862 + 22.67 682.738

fds —0.622 £+ 0.25(-0.974|306.567 0+0 135.459
PSOh

fls 0.157 £ 0.08 | 0.039 | 304.80 43.274 + 43 291.390

125 22.471 £ 27.21| 3.533 | 367.23 [58941.776 4+ 133857.79| 293.817

f3s 6.853 £+ 4.43 | 1.905 | 285.23 93.149 + 33.99 214.105

fdo —0.973 £+ 0.04]-1.000| 316.67 0+ 0.01 64.613
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every 20 iterations

Table 4. PSOo and PSOh average entropy values

Average Entropy
Funcién|PSOo PSOh
f1s| 0.904 0.856

f25| 0.900 0.850

f35| 0.896 0.835

f42] 0.909 0.851

— ABestl (Average Best Iteration). It is an average of the iterations which were necessary to find
the Best value.

— ABestT (Average Best Time). It is the average time (in seconds) that the algorithm takes to
find the best value.

— Entropy. The entropy measure is used to understand how the particles are different from each
other. This measure is in the interval [0,1]. If the swarm entropy is close to 1, then the particles
will be different. Otherwise if it is close to 0, particles will be similar, i.e., the genotypic diversity
will be null or almost null.

In Table 3 the results obtained by PSOo and PSOh are detailed. In Figure
2, PSOo and PSOh performances are compared taking into account the four
different search spaces that were used for testing. While in Table 4 the average
entropy values corresponding to final populations are summarized.

From an analysis of Tables 3 and Figure 2, we can observe:

— In average PSOh improves the quality of best found solution in a 75% with
respect to PSOo. This difference is corroborated using a t — student Test
with « = 0.05, which is applied to compare the fitness quality obtained by
both algorithms in each function; where a p —value = 0.000 is lesser than a.



Noteworthy PSOo only is closed to the optimum when it solves f4,. While
PSOh is closed to the optimum when it solves fls, f25 and f34 functions
and it reaches the optimum for f4s.

— In average our proposed algorithm reduces the execution time to find the
best solution in a 54%. Although both algorithmic approaches need approx-
imately 310 iterations to find their best solution. This difference is also cor-
roborated using a t — student Test where a p — value = 0.0003 is lesser than
a = 0.05.

— The final populations obtained by PSOo and PSOh algorithms have diverse
solutions when these algorithms solve f15, f25 and f35 functions. In Evolu-
tionary Computation this kind of diversity is called phenotypic diversity.

From Table 4, we can analyze if the particle composition in the final popu-
lation is diverse or not. That is called genotypic diversity and it is measured for
the entropy variable. This diversity is almost total (0.9 in average) when PSOo
solves every function. This means that the particles in the final swarm are very
dispersing and PSQOo algorithm has many difficulties to converge. While PSOh
obtains final swarms with lesser genotypic diversity (0.8) converging to better
solutions faster. This improvement is achieved by applying social crossover and
elitist restart operators. This crossover operator guides the search towards better
solutions i.e., it helps the exploitation. While the elitist restart operator allows
to explore the search space keeping the diversity in a swarm whose size is rela-
tively small. In this way, PSOh presents a better balance between exploitation
and exploration than PSOo.

In order to analyze more exhaustively the behavior of PSOo and PSOh, we
have carried out a survey every 20 iterations from each execution. In this survey,
the considered variables are Best and Entropy. Figures 3 and 4 summarize these
data.

In Figure 4, we can see the best solution found by PSOo and PSOh every
20 iterations during the search process. The PSOo and PSOh behaviors if we
consider the result quality. In this regard, for each search space tested both
algorithms present a similar behavior. They start with high fitness values, these
values drop sharply at the first 80 iterations approximately. From this point, the
improvements continue but with a fewer intensity and an important difference
between these two algorithms appears. PSOo decreases the best fitness value
keeping the same best fitness over long intervals of iterations; while PSOh shows
a slow but steady decline of the best fitness for the rest of the iterations. Another
important difference is that during all iterations, PSOh always obtains better
fitness values than PSOo.

In Figure 3, we can see that both algorithms start with a very high genotypic
diversity, which fall quickly at the first 40 iterations. But for PSOh the drop
is more significant than for PSOo (0.8 vs. 0.9). In average those values are
maintained on the rest of the run by each algorithm.

Once more, we can see the relation between the genotypic diversity achieved
by each algorithm with the quality of the results obtained by each of them. In
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other words, PSOh reduces the swarm dispersion without losing the necessary
exploration to avoid local optimum.

6 Conclusions

Two different algorithmic versions for Particle swarm optimization have been
presented, studied and analyzed in this job. One of this version is a classical
binary PSO which use the derivation 0 method to compute the values of the
position vector. The other version is proposed for us, it is a hybrid binary PSO
which use the derivation 0 method.

This hybridization arises because the first algorithm (the classical binary
PSO) cannot converge to the optimum since the high degree of dispersion in
the swarm during the search process. In order for solving this problem a social
crossover and an elitist restart operators are incorporated into the binary PSO.
In this way, we can exploit the search space using this crossover operator and
explore it using the elitist restart operator. The idea behind this hybridization is
to balance the exploitation and exploration in the search process. That means,
the particles should be sufficiently separated from one another without being
too dispersed.

Both versions of the Particle Swarm Optimization were tested for a set of
selected functions which have different characteristics and complexity degrees.
At the light of these results we can conclude that:

— Regarding the quality of results (best and average individuals) and the time
to find near optimal solutions the hybrid approach outperforms the classical
binary PSO.
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Concerning the genotypic diversity, the hybrid approach losses a minimum
of diversity on the search process to achieve a better balance between explo-
ration and exploitation.

Due to these promissory results, this research will be continued solving com-

plex combinatorial optimization problems. For example, problems in the area of
antenna designs will be studied. Furthermore, an analysis about parameters will
be performed.
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