
Integration of Rules and Ontologies with
Defeasible Logic Programming

Sergio A. Gómez, Carlos I. Chesñevar, and Guillermo R. Simari

Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering

Universidad Nacional del Sur
Av. Alem 1253, (8000) Bah́ıa Blanca, Argentina

Email: {sag,cic,grs}@cs.uns.edu.ar

Abstract. The Semantic Web is a vision of the current Web where
resources have exact meaning assigned in terms of ontologies, thus en-
abling agents to reason about them. As inconsistencies cannot be treated
by standard reasoning approaches, we use Defeasible Logic Programming
(DeLP) to reason with possibly inconsistent ontologies. In this article we
show how to integrate rules and ontologies in the Semantic Web. We
show how to use a possibly inconsistent set of rules represented by a
DeLP program to reason on top of a set of (possibly inconsistent) on-
tologies.

1 Introduction

The Semantic Web [1] (SW) is a vision of the current Web where resources
have exact meaning assigned in terms of ontologies [2], thus enabling agents to
reason about them. The Ontology Layer of the SW is well developed with the
OWL language whose underlying semantics is based on the so-called Description
Logics (DL) [3], for which specialized reasoners exist [4].

However, despite existing advances in SW-related technologies, there are still
open research issues. In particular, the Rule Layer’s goal is to complement ontolo-
gies when ontology languages cannot fulfill all of the expressivity requirements
for describing a domain, and its development is important as its semantics has
not been standardized.

Besides, although existing reasoners provide efficient implementations for de-
tecting inconsistent ontologies, they are incapable of performing inferences upon
them. In a previous work [5], we presented a formalism called δ-ontologies capa-
ble of reasoning with potentially inconsistent DL ontologies.

In this article, we extend the δ-ontologies framework to suitably provide rules
on top of δ-ontologies. Our extension allows to model incomplete and possibly
inconsistent set of rules, thus suitably extending the SW Rule Layer. Rules in
the proposed extension are to be interpreted as DeLP program with special
primitives to access the knowledge represented in the ontologies of the ontology
layer. In this way rules and ontologies are integrated as a single DeLP program



upon which queries can be posed. The result of such queries will depend on the
content of the rules as well as the contents of the underlying ontologies.

The rest of this paper is structured as follows. In Section 2 we briefly present
the fundamentals of Description Logics and Defeasible Logic Programming. Sec-
tion 3 briefly recalls the framework of δ-ontologies for reasoning with possibly
inconsistent ontologies. In Section 4, we extend the δ-ontologies framework to
allow for building rules on top of ontologies. Finally Section 5 discusses related
work and Section 6 concludes the paper.

2 Background

2.1 Description Logics

Description Logics (DL) are a well-known family of knowledge representation
formalisms [3]. They are based on the notions of concepts (unary predicates,
classes) and roles (binary relations), and are mainly characterized by the con-
structors that allow complex concepts and roles to be built from atomic ones.
Let C and D stand for concepts and R for a role name. Concept descriptions are
built from concept names using the constructors conjunction (C uD), disjunc-
tion (CtD), negation (¬C), existencial restriction (∃R.C), and value restriction
(∀R.C). To define the semantics of concept descriptions, concepts are interpreted
as subsets of a domain of interest, and roles as binary relations over this domain.
Further extensions to the basic DL are possible including inverse and transitive
roles noted as P− and P+, resp.

A DL ontology consists of two finite and mutually disjoint sets: a Tbox which
introduces the terminology and an Abox which contains facts about particular
objects in the application domain. Tbox statements have the form C v D (inclu-
sions) and C ≡ D (equalities), where C and D are (possibly complex) concept
descriptions. Objects in the Abox are referred to by a finite number of individ-
ual names and these names may be used in two types of assertional statements:
concept assertions of the type a : C and role assertions of the type 〈a, b〉 : R,
where C is a concept description, R is a role name, and a and b are individual
names.

2.2 Defeasible Logic Programming

Defeasible Logic Programming (DeLP) [6] provides a language for knowledge
representation and reasoning that uses defeasible argumentation [7] to decide be-
tween contradictory conclusions through a dialectical analysis. Codifying knowl-
edge by means of a DeLP program provides a good trade-off between expressivity
and implementability for dealing with incomplete and potentially contradictory
information. In a defeasible logic program P = (Π,∆), a set ∆ of defeasible
rules P −≺ Q1, . . . , Qn, and a set Π of strict rules P ← Q1, . . . , Qn can be dis-
tinguished. An argument 〈A, H〉 is a minimal non-contradictory set of ground
defeasible clauses A of ∆ that allows to derive a ground literal H possibly us-
ing ground rules of Π. Since arguments may be in conflict (concept captured in



terms of a logical contradiction), an attack relationship between arguments can
be defined. A criterion is usually defined to decide between two conflicting argu-
ments. If the attacking argument is strictly preferred over the attacked one, then
it is called a proper defeater. If no comparison is possible, or both arguments are
equi-preferred, the attacking argument is called a blocking defeater. In order to
determine whether a given argument A is ultimately undefeated (or warranted),
a dialectical process is recursively carried out, where defeaters for A, defeaters
for these defeaters, and so on, are taken into account. Given a DeLP program
P and a query H, the final answer to H w.r.t. P takes such dialectical analysis
into account. The answer to a query can be: yes, no, undecided, or unknown.

3 Reasoning with Inconsistent Ontologies in DeLP

In the presence of inconsistent ontologies, traditional DL reasoners (such as
Racer [4]) issue an error message and stop further processing. Thus the burden
of repairing the ontology (i.e., making it consistent) is on the knowledge engi-
neer. In a previous work [5], we showed how DeLP can be used for coping with
inconsistencies in ontologies such that the task of dealing with them is automat-
ically solved by the reasoning system. We recall some of the concepts for making
the article more self-contained.

Definition 1 (δ-Ontology). Let C be an Lb-class, D an Lh-class, A,B Lhb-
classes, P,Q properties, a, b individuals. Let T be a set of inclusion and equality
sentences in LDL of the form C v D, A ≡ B, > v ∀P.D, > v ∀P−.D, P v Q,
P ≡ Q, P ≡ Q−, or P+ v P such that T can be partitioned into two disjoint
sets TS and TD. Let A be a set of assertions disjoint with T of the form a : D
or 〈a, b〉 : P . A δ-ontology Σ is a tuple (TS , TD, A). The set TS is called the
strict terminology (or Sbox), TD the defeasible terminology (or Dbox) and A
the assertional box (or Abox).

Example 1. Consider the δ-ontologies Σ1 = (∅, T 1
D, A

1) about swimming and
Σ2 = (T 2

S , T
2
D, A

2) about programming both presented in Fig. 1. The defeasible
terminology T 1

D says that both free and scuba divers are divers; saturation divers
are scuba divers; somebody who swims a race stroke is usually a race swimmer,
and someone who can swim a rescue stroke is normally considered a rescue
swimmer. The assertional box A1 establishes that crawl is a race stroke; side is a
rescue stroke; John is able to swim both crawl and side strokes, and finally Paul is
a saturation diver. The strict terminology T 2

S expresses that among programming
languages, both logic programming and object-oriented languages can be found.
The Dbox T 2

D says that a programmer is usually somebody who can program in
some programming language unless she has failed the elementary programming
course. The Abox A2 establishes that Prolog is a logic programming language
and that John can program in the Prolog programming language; that Java is
an object-oriented language and that Mary can program Java code, and that
Paul is capable of programming in the Java programming language although he
failed the elementary programming course.



Swimming ontology Σ1 = (∅, T 1
D, A

1):

Defeasible terminology T 1
D:

Free Diver t Scuba Diver v Diver; Saturation Diver v Scuba Diver
∃swims.Race Stroke v Race Swimmer; ∃swims.Rescue Stroke v Rescue Swimmer

Assertional box A1:
CRAWL : Race Stroke; SIDE : Rescue Stroke
〈JOHN,CRAWL〉 : swims; 〈JOHN, SIDE〉 : swims; PAUL : Saturation Diver

Programming ontology Σ2 = (T 2
S , T

2
D, A

2):

Strict terminology T 2
S:

LP Lang t OOP Lang v Lang

Defeasible terminology T 2
D:

∃programs.Lang v Programmer; ∃programs.Lang u Failed Prog 101 v ¬Programmer

Assertional box A2:
PROLOG : LP Lang; JAVA : OOP Lang
〈JOHN,PROLOG〉 : programs; 〈MARY, JAVA〉 : programs
〈PAUL, JAVA〉 : programs PAUL : Failed Prog 101

Fig. 1. Ontologies Σ1 and Σ2

For assigning semantics to a δ-ontology we defined two translation functions
T∆ and TΠ from DL to DeLP based on the work of [8]. We recall some of the
definitions, for details see [5].

Definition 2. (T ∗Π mapping from DL sentences to DeLP strict rules) Let
A,C,D be concepts, X,Y variables, P,Q properties. The T ∗Π : 2LDL → 2LDeLPΠ
mapping is defined in Fig. 2. Besides, intermediate transformations of the form
“(H1∧H2) ← B” will be rewritten as two rules “H1 ← B” and “H2 ← B”.
Similarly transformations of the form “H1 ← H2 ← B” will be rewritten as
“H1 ← B ∧H2”, and rules of the form “H ← (B1 ∨B2)” will be rewritten as
two rules “H ← B1” and “H ← B2”.

Definition 3 (Transposes of a strict rule). Let r = H ← B1, B2, B3, . . . , Bn−1, Bn
be a DeLP strict rule. The set of transposes of rule r, noted as “Trans(r)”, is
defined as:

Trans(r) =



H ← B1, B2, . . . , Bn−1, Bn
B1 ← H,B2, B3, . . . , Bn−1, Bn
B2 ← H,B1, B3, . . . , Bn−1, Bn
B3 ← H,B1, B2, . . . , Bn−1, Bn
. . .

Bn−1 ← H,B1, B2, B3 . . . , Bn
Bn ← H,B1, B2, . . . , Bn−1


.

Definition 4 (TΠ mapping from DL sentences to DeLP strict rules).
We define the mapping from DL ontologies into DeLP strict rules as TΠ(T ) =
Trans(T ∗Π(T )).



T ∗Π({C v D}) =df
{
Th(D,X) ← Tb(C,X)

}
,

if C is an Lb-class and D an Lh-class
T ∗Π({C ≡ D}) =df T ∗Π({C v D}) ∪ T ∗Π({D v C}),

if C and D are Lhb-classes
T ∗Π({> v ∀P.D}) =df

{
Th(D,Y ) ← P (X,Y )

}
,

if D is an Lh-class

T ∗Π({> v ∀P−.D}) =df
{
Th(D,X) ← P (X,Y )

}
,

if D is an Lh-class
T ∗Π({a : D}) =df

{
Th(D, a)

}
,

if D is an Lh-class
T ∗Π({〈a, b〉 : P}) =df

{
P (a, b)

}
T ∗Π({P v Q}) =df

{
Q(X,Y ) ← P (X,Y )

}
T ∗Π({P ≡ Q}) =df

{
Q(X,Y ) ← P (X,Y )
P (X,Y ) ← Q(X,Y )

}
T ∗Π({P ≡ Q−}) =df

{
Q(X,Y ) ← P (Y,X)
P (Y,X) ← Q(X,Y )

}
T ∗Π({P+ v P}) =df

{
P (X,Z) ← P (X,Y ) ∧ P (Y, Z)

}
T ∗Π({s1, . . . , sn}) =df

⋃n
i=1 T

∗
Π({si}), if n > 1

where:
Th(A,X) =df A(X)

Th((C uD), X) =df Th(C,X) ∧ Th(D,X)
Th((∀R.C), X) =df Th(C, Y ) ← R(X,Y )

Tb(A,X) =df A(X)
Tb((C uD), X) =df Tb(C,X) ∧ Tb(D,X)
Tb((C tD), X) =df Tb(C,X) ∨ Tb(D,X)
Tb((∃R.C), X) =df R(X,Y ) ∧ Tb(C, Y )

Fig. 2. Mapping from DL ontologies to DeLP strict rules

Definition 5 (Interpretation of a δ-ontology). Let Σ = (TS , TD, A) be
a δ-ontology. The interpretation of Σ is a DeLP program P = (TΠ(TS) ∪
TΠ(A), T∆(TD)).

Notice that in order to keep consistency within an argument, we must enforce
some internal coherence between the Abox and the Tbox; namely given a δ-
ontology Σ = (TS , TD, A), it must not be possible to derive two complementary
literals from TΠ(TS) ∪ TΠ(A).

Definition 6. (Potential, justified and strict membership of an indi-
vidual to a class) Let Σ = (TS , TD, A) be a δ-ontology, C a class name, a an
individual, and P = (TΠ(TS) ∪ TΠ(A), T∆(TD)).

1. The individual a potentially belongs to class C, noted as PotentialMember(a,C,Σ),
iff there exists an argument 〈A, C(a)〉 w.r.t. P;

2. the individual a justifiedly belongs to class C, noted as JustifiedMember(a,C,Σ),
iff there exists a warranted argument 〈A, C(a)〉 w.r.t. P, and,

3. the individual a strictly belongs to class C, noted as StrictMember(a,C,Σ),
iff there exists an argument 〈∅, C(a)〉 w.r.t. P.

Example 2 (Continues Ex. 1). Consider again the δ-ontologies Σ1 and Σ2, they
are interpreted as the DeLP programs P1 and P2 according to Def. 5 as shown
in Fig. 3. From P1, we can determine that John justifiedly belongs to the
concept Race Swimmer in Σ1 as there exists a warranted argument structure



〈A1, race swimmer(john)〉 where:

A1 =
{

race swimmer(john) −≺ swims(john, crawl), race stroke(crawl)
}
.

Likewise, there are warranting arguments A2 and A3 for rescue swimmer(john)
and diver(paul) resp., with:

A2 =
{

rescue swimmer(john) −≺ swims(john, side), rescue stroke(side)
}

and

A3 =

{
diver(paul) −≺ scuba diver(paul)
scuba diver(paul) −≺ saturation diver(paul)

}
.

From P2 in turn we can conclude that both John and Mary justifiedly belong to
the concept Programmer but Paul justifiedly belongs to the concept ¬Programmer
as there are warranted arguments 〈B1, programmer(john)〉, 〈B2, programmer(mary)〉,
and 〈B3,∼programmer(paul)〉, where:

B1 =
{

programmer(john) −≺ programs(john, prolog)
}

,

B2 =
{

programmer(mary) −≺ programs(mary , java)
}

, and

B3 =
{
∼programmer(paul) −≺ programs(paul , java), failed prog 101 (paul)

}
.

Notice that there exists another argument 〈B4, programmer(paul)〉 with B4 =
{programmer(paul) −≺ programs(paul , java)} that is defeated by argument B3.

DeLP program P1 = (Π1, ∆1) obtained from Σ1:

Facts Π1:
race stroke(crawl). rescue stroke(side). saturation diver(paul).
swims(john, crawl). swims(john, side).

Defeasible rules ∆1:
diver(X) −≺ free diver(X).
diver(X) −≺ scuba diver(X).
scuba diver(X) −≺ saturation diver(X).
race swimmer(X) −≺ swims(X,Y ), race stroke(Y ).
rescue swimmer(X) −≺ swims(X,Y ), rescue stroke(Y ).

DeLP program P2 = (Π2, ∆2) obtained from Σ2:

Facts and strict rules Π2:
lp lang(prolog). oop lang(java).
programs(john, prolog). programs(mary, java).
programs(paul, java). failed prog 101(paul).
lang(X) ← lp lang(X). ∼lp lang(X) ← ∼lang(X).
lang(X) ← oop lang(X). ∼oop lang(X) ← ∼lang(X).

Defeasible rules ∆2:
programmer(X) −≺ programs(X,Y ), lang(Y ).
∼programmer(X) −≺ programs(X,Y ), lang(Y ), failed prog 101(X).

Fig. 3. DeLP programs P1 and P2 obtained from ontologies Σ1 and Σ2, resp.



4 Adding Rules on Top of Ontologies

We now define how to express rules in the Semantic Web in the presence of
incompleteness and potential inconsistency. The notions presented will lead to
the central definition of integration system that joins rules and ontologies making
it suitable for a SW setting.

Definition 7 (Strict, justified and potential membership statements).
Let a be an individual name, C a concept name, and Σ a δ-ontology. The ex-
pression “StrictMember(a,C,Σ)” is called a strict membership statement and
queries if “a” strictly belongs to “C” w.r.t. Σ. The expression “JustifiedMember(a,C,Σ)”
is called a justified membership statement and queries if “a” justifiedly belongs
to “C” w.r.t. Σ. The expression “PotentialMember(a,C,Σ)” is called a poten-
tial membership statement and queries if “a” potentially belongs to “C” w.r.t.
Σ.

Definition 8 (Semantic web strict rule). A semantic web strict rule is an
ordered pair, denoted “B =⇒ H”, whose first member, B, is a finite set of literals
or potential membership statements, and whose second member, H, is a literal.
A semantic web strict rule with antecedent {L1, . . . , Ln} and head H will be also
written as “L1 ∧ . . . ∧ Ln =⇒ H”.

Definition 9 (Semantic web defeasible rule). A semantic web defeasible
rule is an ordered pair, denoted “B >== H”, whose first member, B, is a finite
set of literals or potential membership statements, and whose second member, H,
is a literal. A semantic web strict rule with antecedent {L1, . . . , Ln} and head H
will be also written as “L1 ∧ . . . ∧ Ln >== H”.

Definition 10 (Semantic web program). Let S be a set of semantic web
strict rules and D a set of semantic web defeasible rules. A semantic web program
is a pair 〈S,D〉.

Definition 11 (Integration system). Let P be a semantic web program and
let Σ1, . . . , Σn be n δ-ontologies. An integration system of rules and ontologies
I is a pair 〈P, {Σi}i=1,...,n)〉.

Example 3. Consider the semantic web program P = 〈S,D〉 presented in Fig. 4,
this SW program will be integrated with ontologies Σ1 and Σ2 from Ex. 1
into the integration system I = 〈P, {Σ1, Σ2}〉. In P, the set of strict semantic
web rules S expresses that somebody who potentially belongs to the concept
“race swimmer” (resp. “rescue swimmer”) in ontology Σ1 is a race swimmer
(resp. rescue swimmer) and that whoever is a potential member of the concept
“programmer” in ontology Σ2 is a computer geek. The set of defeasible semantic
web rules D says that computer geeks are not usually good at sports but expert
swimmers normally are; if somebody is either capable of swimming both a race
stroke and a rescue stroke the he is often considered an expert swimmer; finally,
a diver is usually considered an expert swimmer.



Set of strict semantic web rules S:

PotentialMember(x,Race Swimmer, Σ1) =⇒ Race Swimmer(x)
PotentialMember(x,Rescue Swimmer, Σ1) =⇒ Rescue Swimmer(x)
PotentialMember(x,Programmer, Σ2) =⇒ Geek(x)

Set of defeasible semantic web rules D:

Geek(x) >== ¬Good(x)
Swimmer(x) >== Good(x)
Race Swimmer(x) ∧ Rescue Swimmer(x) >== Swimmer(x)
PotentialMember(x,Diver, Σ1) >== Swimmer(x)

Fig. 4. Semantic web program P = 〈S,D〉

In order to answer queries posed against an integration system of rules and
ontologies, we will interpret integration systems as DeLP programs. We define
next the notions of semantic interpretation and answer to a query for an inte-
gration system.

Definition 12 (Semantic interpretation). Let I = (P, {Σ1, . . . , Σn}) be an
integration system such that: P = 〈ΠP , ∆P〉, Σ1 = (T 1

S , T
1
D, A

1), . . . , Σn =
(TnS , T

n
D, A

n). The semantic interpretation of I, noted as Sem(I), is the DeLP
program:(

Φ(ΠP) ∪
⋃
i=1,...,n T (T iS) ∪

⋃
i=1,...,n T (Ai), Φ(∆P) ∪

⋃
i=1,...,n T (T iD)

)
.

Definition 13 (Answer to a query in a SW integration system). Let I
be a SW integration system and L a literal. The answer to the query L, noted
as AnswerI(L), is defined as:

– Yes iff the answer to the query L is Yes w.r.t. Sem(I);
– No iff the answer to the query ∼L is Yes w.r.t. Sem(I), and
– Undecided iff the answer to the query L is Undecided. w.r.t. Sem(I).

Example 4 (Continues Ex. 3). Consider again the integration system I presented
in Ex. 3. When we compute Sem(I), we obtain the DeLP program formed
by the fragments presented in Fig. 5 along with the ones already presented in
Ex. 2. We will show that the answer for the query good(john) is Undecided,
for good(mary) is No and for good(paul) is Yes.

First, we will consider the dialectical analysis for the query “good(john)”.
There exists an argument 〈C1, good(john)〉 where:

C1 = A1 ∪ A2 ∪{
(good(john) −≺ swimmer(john)),
(swimmer(john) −≺ race swimmer(john), rescue swimmer(john))

}
.

However, there is an argument 〈C2,∼ good(john)〉, that says John is not good
at sports as he is a geek because he is a programmer, that defeats argument C1,
where C2 = B1 ∪ {∼ good(john) −≺ geek(john)}. Therefore, the answer for the
query “good(john)” is Undecided.



When we consider the dialectical analysis for determining the answer to the
query “good(mary)”, we find out that there is a warranted argument 〈B2 ∪
{geek(mary) −≺ programmer(mary)},∼good(mary)〉.

Last, let us consider the dialectical tree for the literal “good(paul)”. There is
an argument 〈D1, good(paul)〉, based on the defeasible information that asserts
that Paul is an expert swimmer (because he is a saturation diver), with:

D1 = A3 ∪
{

(good(paul) −≺ swimmer(paul)),
(swimmer(paul) −≺ diverΣ2(paul))

}
.

But argument D1 is attacked by an argument 〈D2,∼good(paul)〉, where:

D2 = B4 ∪
{

(∼good(paul) −≺ geek(paul)),
(geek(paul) −≺ programmer(paul))

}
.

Nevertheless, as Paul failed the elementary programming course, this argument
is defeated by argument B3 (see Ex. 2), thus reinstating argument D1.

Φ(B1 ∧ . . . ∧ Bn =⇒ A) =df Φ(A) ← Φ(B1), . . . , Φ(B1)
Φ(B1 ∧ . . . ∧ Bn >== A) =df Φ(A) −≺ Φ(B1), . . . , Φ(B1)

Φ(L(x1, . . . , xn)) =df L(X1, . . . , Xn)
Φ(¬L(x1, . . . , xn)) =df ∼L(X1, . . . , Xn)

Φ(PotentialMember(a, C,Σ)) =df CΣ(a)

Fig. 5. Interpretation of Semantic Web rules as DeLP rules

Strict rules ΠD:

race swimmer(X) ← race swimmerΣ1 (X).
rescue swimmer(X) ← rescue swimmerΣ1 (X).
geek(X) ← programmerΣ2

(X).

Defeasible rules ∆D:

∼good(X) −≺ geek(X).
good(X) −≺ swimmer(X).
swimmer(X) −≺ race swimmer(X), rescue swimmer(X).
swimmer(X) −≺ diverΣ1 (X).

Fig. 6. DeLP program P ′ = (ΠS ,∆D) obtained from the interpretation of P = 〈S,D〉

5 Related Work

Eiter et al.[9] propose a combination of logic programming under the answer set
semantics with the DLs SHIF(D) and SHOIN (D). This combination allows
for building rules on top of ontologies as we do. However, in contrast to our
approach, they are not able to handle inconsistencies neither in the ontologies
nor in the rule bases. Williams & Hunter [10] use argumentation to reason with
possibly inconsistent rules on top of DL ontologies. In contrast, we translate
possible inconsistent DL ontologies to DeLP to reason with them within DeLP.



6 Conclusions

We have presented a novel approach for combining rules and ontologies in the
Semantic Web. The proposed approach allows to add incomplete and possibly
inconsistent rules on top of also possibly inconsistent ontologies by interpreting
them as DeLP programs. We have presented a framework for characterizing
the behavior of the proposed approach and an example scenario. In spite of
the results we have obtained, we think that we have a lot of work ahead as
the formal properties arising from the approach must be characterized. Other
research issue is related to the inclusion of both strict and justified membership
statements in Semantic Web rules as in this work we have only considered the
inclusion of potential membership statements. Our current research efforts are
directed toward solving these issues.

Acknowledgments: Esta ĺınea de investigación está financiada por la Agencia Na-

cional de Promoción Cient́ıfica y Tecnológica (PICT 2002 No. 13.096, PICT 2003

No. 15.043, PAV 2004 076), y por los Proyectos PIP 112-200801-02798 (CONICET,

Argentina), TIN2006-15662-C02-01 (MEC, Spain), PGI 24/ZN10 (SGCyT, UNS, Ar-

gentina) y la Universidad Nacional del Sur.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scient. American
(2001)

2. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisi-
tion 5(2) (1993) 199–220

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
The Description Logic Handbook – Theory, Implementation and Applications.
Cambridge University Press (2003)

4. Haarslev, V., Möller, R.: RACER System Description. Technical report, University
of Hamburg, Computer Science Department (2001)

5. Gómez, S.A., Chesñevar, C.I., Simari, G.R.: An Argumentative Approach to Rea-
soning with Inconsistent Ontologies. In Meyer, T., Orgun, M.A., eds.: Proc. of
the Knowledge Representation in Ontologies Workshop (KROW 2008). Volume
CPRIT 90., Sydney, Australia (2008) 11–20

6. Garćıa, A., Simari, G.: Defeasible Logic Programming an Argumentative Ap-
proach. Theory and Prac. of Logic Program. 4(1) (2004) 95–138

7. Chesñevar, C.I., Maguitman, A., Loui, R.: Logical Models of Argument. ACM
Computing Surveys 32(4) (December 2000) 337–383

8. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Com-
bining Logic Programs with Description Logics. WWW2003, May 20-24, Budapest,
Hungary (2003)

9. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set
Programming with Description Logics for the Semantic Web. KR 2004 (2004)
141–151

10. Williams, M., Hunter, A.: Harnessing ontologies for argument-based decision-
making in breast cancer. Proc. of the Intl. Conf. on Tools with AI (ICTAI’07)
(2007) 254–261


