Classification DNA sequences using
Gap—Weighted Subsequences Kernel

Wilson Soto

Department of System Engineering and Industrial Engineering
Research Group on Algorithms and Combinatorics (ALGOS-UN)
National University of Colombia, Bogota, Colombia
wesotof@unal.edu.co

Abstract

The aim of this paper is to show experimental results of classification DNA
sequences using gap—weighted subsequences kernel including the assess the ex-
pected error rate of a classification algorithm. The process involve a type of
kernel specific with a classification algorithm for learn to recognize sites that
regulate transcription, sites that can be detected in the laboratory as DNasel
hypersensitive sites (HSs) on DNA sequences. The classification algorithm is sup-
port vector machine (SVM), which learns by example to discriminate between
two given classes of data. The DNA sequences are converted using gap—weighted
subsequences kernel in a matrix kernel, which is processed by the classification
algorithm to produce a model with the which we can predict the classification of
new examples. It is important to know that a high accuracy with computational
methods for the identification of the DNasel hypersensitive sites would to help
to speed up the functional annotation of the human genome.

Keywords: Bioinformatics, Classification Algorithm, Gap—Weighted Subse-
quences Kernel, Pattern Algorithm, Transcription

Resumen

El fin de este articulo es mostrar los resultados experimentales de la clasificacién
de secuencias de ADN usando el kernel de subsecuencias con penalizacién in-
cluyendo la evaluacién de la tasa de error esperada de un algoritmo de clasi-
ficacion. El proceso envuelve un tipo especifico de kernel con un algoritmo de
clasificacién para aprender a reconocer sitios que regulan la transcripcion, sitios
que pueden ser detectados en el laboratorio como hiper sensitivos de Deoxirri-
bonucleasa I sobre secuencias de ADN. El algoritmo de clasificacién es méquinas
de vectores de soporte, el cual aprende por ejemplos a discriminar entre dos

clases de datos dadas. Las secuencias de ADN son convertidas usando el kernel
de subsecuencias con penalizaciéon en una matriz de kernel, la cual es procesada
por el algoritmo de clasificacin para producir un modelo con el cual se puede
predecir la clasificacién de nuevos ejemplos. Es importante saber que una alta
exactitud con métodos computacionales para la identificacion de sitios hiper sen-
sitivos de Deoxirribonucleasa I podria ayudar a acelerar la anotacién funcional
del genoma humano.

Palabras claves: Bioinformética, Algoritmo de Clasificacién, Kernel de Sub-
secuencias con Penalizacion, Algoritmo de Patrones, Transcripcion

1 INTRODUCTION

The human genome is composed of 23 pairs of chromosomes, each of which con-
tain hundreds of genes. There are estimated = 25,000 — 30,000 human protein—
coding genes. The regulatory sequences are crucial to controlling gene expression.
These are typically short sequences that appear near or within genes.

A gene consists of a transcriptional region and a regulatory region. The reg-
ulatory region can be divided into cis—regulatory (or cis—acting) elements and
trans—regulatory (or trans—acting) elements. The cis—regulatory elements are the
binding sites of transcription factors which are the proteins that, upon binding
with cis—regulatory elements, can affect (either enhance or repress) transcription.
The identification of sequences that regulate transcription is one of the major
goals of genome biology.

DNasel hypersensitive sites (HSs) have since proven to be extremely reliable
and generic markers of cis—regulatory sequences. Mapping DNasel hypersensitive
(HS) sites has traditionally represented the gold—standard experimental method
for discovering functional non-coding elements involved in gene regulation, but
the labor intensive nature of this technique has limited its application to only a
small number of human genes [2].

Computational methods such as Support Vector Machines (SVMs) and re-
lated kernel methods are extremely good at solving such problems. SVMs are
widely used in computational biology due to their high accuracy, their ability to
deal with high—dimensional and large datasets, and their flexibility in modeling
diverse sources of data. SVMs use two key concepts to solve this problem: large
margin separation and kernel functions [1].

Viewing the input data as two sets of vectors in an n—dimensional space, an
SVM will construct a separating hyperplane in that space, one which maximizes
the “margin” between the two data sets. To calculate the margin, we construct
two parallel hyperplanes, one on each side of the separating one, which are
“pushed up against” the two data sets. Intuitively, a good separation is achieved
by the hyperplane that has the largest distance to the neighboring data points of
both classes. The hope is that, the larger the margin or distance between these
parallel hyperplanes, the better the generalization error of the classifier will be.

Noble et al. [6] was proven that a classification algorithm (Support Vector
Machine) can learn recognize DNasel HSs with high accuracy using the spectrum

kernel for embedding the sequences into a vector space. The results was 85%
in predicting HSs [4]. Them hypothesize that the difference between HS and
non—HS sequences can be well characterized based on matching subsequences of
characters without gaps.

In this work, the difference between two sequences is assess the number of
(possibly non—contiguous) matching subsequences them shared. Non—contiguous
occurrences are penalized according to the number of gaps they contain. This is
accomplished using the gap—weighted subsequences kernel presented in [3,5]. In
the experiments reported here, we using the factor decay for A = {0.3,0.7} for
penalise non—contiguous subsequences.

2 BACKGROUND

2.1 Strings

A string is finite sequence of symbols which belongs to an alphabet, is a function
Sof{1...m} over ¥, S =ajas...a, where a; = S(i) € X. Here X denotes the
alphabet containing o symbols. The length of a string S is denoted by | S | or
when the input strings are known, by m for sequence x and n sequence for y.
A subsequence s'{1...5} of S is obtained by deleting m — j symbols from S.
A common subsequence (CS) of x and y is an ordered sequence of symbols (not
necessarily contiguous), which occurs in both strings denoted by CS(z,y).

2.2 Kernels

A kernel is a function k that for all p,q € X satisfies

k(p,q) = (o(p), ¢(q)) , (1)
where ¢ is a mapping from X to an (inner product) feature space F'
¢:p— o(p) €F (2)

2.3 Spectrum Kernels

Compare strings in many applications is to count how many (contiguous) sub-
strings of length p they have in common. Then spectrum of order p (or p—
spectrum) of a sequence x to be the histogram of frequencies of all its (contigu-
ous) substrings of length p [3].

The feature space F associated with the p—spectrum kernel is indexed by
I = XP with the embedding given by

o8 (z) = [{(v1,v2) 1 & = viuva}|,u € XP. (3)
The associated kernel is defined as
kp(2,y) = (0P (2), 0P () = Y oh(@)¢h(y). (4)

ueXr

2.4 Gap—Weighted Subsequences Kernels

The gap—weighted subsequences kernel compare strings by means of the sub-
sequences they contain, namely, between more subsequences in common, the
more similar they are. Moreover, the kernel include a degree of contiguity of the
subsequence (weight of the occurrences) that contribute to the comparison.
The feature space has the same coordinates as for the fixed subsequences
kernel and hence the same dimension. In order to deal with non—contiguous
substrings, it is neccesary to introduce a decay factor A € (0, 1) that can be used
to weight the presence of a certain feature in a string. Recall that for an index
sequence i identifying the occurrence of a subsequence u = z(i) in a string =, we
use [(i) to denote the length of the string in z. In the gap—weighted kernel, we

weight the occurrence of v with the exponentially decaying weight A [3].

The feature space associated with the gap—weighted subsequences kernel of
length p is indexed by I = XP, with the embedding given by

ob(z) = Z MO gy e 3P, (5)

tu=x(7)

The algorithm 1 show efficient implementation for computing the gap—weighted
subsequences kernel for two strings (e.g. see Fig. 1 for the strings z = cata and
y = gatta with the gap—weighted subsequences kernel of length p = {1, 2, 3}).

Algorithm 1 The algorithm for computing the gap—weighted subsequences ker-
nel for two strings z and y

Require: (z, y, n, m, p, \)
DPS(1:n,1:m)=0;
fori=1:ndo
for j=1:mdo
if z; = y; then
DPS(i,5) = A%
DP(0,0 : m) = 0;
DP(1:mn,0) =0;
for | =2:pdo
Kern(l) = 0;
fori=1:n—1do
forj=1:m—1do
DP(i,j) = DPS(i,) + ADP(i — 1,5) 4+ ADP(i,j — 1) - A*DP(i — 1,5 — 1);
if z; = y; then
DPS(i,§) = M*DP(i — 1,5 — 1);
Kern(l) =Kern(l) + DPS(3, j);
return Kern(p)

©

©o o o o|m

o > o o«
o

DP|g a t t DP:k;l g a t t a
¢c|0 0 o0 0 ¢ |00 o0 0 O
a |0 A 2 N a [0 00 0 0
t |0 A A At | 00 T 0

Fig. 1. Computations for the strings * = cata and y = gatta with the gap—weighted
subsequences kernel of length p = {1, 2,3} using dynamic programming (DP) tables

3 MAPPING DNASE HYPERSENSITIVE

One major goal in genomics is to identify the location regulatory elements and
to understand how genes are regulated in different tissues, diseases and species.
DNA sequences that regulate transcription and other chromosomal processes
are associated with focal alteration (local disruptions, or “openings”) in chro-
matin structure in vivo, detectable through hypersensitivity to DNasel and other
nucleases.

Mapping DNase hypersensitive sites within nuclear chromatin is a powerful
and well-established method of identifying many different types of transcrip-
tional regulatory elements including enhancers, promoters, insulators, and locus
control regions. Mapping DNase hypersensitive sites has been used to identify
the precise location of regulatory elements [2]. The regulatory elements can be
detected experimentally as DNasel hypersensitive sites (HSs) in vivo, though the
process is extremely laborious and costly. The ability to discriminate DNasel HSs
computationally would have a major impact on the annotation and utilization
of the human genome [6].

4 EXPERIMENTAL FRAMEWORK

The experiments were run on a Dell of 2.0 GHz Clock, with 3GB RAM which
is a 32 bit machine. During all experiments, this machine was not performing
other heavy tasks (or process).

4.1 Methodology

First implement the gap—weighted subsequences kernel using Java IDE Eclipse
3.2. Next, use the library Libsum for the support vector machine (SVM). The Lib-
svm is available at http://www.csie.ntu.edu.tw/"cjlin/libsvm/. The Lib-
svm tools may precomputed kernel values and input them as training and testing
files.

Assume there are L training instances x1,...z7 and K(x,y) be the kernel
value of two instances x and y. The input formats are:

New training instance for x;:

<label > 0:41:k(x;x1)... L k(z;,zr)
New testing instance for any x:
<label > 0:71:k(z,z1)...L: k(z,2zr)

That is, in the training file the first column must be the “ID” of z;. In testing,
? can be any value.

Above mentioned the gap—weighted subsequences kernel have two parameters
A and p. In this experiments, the decay factors are A = 0.3 and A = 0.7 with p
in range 1 to 3.

Using Cross—validation find optimal C for the SVM. SVM models have a
cost parameter, C, that allow some flexibility in separating the categories and
controls the trade off between allowing training errors and forcing rigid margins.
It creates a soft margin that permits some misclassifications. Increasing the value
of C increases the cost of misclassifying points and forces the creation of a more
accurate model that may not generalize well.

4.2 Types of Data

Experiments were carried out over sequences of DNA alphabet in format FASTA.
The DNA alphabet is X = {A,C,G,T}, each character represents a nucleotide
(standing for Adenine, Cytosine, Guanine and Thymine, respectively) used to
encode DNA.

The original dataset (available at http://noble.gs.washington.edu/proj/
hs/) contain 280 HS sequences and 737 non-HS sequences from erythroid cells.
For the experiments the dataset are: the training set (916 sequences) of 252 HS
sequences and 664 non—HS sequences and testing set (101 sequences) of 28 HS
sequences and 73 non—HS sequences.

5 Analysis Results

The graphics (see Figure 2) shown the relation between the parameter C' and
validation error, for the kernel with parameters p = {1,2,3} and A = {0.3,0.7}.
Where the error of validation is minimum, the parameter C is selected. The
receiver operating characteristic (ROC) curve (see Figure 3) present the score
(area under this curve AUC) of classification or performance measure for each
kernel.

© vs Error of train1-8.3.txt © vs Error of train1-8.7.txt

1 1
0.8 0.8
0.6 0.6

\ \
0.4 0.4 \\

0.2 0.2
0 0

0 0.01 .02 6.03 0.04 6.5 0.06 0 0.01 0.02 6.03 0.04 6.65 0.06

c c

€ vs Error of train2-8.3.txt € vs Error of train2-8.7.txt
1 1
0.8 0.8
0.6 0.6
0.4 0.4
| L
\ —
—_—
o2 f 0.2 E
—
o o
8 0.01 .62 6.03 8,04 6.65 0.08 0 0.01 0.02 6.3 8,04 .65 0.08

(c) p=22=03 (d) p=2A=07

, ,
x —
S
0.2 \ 0.2 _
: :
: :

() p=3;A=0.3 (f) p=3;2=07

Fig. 2. Parameter C' vs. Validation Error for p = {1,2,3} and A = {0.3,0.7}.

True Positive Rate

True Positive Rate

True Positive Rate

ROC curve of train1-8.3.txt (AUC = 0.7378) ROC curve of traini-8.7.txt (AUC = 0,7378)

N
AN

() p=3;A=0.3 (f) p=3;2=07

Fig. 3. Curve ROC and AUC for p = {1,2,3} and A = {0.3,0.7}.

e roisie e e roivie e
(a) p=1;2=0.3 (P) p=1,A=07
i e o .5, 1 5.0870 B e o .20, 1 5,000
.
)"//_/ o8 /
e
/ foe
3
f s o
o
e Poisive e ree roivie tove
() p=2;2=0.3 (d)p=22=0.7
B e o trna-.5. 0. (= 0,090 o e o trna-.7. ot (o 0087
.
- ,
I
N
L 0.0
2 0.6
.
e poicive e e roivie e

6 Conclusions

For the data set p = {2,3} and A = {0.3,0.7} the mean AUC of the ROC
curve was upper the 0.8, indicative of excellent performance, knowing that in
the data set selected existing a number greater of examples non—HS sequences
that DNasel HS sequences. For the data set p = {1} and A = {0.3,0.7} the AUC
of the ROC curve is 0.73, this value is lower due to that the parameter p =1 is
similarity a to count the matches of the characters between the DNA sequences.

The computational tools provide a good alternative for discovery and anal-
ysis of functional non—coding elements involved in gene regulation, moreover,
the approach described here should be applicable to other type of problems
relationated with the annotation of genomes.

The SVM leads to good generalization, however, from the practical the most
serious problem with SVM is the high computational complexity of the required
quadratic programming in large—scale tasks.

References

[1] Ben—Hur, Asa; Ong, Cheng—Soon; Sonnenburg, Soren; Scholkopf, Bernhard and
Rétsch, Gunnar: Support Vector Machines and Kernels for Computational Biology.
PLoS Computational Biology 4(10) : 2008. 1 — 10.

[2] Crawford, Gregory E.; Holt, Ingeborg E.; Mullikin, James C.; Tai, Denise and et
al.: Identifying gene regulatory elements by genome—wide recovery of DNase hyper-
sensitive sites. PNAS 101(4) : 2004. 992 — 997.

[3] Cristianini, Nello and Shawe-Taylor, John: Kernel Methods for Pattern Analysis,
(2004), Cambridge University Press.New York, NY, USA.

[4] Leslie, Cristina; Eskin, Eleazar and Noble, William Stafford: The Spectrum Kernel:
A String Kernel for SVM protein classification. Pacific Symposium on Biocomputing
7 : 2002. 566 — 575.

[5] Lodhi, Huma; Saunders, Craig; Shawe-Taylor, John; Cristianini, Nello and
Watkins, Chris: Text Classification using String Kernels. Journal of Machine Learn-
ing Research 2 : 2002. 419 — 444.

[6] Noble, William Stafford; Kuehn, Scott; Thurman, Robert; Yu, Man and Stam-
atoyannopoulos, John: Predicting the in vivo signature of human gene regulatory
sequences. Bioinformatics 21(1) : 2005. 338 — 343.

