
Outcomes of the Fault Tolerance Configuration

Leonardo Fialho1 ?, Angelo Duarte2, Dolores Rexachs1, and Emilio Luque1

1 Computer Architecture and Operating Systems Department
University Autonoma of Barcelona. Bellaterra, Barcelona 08193, Spain

{lfialho, guna}@caos.uab.es, {dolores.rexachs, emilio.luque}@uab.es
2 Departamento de Tecnologia

Universiade Estadual de Feira de Santana. Feira de Santana, Bahia, Brasil
angeloduarte@ecomp.uefs.br

Abstract. This paper presents the influence of the fault tolerance con-
figuration on different applications using performance metrics. Two con-
figuration parameters are analysed: the heartbeat/watchdog interval and
the checkpoint interval. In addition, even message logging is mandatory,
an analysis of its overhead on different applications is presented. The
impact of message logging on applications has been analysed according
to the nature of the communication primitives used on the application.
This analysis shows why for different applications the message logging
introduces different overhead.

Key words: RADIC, Fault Tolerance, HPC, Configuration.

1 Introduction

Parallel computers are growing in complexity and number of components which
increases fault probability. In these machines, Message Passing Interface be-
comes a de facto library used to implement message passing parallel applications.
RADIC [1] (Redundant Array of Distributed Independent Fault Tolerance Con-
trollers) is a rollback/recovery based fault tolerance architecture which has been
proposed to be integrated on message passing libraries. In order to achieve fault
tolerance, actual implementations of the RADIC architecture performs message
logging and uncoordinated checkpointing. In this work an implementation named
RADIC/OMPI will be used as a testbed fault tolerant MPI library.

During the development of the RADIC architecture four main characteristics
have been aimed: transparency, scalability, distributed operation and flexibility.
This paper explores the flexibility characteristic focusing on the influence of
configuration parameters on the observed overhead and degradation. What is
the overhead introduced by the fault tolerance architecture? How to configure
the fault tolerance parameters in order to achieve lowers execution time?

Due to its distributed characteristic, estimate the overhead introduced by
fault tolerance operations is not trivial. While RADIC does not stops the entire
? This research has been supported by the MEC-MICINN Spain under contract
TIN2007-64974

application for checkpointing nor recovery and the logging procedure perfor-
mance depends on the application’s communication behaviour, determine the
impact of these operations requires an extensive knowledge of the application
performance over the target computer.

This paper presents the influence of the fault tolerance configuration on the
application’s performance. The content is organised as follows. Section 2 presents
some related work. In section 3 the RADIC architecture is described, which
includes it configurations parameters as well as the theoretical impact of them on
applications. Section 4 concerns to experimental evaluation. Finally, conclusions
are stated in section 5.

2 Related Work

Much effort has gone into studies about the impact of fault tolerance into appli-
cations and how to define fault tolerance parameters. Furthermore, the literature
lacks an extensive analysis of fault tolerance tasks impact individually.

There is no consensus about the use of coordinated and uncoordinated check-
points. While using uncoordinated checkpointing [2] presents an analysis of the
impact of message logging on application’s performance. While using coordi-
nated checkpointing, proposals normally permits to adjust solely the checkpoint
interval parameter. In this sense a model for predicting the optimum checkpoint
interval is proposed on [3] and [4]. Therefore, for large clusters another approach
should be used, as presented in [5] and [6] which analyse the use of non-blocking
checkpointing.

As shown in [7], the performance of applications depends, in part, on the
overhead introduced on communication. Although there are many studies about
the impact of fault tolerance on applications, normally, these studies are limited
to present the overhead introduced by an specific fault tolerance proposal. This
papers aims to analyse the impact of each protection task performed by RADIC,
which are common tasks performed by any fault tolerance architecture.

3 RADIC Architecture

RADIC architecture [1] must assures a secure recovery. Actual implementations
rely on uncoordinated checkpoints combined with receiver-based pessimistic mes-
sage logs. Critical data like checkpoints and message logs of one application pro-
cess are stored on other node different from the one in which the application
is running. This selection assures application completion if a minimum of three
nodes is left operational after n non-simultaneous faults. Even more, simultane-
ous faults are supported if the faulty resource is not involved in recovery (i.e.
a fault in a node which runs an application simultaneously with a fault in the
node which stores its critical data is not supported).

There are operations defined by rollback/recovery protocol as the pessimistic
message logging. On the other hand, RADIC define configurations parameters

which should be defined by the user before application launching. These param-
eters are the checkpoint interval, heartbeat/whatchdog interval and the use of
spare nodes. Furthermore, the mapping of applications processes and RADIC
fault tolerance entities impacts on the overall running time.

In short, RADIC defines two entities:

– Observer: this entity is responsible for monitoring the application’s com-
munications and masks possible errors generated by communication failures.
Therefore, the observer performs message logs in a pessimistic way as well
as periodically taking an application process checkpoint. Checkpoints and
message logs are sent to protectors. There is an observer attached to each
application process.

– Protector: according to RADIC specifications, each node runs only one
protector, which can protect more than one application process. In order
to protect the application’s critical data, protectors store that on a non-
volatile media. Periodically, protector sends a heartbeat message to other
protector, which resets its watchdog timer while the reception of the message.
This heartbeat/watchdog mechanism permits the fault detection. In case of
failure, the protector recovers the failed application process with its attached
observer.

These entities would not run on the same node because, in RADIC, fault tol-
erance is obtained by joining fault-probable resources. Thus, RADIC does not
need any central or stable resource: nodes work together aiming for resilience.
As shown in figure 1a, in order to be transparent for the application, observers
manage MPI communication masking errors. In addition to masking errors, ob-
servers should request a recovery for the faulty application’s protector before
retrying communication.

Errors generated due MPI communication attempts are one of RADIC fault
detection mechanisms. Moreover, protectors implement a heartbeat/watchdog
mechanism between nodes which permits the configuration of the fault detec-
tion latency. Figure 1b depicts communication performed by RADIC in order to

MPI Application (fault‐free)

MPI Standard

RADIC fault masking operations

RADIC fault tolerance operations

Parallel Machine (fault‐probable)

N
Appy

N+1
Appz

N‐1
Appx y zx

Observery ObserverzObserverx

… …

Protectorn ProtectorProtectorn+1ProtectorProtectorn‐1

(a) (b)

Fig. 1. a) RADIC layers which provide transparency for applications. b) Relation-
ship between nodes running an application with RADIC fault tolerance architecture.
Diagonal arrows represent critical data flow while horizontal ones represent heart-
beats/watchdog communication.

achieve fault tolerance. Horizontal arrows represent heartbeats. Diagonal arrows
represent critical data flow (i.e. message logging and checkpoint file transmis-
sion). Additionally, figure 1b shows that observers go attached to application
processes while protectors are standalone processes.

The major advantage of RADIC is its intrinsic distributed characteristic. No
collective operation is needed. Tasks performed by the fault tolerance mechanism
involve solely two nodes and do not depend on the number of nodes neither any
central element nor unique resource. In order to avoid performance degradation
in the presence of faults, RADIC allows the use of spare nodes [8]. By default
the architecture recovers the failed process on the same node where its protector
runs. Summarising, the RADIC architecture is transparent, scalable, distributed
and flexible.

According to flexibility, RADIC permits to modify its configurations in or-
der to accomplish user’s requirements. RADIC permits to the user to modify de
checkpoint interval, observer/protector mapping, number of copies of each pro-
cess, number and logical location of spare nodes, and the heartbeat/watchdog
interval. On actual implementations the message logging is mandatory in or-
der to achieve a consistent state for the application while using uncoordinated
checkpointing.

The RADIC architecture has been tested using a prototype called
RADICMPI [1] and nowadays there is a version implemented over Open MPI
[9] called RADIC/OMPI. A short description of each configuration parameter
is given as follow. Although the logging is mandatory in the rollback/recovery
protocol used, the impact of this operation is described also.

3.1 Checkpoint Interval

The checkpoint interval parameter defines the frequency in which checkpoints
are performed. During a checkpointing operation, the process is unavailable for
computation and communication. Pending messages do not progress and new
messages are not allowed. The time needed to make a checkpoint varies according
to the process size and transferring/storing performance.

Figure 2 depicts tasks performed during checkpointing. At first, the observer
(Oy) closes all communications channels used by the application (Ay) in order
to save its state (vertical blue arrow) to a checkpoint file. Thus, the observer
starts the transferring of the checkpoint file to its protector and after conclusion
reopens all application’s communication channels.

During start up, a fixed value is defined by the user on configuration files.
This value is used by RADIC along all the process execution. As discussed in
[4], the optimum checkpoint interval (t0) should consider the fault probability
(α), and the time needed for checkpointing (k0), as depicted on equation 1.

There is no certainty about the fault frequency due to unpredictable charac-
teristic of the event. Thus, the optimum checkpoint interval, which is the result
of an analytical equation should be used considering an error margin. The error
depends on the accuracy of measures used to obtain the optimum checkpoint
interval as well as the expected fault probability.

!"#$#%"# &'#

()#

!
"#
$%
&
'
()
#
*(

$+
&
$%
,
#
-.
/
.
0
(

1*2.3)&**-.0(

2$%(
31#*-.0(

Fig. 2. Tasks performed during checkpointing.

!"#$#%"# &'#

()#

!
"#
$%
&
'
()
#
*(

$+
&
$%
,
#
-.
/
.
0
(

1*2.3)&**-.0(

2$%(
31#*-.0(

Fig. 2. Tasks performed during checkpointing. t0 =

√
2k0

α
(1)

During start up, a fixed value is defined by the user on configuration files.
This value is used by RADIC along all the process execution. As discussed in
[7], the optimum checkpoint interval (t0) should consider the fault probability
(α), and the time needed for checkpointing (k0), as depicted on equation 1.

There is no certainty about the fault frequency due to unpredictable charac-
teristic of the event. Thus, the optimum checkpoint interval, which is the result
of an analytical equation should be used considering an error margin. The error
depends on the accuracy of measures used to obtain the optimum checkpoint
interval as well as the expected fault probability.

Equation 1 minimises the execution time reducing the number of checkpoints.
Furthermore, it considers that the fault probability is a well-know and fixed
value, but normally it is not true. On the other hand, to reduce the number
of checkpoints increases the recovery time. In addition, equation 1 has been
designed for coordinated checkpointing. There is no guarantee that in a uncoor-
dinated checkpointing environment this equation can be used.

3.2 Observer/Protector Mapping

The observer/protector mapping refers to the assignation in which node critical
data of each application should be stored. The default configuration in RADIC
plays a simple algorithm which defines the next logical node as a protector node,
while current node stores data from previous logical node. The last and first node
are considered neighbours nodes, which assures the treatment for all of them.

The mapping can be changed to fit a logical task mapping or the network
topology, for example. The impact of the RADIC original mapping algorithm
over an application is unpredictable without knowing the performance of the ap-
plication over the target parallel computer. To achieve a better performance the
application’s communication pattern, the network topology and node’s available
resources and load should be considered.

3.3 Heartbeat/Watchdog Interval

The heartbeat/watchdog interval controls the maximum fault detection latency.
Actually, exchange small messages between a protectors pair does not intro-

Equation 1 minimises the execution time reducing the number of checkpoints.
Furthermore, it considers that the fault probability is a well-know and fixed
value, but normally it is not true. On the other hand, to reduce the number
of checkpoints increases the recovery time. In addition, equation 1 has been
designed for coordinated checkpointing. There is no guarantee that in a uncoor-
dinated checkpointing environment this equation can be used.

3.2 Observer/Protector Mapping

The observer/protector mapping refers to the assignation in which node critical
data of each application should be stored. The default configuration in RADIC
plays a simple algorithm which defines the next logical node as a protector node,
while current node stores data from previous logical node. The last and first node
are considered neighbours nodes, which assures the treatment for all of them.

The mapping can be changed to fit a logical task mapping or the network
topology, for example. The impact of the RADIC original mapping algorithm
over an application is unpredictable without knowing the performance of the ap-
plication over the target parallel computer. To achieve a better performance the
application’s communication pattern, the network topology and node’s available
resources and load should be considered.

3.3 Heartbeat/Watchdog Interval

The heartbeat/watchdog interval controls the maximum fault detection latency.
Actually, exchange small messages between a protectors pair does not intro-
duces a perceptively overhead. Thus, too small heartbeat/watchdog interval
could flood the network. Thus, a possible outcome of choosing a too small heart-
beat/watchdog interval is the increase of MPI message latency.

Heartbeat/watchdog interval and checkpoint interval represent the major
influence on the recovery time. Furthermore, due to the logging operation there
are application’s specific characteristics with impact on the recovery time.

3.4 Message Logging

Different than other overhead sources introduced by the fault tolerance archi-
tecture, the message logging overhead depends, majority, on the application’s

!"#$"%&

'(&)&*(&

+","-."%&

'/&)&*/&

0%12",21%&

03&

45&

!
"
#$
%
"
&'
(#
)
*"
+
,'
(

-"..)/"(

#0//$+/(

),1(),1(
.*0&$+/(

Fig. 3. Tasks performed during message logging.

communication frequency. Figure 3 depicts tasks performed during message log-
ging. For each message received, the observer replies this message to its protector
which stores that locally. Once logging if performed for each message received,
its impact is depends on the application’s performance over the target machine.
The number of logging operations performed depends on the application.

Message logging permits the rollback of an individual process of the entire
parallel application. In addition, the recovery time can be reduced drastically
because during recovering the communication latency tends to zero.

4 Experimental Evaluation

Different applications has been used to depict better specific configuration pa-
rameters. Experiments run on a 32 node Linux cluster equipped with two Dual-
Core Intel Xeon processors running at 2.66GHz. Each node has 12 GBytes of
main memory and a 160 GByte SATA disk. Nodes are interconnected via two
Gigabit Ethernet interfaces.

Experimental evaluation concerns two configuration parameters and an anal-
ysis of the message logging overhead source: a) the checkpoint interval on BT
and LU class D applications from the NAS benchmarks, b) heartbeat/watchdog
interval while running a matrix multiplication program, and c) the impact of
message logging over blocking and non-blocking communication used by SP and
FT class A applications from the NAS benchmarks respectively. During these
experiments the use of spare nodes has been considered.

4.1 Checkpoint Interval

In order to analyse the influence of the checkpoint interval on applications, two
class D applications from the NAS benchmarks has been used: BT and LU.
These applications has been select due to their execution time. BT class D runs
in 1774.8 seconds while LU class D runs in 1237.8 seconds. These measures refer
to applications running without fault tolerance.

To create a faulty scenario a simple task has been introduced to randomly
kills one of the running processes of the entire application every 600 seconds.
An instrumentation has been introduced on the MPI library in order to obtain

Table 1. Values used to calculate the optimum checkpoint interval and run BT and
LU class D applications.

BT/D LU/D
Fault probability every 600 seconds
Process size in memory 1.4 GB 722 MB
Time needed to checkpoint 132.47 49.09
Optimum interval 398.74 242.72
Heartbeat/watchdog interval 1 second
Nodes used 25 32

the time needed for checkpointing BT and LU class D applications. BT class D
performs a checkpoint in 132.47 seconds while LU class D needs 49.09 seconds.
The difference refers to the total amount of memory used by applications. Table
1 presents other fault tolerance parameters used on these experiments.

Applying these values to equation 1 the optimum checkpoint interval ob-
tained for BT and LU class D applications were 398.7 and 242.7 seconds respec-
tively. To depict the influence of checkpoint interval on these applications a set
of experiments were run using parameters shown in table 1 and with different
checkpoint intervals. For BT applications 60, 180, 360 and 540 seconds has been
used, and for LU application 60, 120, 240, 360 and 480 seconds. For better com-
parison three scenarios will be presented: fault free, faulty, and for the sake of
comparison, without fault tolerance.

Figure 4a shows the execution of the BT class D application. As shown, too
small checkpoint interval increases the execution time because the application
stops many times to perform a checkpoint. On the other hand, the recovery time
is shorter. The opposite behaviour occurs when a bigger interval is used.

BT e LU classe DBT e LU classe D Intervalo de Checkpoint: BTIntervalo de Checkpoint: BTIntervalo de Checkpoint: BTIntervalo de Checkpoint: BTIntervalo de Checkpoint: BTIntervalo de Checkpoint: BT

Tamanho classe D 1 3 6 9

Nodos 25/32 S.F. 5616.43 2967.11 2304.74 2172.28

I. Ckpt variável C.F. 8053.46 4524.39 3554.62 4587.09

I. HB/WD 1 segundo Ref. 1774.8 1774.8 1774.8 1774.8

Falhas a cada 10 minutos Intervalo de Checkpoint: LUIntervalo de Checkpoint: LUIntervalo de Checkpoint: LUIntervalo de Checkpoint: LUIntervalo de Checkpoint: LUIntervalo de Checkpoint: LU

T. Ref. BT 1774.8 1 2 4 6 8

T. Ref. LU 1237.8 S.F. 2219.56 1728.68 1483.24 1385.06 1335.97

I.C. Ref. BT 398.7 C.F. 2615.00 2165.03 1753.50 2530.50 4510.50

I.C. Ref. LU 242.7 Ref. 1237.8 1237.8 1237.8 1237.8 1237.8

T. Ckpt. BT 132.4689

T. Ckpt. LU 49.088

0

3000

6000

9000

60 180 360 540

4587

3555

4524

8053

21722305

2967

5616

BT class D NAS Application

E
x
e
c
u
ti
o

n
 T

im
e
 (
s
e
c
o

n
d

s
)

Checkpoint Interval (seconds)

Fault free execution Faulty execution
Execution without FT

0

1000

2000

3000

4000

5000

60 120 240 360 480

4510

2531

1754

2165

2615

133613851483
1729

2220

LU class D NAS Application

E
x
e
c
u
ti
o

n
 T

im
e
 (
s
e
c
o

n
d

s
)

Checkpoint Interval (seconds)

Fault free execution Faulty execution
Execution without FT

BT e LU classe DBT e LU classe D Intervalo de Checkpoint: BTIntervalo de Checkpoint: BTIntervalo de Checkpoint: BTIntervalo de Checkpoint: BTIntervalo de Checkpoint: BTIntervalo de Checkpoint: BT

Tamanho classe D 1 3 6 9

Nodos 25/32 S.F. 5616.43 2967.11 2304.74 2172.28

I. Ckpt variável C.F. 8053.46 4524.39 3554.62 4587.09

I. HB/WD 1 segundo Ref. 1774.8 1774.8 1774.8 1774.8

Falhas a cada 10 minutos Intervalo de Checkpoint: LUIntervalo de Checkpoint: LUIntervalo de Checkpoint: LUIntervalo de Checkpoint: LUIntervalo de Checkpoint: LUIntervalo de Checkpoint: LU

T. Ref. BT 1774.8 1 2 4 6 8

T. Ref. LU 1237.8 S.F. 2219.56 1728.68 1483.24 1385.06 1335.97

I.C. Ref. BT 398.7 C.F. 2615.00 2165.03 1753.50 2530.50 4510.50

I.C. Ref. LU 242.7 Ref. 1237.8 1237.8 1237.8 1237.8 1237.8

T. Ckpt. BT 132.4689

T. Ckpt. LU 49.088

0

3000

6000

9000

60 180 360 540

4587

3555

4524

8053

21722305

2967

5616

BT class D NAS Application

E
x
e
c
u
ti
o

n
 T

im
e
 (
s
e
c
o

n
d

s
)

Checkpoint Interval (seconds)

Fault free execution Faulty execution
Execution without FT

0

1000

2000

3000

4000

5000

60 120 240 360 480

4510

2531

1754

2165

2615

133613851483
1729

2220

LU class D NAS Application

E
x
e
c
u
ti
o

n
 T

im
e
 (
s
e
c
o

n
d

s
)

Checkpoint Interval (seconds)

Fault free execution Faulty execution
Execution without FT

(a) (b)

Fig. 4. BT and LU class D application running with different checkpoint intervals.
Faults occurs every 600 seconds. Values are expressed in seconds.

As depicts figure 4b the same behaviour seen in BT could be observed in LU
class D application. Too small checkpoint interval reduces the recovery time and
increases the execution time because it produces more checkpoints and with a
larger execution time more faults occurs. On the other hand, too big checkpoint
interval reduces the execution time increasing the time spent in recovering.

Figures 4a and 4b depicts that the smaller execution time for these applica-
tions running on a faulty environment occurs when the checkpoint interval used
is closer to the optimum checkpoint interval. Thus, these experiments show that
the optimum checkpoint interval calculated using equation 1 can be applied on
fault tolerance architectures based on uncoordinated checkpointing.

4.2 Heartbeat/Watchdog Interval

To analyse the influence of the heartbeat/watchdog interval a matrix multipli-
cation application has been used. The selected matrix multiplication algorithm
solely communicate during the start up and finalisation phases avoiding fault
detection due to communication tries. Thus, in this case, the fault detection
depends solely on the heartbeat/watchdog mechanism.

Figure 5 presents the execution time of the selected application multiplying
two 10.000 X 10.000 matrices running on 16 nodes. Different heartbeat/watchdog
intervals has been chosen: from 1 second to 90 seconds. Checkpoints are made
every 600 seconds, and just after the second checkpoint a fault has been inserted
in one of the 16 nodes.

As shown is figure 5 a shorter heartbeat/watchdog interval reduces the fault
detection latency. Additionally, there is no perceivable overhead caused by the
heartbeat/watchdog communication. It occurs due to the lack of communication
existent on the computation phase of this application.

Multiplicacao de MatrizesMultiplicacao de Matrizes Intervalo de Heartbeat/WatchdogIntervalo de Heartbeat/WatchdogIntervalo de Heartbeat/WatchdogIntervalo de Heartbeat/WatchdogIntervalo de Heartbeat/WatchdogIntervalo de Heartbeat/Watchdog

Tamanho 32 1 5 10 30 60 90

Nodos 10k x 10k T.E. 2040.94 2046.16 2053.05 2081.48 2123.46 2164.69

I. Ckpt 600 segundos 2005.65 2005.65 2005.65 2005.65 2005.65 2005.65

I. HB/WD variável 1.76% 2.02% 2.36% 3.78% 5.87% 7.93%

Falhas após 1o checkpoint

I. Referencia 2005.65

1900

1950

2000

2050

2100

2150

2200

1 5 10 30 60 90

2165

2123

2081

205320462041

10k x 10k Matrix Multiplication

E
x
e
c
u
ti
o

n
 T

im
e
 (
s
e
c
o

n
d

s
)

Heartbeat/Watchdog Interval (seconds)

Fault-free execution Faulty execution

Fig. 5. 10k X 10k matrix multiplication execution using different heartbeat/watchdog
intervals. Checkpoints are made every 600 seconds and a fault has been inserted just
after the second checkpoint. Values are expressed in seconds.

4.3 Message Logging

To depict the influence of the message logging on applications two benchmarks
from the NAS has been selected: FT and SP. FT implements collective oper-
ations like MPI_Alltoall and MPI_Reduce while SP implements asynchronous
communication using MPI_Isend and MPI_Waitall primitives.

As result of the additional communication introduced by the logging pro-
cedure, the total execution time increases. The execution time of FT is 7.758
seconds without logging and 14.529 seconds with logging. This behaviour is ob-
served mainly while application uses blocking or collective communication, which
occurs with FT kernel. Message logging has introduced an overhead of 87.27%
on FT class A.

Figure 6c depicts an slice of the communication trace of SP without message
logging and figure 6d presents the same slice while using logging. The slice with-
out logging refers to 0.098 seconds while the slice with logging refers to 0.120
seconds of the application execution. In this case the message logging has in-
troduced an overhead of 55.68% on SP class A. As figure depicts, the waiting
time while using message logging just some times is bigger than while logging
is not in use. This unpredictable behaviour of the waiting time depends on the
individual process computation and on the network load during communication.

(a) FT without message logging (c) SP without message logging

(b) FT with message logging (d) SP with message logging

MPI_Alltoall MPI_Reduce MPI_Isend MPI_Waitall

Fig. 6. Communication trace of FT and SP class A application. (a) and (b) without
message logging. (c) and (d) with message logging.

These experiments has demonstrated that the overhead introduced by the
message logging operation depends on the application’s communication pattern.
Applications which uses collective or blocking communication primitives are
more sensitive to delays introduced by the logging.Depending on the applica-
tion’s communication/computarion ratio the message logging can be completely
overlapped with computation.

5 Conclusions

This paper has presented the impact of the configuration of the fault tolerance
on different applications. For the heartbeat/watchdog interval an matrix multi-
plication application has been used, while to present the influence of checkpoint
interval and message logging applications from the NAS benchmarks been used.

The experimental evaluation permits to conclude that the fault detection la-
tency depends on the heartbeat/watchdog interval and small values are better
than large ones for some application while to others there is no influence because
the message exchange frequency is smaller than the heartbeat/checkpoint inter-
val. About the checkpoint interval, experiments has demonstrated that the same
equations used to uncoordinated checkpointing can be applied to a coordinated
checkpointing scenario. Additionally, the impact of message logging on applica-
tions which uses collective and blocking communication primitives is higher than
on applications which uses non-blocking ones.

References

1. Duarte, A.: RADIC: a powerful fault-tolerant architecture. recolecta.net (Jan 2007)
2. Bouteiller, A., Collin, B., Herault, T., Lemarinier, P.: Impact of event logger on

causal message logging protocols for fault tolerant MPI. 19th IEEE International
Parallel and Distributed Processing Symposium (Jan 2005) 97—97

3. Daly, J.: A model for predicting the optimum checkpoint interval for restart dumps.
Lecture Notes in Computer Science (Jan 2003) 724

4. Gropp, W., Lusk, E.: Fault tolerance in message passing interface programs. Inter-
national Journal of High Performance Computing Applications (Jan 2004) 363—372

5. Oliner, A., Sahoo, R., Moreira, J., Gupta, M.: Performance implications of periodic
checkpointing on large-scale cluster systems. 19th IEEE International Parallel and
Distributed Processing Symposium. (Jan 2005) 299—306

6. Coti, C., Herault, T., Lemarinier, P., Pilard, L.: Blocking vs. non-blocking co-
ordinated checkpointing for large-scale fault tolerant MPI. Proceedings of the
ACM/IEEE 2006 Conference on Supercomputing. (Jan 2006) 18—18

7. Doerfler, D., Brightwell, R.: Measuring MPI send and receive overhead and applica-
tion availability in high performance network interfaces. Lecture Notes in Computer
Science (Jan 2006) 331—338

8. Santos, G.: RADIC II: a fault tolerant architecture with flexible dynamic redun-
dancy. recercat.cat (Jan 2007)

9. Fialho, L., Santos, G., Duarte, A., Rexachs, D., Luque, E.: Challenges and Issues of
the Integration of RADIC into Open MPI. Proceedings of The European PVM/MPI
Users’ Group Conference (May 2009) 73—83

