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ABSTRACT
With the aim of studying the final mass distribution of extrasolar planets, we have developed a

simple model based on the core instability model, which allows us to form a large population

of planets and make them evolve in circumstellar discs with various initial conditions. We

investigate the consequences that different prescriptions for the solid and gas accretion rates

would have on this distribution and found that it is strongly dependent on the adopted model

for the gas accretion.
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1 I N T RO D U C T I O N

Although we cannot observe the events, which lead to the formation

of our Solar system, many information may be inferred by studying

its actual structure. Our knowledge of the planets in our own Solar

system has constituted the basis for the theory of planetary forma-

tion. Nevertheless, observations of other systems are necessary to

get a better understanding of this process. Luckily, recent discover-

ies of extrasolar planets show that 265 planets have been found until

2007 November, since Mayor and Queloz announced in 1995 the

discovery of the first extrasolar planet orbiting a near star (Mayor &

Queloz 1995). Although this is not a large sample but it is enough

for starting to take a glimpse on some common characteristics of

planets, which may give us some clues about the process of plane-

tary formation. These clues will be essential to refining theories and

getting a more complete understanding of this issue.

According to the standard model, the terrestrial planets and the

cores of the giant ones were formed through the accretion of plan-

etesimals, which are rocky and iced particles of many metres in

size and formed by dust particles that collided and stuck together.

These particles continue to collide until they form first small and

then larger bodies orbiting the parent star (Safronov 1969). In the

beginning, dynamical friction and gravitational focusing make that

larger planetesimals growth faster than the smaller ones (runaway

stage). After the cores have acquired a sufficient mass to influence in

the dynamic of the small planetesimals, the runaway growth would

slow down and the protoplanet-dominated stage begins. This is the

dominant stage, studied by Kokubo & Ida (1998), who found that

although the cores still grow faster than the planetesimals, the larger

ones slow down their growth and, as a result, protoplanets with sim-
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ilar masses grow oligarchically (Ida & Makino 1993). Once a core

attains approximately Moon’s mass (Mizuno, Nakazawa & Hayashi

1978), it attracts the gas from the surrounding disc, which forms an

envelope. When this envelope reaches the critical mass, the hydro-

static equilibrium cannot be sustained, and a run away gas accretion

process begins.

Several semi-analytic models of oligarchic planetary growth have

been presented in the last years. Thommes, Duncan & Levison

(2003) and later Chambers (2006) developed rather sophisticated

models in order to reveal the details of the oligarchic growth process

in the whole protoplanetary disc. On the other hand, Ida & Lin (2004,

hereafter IL04) developed a very simple semi-analytical model of

planetary formation (although conserving the relevant physics in-

volved in the process) based on the oligarchic growth regime for the

accretion of solid cores and the core instability model (Mizuno 1980;

Bodenheimer & Pollack 1986; Pollack et al. 1996) for the accretion

of gaseous atmospheres of giant planets, which have allowed them

to carry out a huge number of Monte Carlo numerical simulations

in order to examine the statistical distribution of extrasolar planets’

semi-major axis and mass.

One of the predictions of Ida & Lin’s model is the ‘planetary

desert’. Since planets’ masses grow rapidly from 10 to 100 M⊕,

the gas giant planets rarely form with asymptotic masses in this in-

termediate range. This prediction could depend on the prescription

they adopt for the accretion of gas. The gaseous envelope of a gi-

ant protoplanet contracts on a Kelvin–Helmholtz time-scale when

the total mass of the core becomes larger than a certain critical

value. Particularly, they based their gas accretion model in pre-

existing numerical results of the core instability model (Pollack et al.

1996; Ikoma, Nakazawa & Emori 2000). In this kind of calculation

most authors (Pollack et al. 1996; Alibert et al. 2005; Hubickyj,

Bodenheimer & Lissauer 2005) usually prescribe as the solid accre-

tion rate that obtained by Greenzweig & Lissauer (1992) which

assumes a rapid growth regime for the core. Instead, Fortier,

Benvenuto & Brunini (2007) adopt that corresponding to the oli-

garchic growth of Ida & Makino (1993). With this prescription, a
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very different result regarding the gas accretion rate is obtained, that

could have some influence on the characteristics of the ‘planetary

desert’ predicted by Ida & Lin’s model.

Based on the considerations, we present a simple model of planet

accretion, based mainly in Ida & Lin’s model, but incorporate the

solid and gas accretion rates given by Fortier et al. (2007), which

will allow us to form a large population of planets and make them

evolve in circumstellar discs with various initial conditions, which

were taken to match the different observed discs, and determining

the final mass distribution. We analyse the influence that these dif-

ferent prescription for the solid and gas accretion rates have on the

characteristics of the ‘planetary desert’.

2 T H E M O D E L

In an attempt to develop a theory for planet formation, we stud-

ied the semi-analytic model developed by IL04. They investigated

the distribution of masses and semimajor axis of extrasolar plan-

ets through an analytical model, based on the nucleated instability

model (Mizuno 1980; Bodenheimer & Pollack 1986; Pollack et al.

1996). In this section, we will briefly describe their model, with the

aim of comparing with our work later.

IL04 evaluated the cores’ mass-growth rate, Ṁc, through runaway

planetesimal accretion and oligarchic growth. The cores’ accretion

rate at an orbital radius a was estimated with a two-body approxi-

mation, which in the high-velocity regime, that is when the relative

velocity between the protoplanets and the planetesimals is in the

dispersion-dominated regime, is

Ṁc ∼ πR2ρd

µ
2G Mc

Rσ 2

¶
σ ∼ 2πR26dÄK

µ
G Mc

Rσ 2

¶
(1)

∼ 2π
R

a

Mc

M?

µ
aÄK

σ

¶2

6da2ÄK, (2)

expression given by Safronov (1969), where Mc is the core’s mass,

ÄK =p
G M?

a3
is the Kepler frequency, ρd and 6d are the spatial and

surface density of solid components, R is a physical radius of the

core, M? is the stellar’s mass and σ is the relative velocity between

the protoplanet and the ensemble of planetesimals inside the feeding

zone, which is the region around the protoplanet where it can accrete

planetesimals.

In their model, gas accretion process was regulated by the Kelvin–

Helmholtz contraction of the planets’ envelope. This process starts

when Mc becomes larger than Mcrit, and the gas accretion is

dMg

dt
' Mt

τKH

, (3)

where Mt is the total mass which includes both solid mass and the

mass of the gaseous envelope, and

τKH ' 109

µ
Mt

M⊕

¶−3

yr (4)

(for more details see Section 3.3). They test different limits to the

gas accretion process.

These authors also considered an exponential decay for the disc-

gas mass, which occurs on the time-scales between 106 and 107 yr

in agreement with the observation of circumstellar discs. The mass

distribution was comparable to those inferred from the observations

of circumstellar disc of T Tauri stars.

Finally, in some calculations, Ida & Lin include the effects of type

II migration for those giant planets which can acquire an adequate

mass to open a gap. In this paper, we neglect this effect because

our main aim is only to analyse if different prescriptions for the

accretion of gas could lead to substantially different results.

2.1 Results

The results with this model show that the giant planets form mainly

just outside the ice boundary at ∼2.7 au. This is because inside the

ice boundary the volatile gases cannot condense into grains, as a

result, the surface density of heavy elements decays and the critical

mass necessary to start the gas accretion is rarely reached by the

cores. On the other hand, beyond 10 au, core accretion is so slow

that they never reach the critical mass before the gas depletion in

the disc.

According to IL04, the Mt−a diagram reflects the condition for the

process of planetary formation. The mass and semimajor axis distri-

butions generated on their simulations show an absence of planets

with masses between 10 and 100 M⊕, and semi-major axis between

0.2 and 3 au denominated ‘planet desert’. When the embryos reach

the critical mass, the gas accretion process began and it is a runaway

process, which ends only when there is no residual gas in the disc

or a gap form near planet’s orbit. The transition between 10 and

100 M⊕ is so fast that planets with those masses are very rare.

3 A D I F F E R E N T AC C R E T I O N M O D E L

Fortier et al. (2007) studied the formation and evolution of a proto-

planet in a circular orbit around the Sun, in the frame of the nucle-

ated instability model. They improved a numerical code developed

by Benvenuto & Brunini (2005), which is an adaptation of stellar

binary evolution code based on a Henyey technique. With relation

to the calculations made by Pollack et al. (1996), they changed the

solid accretion rate, the growth of the gas envelope essentially be-

ing the same. The core accretion was modulated in the oligarchic

growth frame (Ida & Makino 1993; Kokubo & Ida 1998, 2000),

which had not been explored with a self-consistent code for giant

planet formation. They also considered the gas drag effect acting

on planetesimals inside the planet atmosphere, which increases the

collision cross-section of embryos once these have a gaseous enve-

lope. Their results show that the gas accretion into the cores is less

sharp than those found by Pollack et al. (1996), so it would have

some consequences in the mass distribution.

In this section, we will describe the model we use for computing

planet formation.

3.1 Protoplanetary disc structure

The structure of the protoplanetary disc is, essentially, the same used

by IL04, and here we briefly summarize it.

The disc is completely determined by the surface density of heavy

elements and the gas surface density, 6g. Based on the minimum-

mass solar nebula model proposed by Hayashi (1981), we adopt the

following distribution:

6d = fdηice10

µ
a

1UA

¶− 3
2

g cm−2, (5)

where fd is a scaling parameter for the total disc mass which takes

values between 0.1 and 30, according to the observation of proto-

stellar discs around T Tauri stars (Beckwith & Sargent 1996) and

ηice is a compositional scaling parameter which expresses the effect
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of ice condensation across the ice boundary,

ηice =
½

1 a 6 aice

4.2 a > aice,
(6)

where aice is the ice condensation radius which corresponds to a

temperature of T = 170◦K, aice = 2.7( M?

M¯ )2UA

The gas surface distribution is given by

6g = fg2.4 × 103

µ
a

1UA

¶− 3
2

g cm−2, (7)

where fg is a scaling parameter for the total mass of the gas disc,

which is constant throughout the disc, and for simplicity we suppose

equal to fd.

Finally, to represent the depletion of gas and evolution of the

protostellar gas disc, we consider an exponential decay of 6g,

6g ' 6g,0e
− t

τdisc , (8)

where 6g,0 is the initial distribution and τ disc is the depletion time-

scale, which takes values between 106 and 107 yr, according to ob-

servations.

3.2 Core accretion

The formation of terrestrial planets and the cores of Jovian planets

began with coagulation of grains; they stick together into larger ag-

gregates. Gravitational forces became more important than gas drag

only after objects many metres in size have formed; these are the

planetesimals. In this early stage, larger planetesimals grow much

faster than the smaller ones, that is because the collision cross-

section is enhanced over its geometrical value as a result of gravi-

tational focusing, that is, R is enhanced by a factor

1 +
µ

ve

σ

¶2

, (9)

where ve is the mutual escape velocity of the two bodies, which is

proportional to R. Then, the effective capture radius is given by

R2
eff = R2

Ã
1 +

µ
ve

σ

¶2
!

. (10)

The cross-section is proportional to R4, permitting large bodies

to grow more rapidly. In addition, dynamical friction makes the

random velocities of large planetesimals smaller than those of small

planetesimals, and we can also see that the collision cross-section

is inversely proportional to the relative velocity, so the smaller this

velocity is the larger is its growth rate. This is called runaway growth

(Greenberg et al. 1978; Kokubo & Ida 1996).

This runaway growth cannot be sustained indefinitely; Ida &

Makino (1993) proposed a two-step growth scenario for a planet.

The first stage is the runaway growth, which was already explained,

and when the cores become massive enough to increase the velocity

distribution of planetesimals, their growth slows down and began

the second stage where the planetesimals random velocities lie in

the high-velocity regime.

Kokubo & Ida (1998) studied this second stage through 3-D N-

body calculations and found that the post-runaway dynamic is domi-

nated by the nascent protoplanets. In this stage, the growth is orderly

in the sense that protoplanets tend to have comparable mass cores

and their orbital spacing are nearly equal to one another, and '10 rH,

where rH is the Hill radius. They called this stage oligarchic growth.

The protoplanet spends most of its growth period in this stage rather

than in the runaway growth stage.

As we have already indicated, the runaway growth forms the em-

bryos very quickly and after that the core accretion rate is regulated

by the oligarchic growth, this is the real stage where the cores form.

So, initially we have a 10−5 M⊕ embryo and according to Safronov

(1969) its accretion rate at an orbital radius a is well described by

the particle-in-a-box approximation,

dMc

dt
= F

6d

2h
πR2

effσ, (11)

where h is the solid disc scaleheight, F is a factor introduced by

Greenzweig & Lissauer (1992) in order to compensate the accre-

tion rate underestimation ('3) in the two-body approximation, com-

pared to the case where the planetesimal population is modelled

with Gaussian velocity dispersion by a single eccentricity and incli-

nation equal to the rms values. This factor is adequate in the high-

velocity regime. Finally Reff is the effective capture radius given by

equation (10).

Their mutual escape velocity is v2
e = 2G Mt

R , and the relative ve-

locity between the embryo and the planetesimals is determined by

σ '
p

e2 + i2aÄK, (12)

where e = he2
mi 1

2 is planetesimals rms eccentricity, i = hi2
mi 1

2 is

planetesimals rms inclination, both are with respect to the disc and

ÄK is a Kepler frequency. In the high-velocity (high-σ ) equilibrium

regime, i
e ' 1

2
is a reasonably good approximation, and we also

apply the approximation h 'ai . Then, the accretion rate is

dMc

dt
= C6dÄK R2

µ
1 + 2G Mt

Rσ 2

¶
(13)

with C = Fπ
√

5
2

' 10.53, and for simplicity we consider σ

∼10 rH ÄK.

The main difference between this relation and the corresponding

equation of IL04 model is the factor of 3 introduced by Greenzweig

& Lissauer (1992). IL04 apply the approximation
v2

e

σ 2 À 1.

We have another important difference, which is a correction factor

introduced in order to fit the solid accretion rate used by Fortier

et al. (2007), which includes the evolution of the planetesimal rms e
and i.

When the gravitational perturbation due to the protoplanets is bal-

anced by dissipation due to the gas drag, the planetesimal rms eccen-

tricity attains an equilibrium value, which is obtained by Thommes

et al. (2003),

eeq(' 2i eq) ' 1.7m
1
15 M

1
3

t ρ
2
15

m

b
1
5 C

1
5

D ρ
1
5

gas M
1
3
? a

1
5

, (14)

where m is the typical planetesimal’s mass, ρm is the planetesimal

bulk density (∼1.5 g
cm3 ), b is the orbital spacing between adjacent

protoplanets(= 10), CD is a dimensionless drag coefficient which in

this case is '1, and ρgas is the gas volume density which is '1.5 ×
10−10 g cm−1 when a = 5.2 au and f d = 10 (which are the values

of one of the cases considered by Fortier et al. 2007).

Using this expression, equation (12) can be rewritten as

σ ' 0.5 × 10ÄKrH. (15)

When
v2

e

σ 2 À 1, and considering the above equation, the core

accretion rate is approximately 4 times larger than those given by

equation (13) in the same case. With this factor of approximately 4,

we obtained a very good agreement with the solid accretion rates of

all the simulations performed by Fortier et al. (2007), who consider
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Figure 1. In this figure we plot the growth of the core’s mass obtained by

Fortier et al. (2007) in the solid line, the dashed line represents the growth

when the equation (13) is considered and the dotted line is the mass behaviour

with the solid accretion rate fitted by a factor of 4.

different planet locations and densities of the nebular gas without

the necessity to introduce a high degree of complexity in the model.

In Fig. 1, the solid line shows Fortier et al. (2007)’s results when

f d = 10 is considered. The dotted line shows the core’s mass be-

haviour in the case of introducing a factor of 4 in those results.

Finally, the dashed line shows the growth of the core’s mass when a

factor of 1 is used for the fit. As seen in the figure, the factor of 4 fits

the results much better. The differences between the dotted line and

the results of Fortier et al. (2007) are due to different effects consid-

ered by them, such as the enhancement of the planet cross-section

due to drag with the planet envelope. The introduction of this de-

gree of complexity is beyond the possibilities of a model designed

to perform a huge number of simulations like the one presented in

this paper.

Finally, the core accretion rate we use is

dMc

dt
= 42.126dÄK R2

µ
1 + 2G Mt

Rσ 2

¶
. (16)

The region where the cores can accrete planetesimals directly is

called the feeding zone. We consider, according to Kokubo & Ida

(1998), that the radial width of the feeding zone during the oligarchic

growth stage is given by

1ac ' 10rH, (17)

the more massive is the protoplanet, the larger becomes its feeding

zone.

The core growth cannot continue indefinitely. As equation (16)

shows, the core’s accretion rate depends on the planetesimal surface

density, 6d, on its feeding zone. 6d is not a constant, it changes over

time due to depletion of planetesimals by the protoplanet accretion.

We consider this effect, which gives us a limiting embryo mass

(neglecting radial migration) at which core’s growth stops when it

consumes all the planetesimals in its feeding zone, or equivalent

when 6d = 0 in the considered region. Then, we said that the proto-

planet reaches its isolation mass. This represents the mass reached

by a core whose orbit does not evolve with time, and it has accreted

all the nearby planetesimals. It is given by

Mc,iso = 2π

Z a+ 1a
2

a− 1a
2

a6d da. (18)

3.3 Gas accretion on to the core

In this section, we describe the gas accretion model we use for com-

puting planetary formation. This model is equal to that of IL04’s,

except with a different choice of parameters. This difference, cou-

pled with the use of more adequate solid accretion rates, furnishes

very different results than those found by IL04.

The cores have an associate envelope if the molecular velocity

is smaller than the escape one. According to Mizuno et al. (1978),

once a protoplanet becomes greater than approximately the Moon’s

mass, the core attracts the neighbouring gas and an envelope forms

surrounding it. In the early stages of giant planets formation, the

gravity is balanced by the pressure gradient which is maintained by

the potential energy released by incoming planetesimals (Mizuno

1980). The stability of this envelope depends on the mass of the pro-

toplanet, when it becomes greater than a critical value, the envelope

can no longer be in hydrostatic equilibrium and begins to collapse

(Mizuno 1980; Bodenheimer & Pollack 1986), the gas accretion

process begins.

Ikoma et al. (2000) found through numerical simulations of quasi-

static evolution of the gaseous envelope the characteristic growth

time of the envelope mass (τ g) as a power-law function of the grain

opacity, κ , and the critical mass of the core, Mcrit,

τg ' b

µ
Mcrit

M⊕

¶−cµ
κ

1 cm2 g−1

¶
yr, (19)

with b '108 and c '2.5. Ikoma & Genda (2006) found b '1010 and

c '3.5 with a more complicated and realistic grain opacity model.

Ida & Lin used a simplified version of equation (19), where the

core mass is replaced with the total mass of the protoplanet. As

seen on Section 2, b '109 and c '3.0 are the values adopted on

IL04. Bryden, Lin & Ida (2000) obtained b '1010 and c '3.0 by

fitting the results of Pollack et al. (1996) with negligible planetesimal

accretion, and we considered b = 1.64 × 109 and c = 1.91, as a result

of generalizing the results of Fortier et al. (2007) by introducing an

analytic approximation to their numerical results. We note that our

coefficient c is much smaller than the one used by IL04, leading to

a slower gas accretion rate.

Equation (19), where Mcrit is replaced by Mt, indicates that τ g

depends strongly on Mt and moderately on κ . Besides, the amount

and size distribution of dust grain in the envelope are not known,

based on these considerations we neglect the dependence on κ in

our model.

When the core reaches the critical mass, Mcrit, the gas accretion

process is triggered. The gas accretion rate is given by

dMg

dt
= Mt

τg

. (20)

We need an expression for the critical mass of the core; Ikoma

et al. (2000) derived through numerical calculation an approximate

expression which is a function of the core accretion rate, Ṁc, given

by equation (16) and κ .

Mcrit ∼ 7

µ
Ṁc

10−6 M⊕ yr−1

¶0.2−0.3µ
κ

1 cm2 g−1

¶0.2−0.3

M⊕, (21)

which is an improvement to the formula derived analytically by

Stevenson (1982). We consider a simplified formula, where the

opacity is neglected and the exponent is taken as 1/4.

Several limits were taken for ending this accretion process: (1)

the growth of the envelope ends when the planet consumes all the

gas available on its feeding zone; (2) we use a global limit, which

stops the process when the total gas present on the disc is 10 times

less than the initial one and (3) finally when Ṁg >
1M⊕
100 yr

.
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4 S I M U L AT I O N R E S U LT S

Applying this model, we performed simulations to predict the mass

distribution of extrasolar planets, and compare the final distribution

to the results obtained with IL04 model.

To favour the comparison, the same initial conditions are used,

which are explained next.

As seen on Section 3.1, the distribution of gas and solid surface

density is not uniform, so different orbital position goes to different

gas and solids to accrete. Since the initial position of the cores

has a huge influence on their formation, we assumed that planets

form with equal probability per interval of log(a) to guarantee that

different planets will form.

In order to characterize different discs, we assume a Gaussian

distribution to represent the fd population. This is a distribution in

terms of log10(f d), with dispersion σ = 1 and centred at log10(f d) =
0.25. We adopt a cut-off at f d = 30 because discs with f d > 30 are

heavy enough to be gravitationally unstable.

As equation (8) shows, the nebular gas decays exponentially on

a time-scale between 106 and 107 yr, according to observations of

circumstellar discs of T Tauri stars (Beckwith & Sargent 1996). In

this work the lifetime of the nebular gas is τ disc = 4 × 106 yr.

In our calculations we consider 1000 initial cores, they evolve

107 yr in a circumstellar disc (one core per disc), where the central

star’s mass is M? = M¯. The solid accretion is truncated when there

is no material into their feeding zones (or equivalently the isolation

mass is reached). The truncation conditions for the envelope growth

are given in Section 3.3.

The mass distribution obtained with our model is shown in

Fig. 2(a). While in Fig. 2(b), there is a histogram showing masses for

planets formed with IL04 model, the distributions obtained with both

models are relatively flat, that is equal number of planets through-

out the range of 0.1 to 3500 M⊕, except the region between 100–

1000 (Fig. 2a) and 10–100 (Fig. 2b), where there is a clear lack of

planets.

This deficit shows the process of planetary formation. Fig. 3(a)

shows the growth of a planet located at 3 au, using the IL04 model.

When the gas accretion process begins, the total mass of the planet

grows very rapidly from 10 to 100 M⊕, and this is the reason for the

lack of planets with intermediate masses.

Fig. 3(b) shows the evolutionary behaviour of the mass of a planet

at an orbital distance of 3 au from the Sun. As seen in the figure,

the mass of gas (represented with the dotted line) is less sharp than

those found by IL04, as a consequence, the ‘crossover mass’ (which

is the planet mass when the mass of the envelope is approximately

equal to the core’s mass) is reached at ∼100 M⊕ instead of 10M⊕.

Although 100 M⊕ seems to be too large to begin the runaway gas

accretion of gas, the model ‘State of the art’ developed by Fortier

et al. (2007) shows that this is possible.

This result shows that the final mass distribution is strongly de-

pendent on the gas accretion model used.

5 C O N C L U S I O N S

In this work, we have analysed the influence that a different pre-

scription for the solid and gas accretion rates would have on the

final mass distribution of extrasolar planets.

We have developed a simple model for computing planetary for-

mation, based on the standard core instability model for giant planet

formation. The core accretion was modelated through the process

of oligarchic growth, and we include a factor of approximately 4

 1
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(a)

 1

 10

 100

 1  10  100  1000

N

Mp[Earth Mass]
(b)

Figure 2. Histograms showing final planet mass distributions obtained with

our model (a) and IL04 model (b).

which is taken to consider the evolution of the planetesimal rms e
and i (this value was obtained by fitting the results of Fortier et al.

2007).

In the models of this work, the core accretion rate is so high that

the energy transport in the envelope is largely convective. However,

equation (16) holds true when the energy transport is mostly radia-

tive, but since the aim of this work is to show the consequences that

different accretion models have on the masses distribution, it might

not be important.

Once the core reaches the critical mass (given by equation 21), the

gas accretion process begins. This process was modelated by fitting

the results of the self-consistent code for giant planet formation

developed by Fortier et al. (2007).

Our results show that the gas accretion into the core is less sharp

than the one obtained by using a Kelvin–Helmholtz contraction

model. As a consequence, the run away gas accretion process is
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Figure 3. The mass evolution of a planet located at 3 au is shown in the

figures.(a) shows the growth of a planet using IL04 model and the masses

behaviour obtained with our model is represented in (b). The dashed line

represents the total mass, the mass of the envelope is shown with the dotted

line, and the solid line is the core’s mass. In both cases, we can see that the

total mass grows really fast when the runaway accretion of gas begins, but it

starts at different masses depending on the gas accretion model considered

(see text).

reached by the cores at a larger mass, fact that modifies the location

of the ‘planetary desert’. According to IL04’s results, the region

where a deficit of planets is found is located between 10 and 100 M⊕,

but we found that this region was moved beyond 100 M⊕.

This result shows that the ‘desert’ found on the final mass distribu-

tion of extrasolar planets is strongly dependent on the gas accretion

model considered.
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