
ZinjaI: An Integrated Development Environment for a
first programming course with C++

Pablo Novara
,
1, Horacio Loyarte1

1

Departamento de Informática. Santa Fe, Argentina
Universidad Nacional del Litoral , Facultad de Ingeniería y Cs Hídricas

Abstract. Most of the students in Argentinian universities tends to
experience huge adaptation problem over their first year. It is the main
cause for very high indexes of abandonment. In the case of
computing/informatics systems careers, in the first programming
course, the students must learn a series of concepts related to computing
algorithms abstraction, programming language syntax and the real
implementation of programs using C++. It is a known fact that this is a
cryptic language for the beginner programmer, and usually the very
complex Integrated Development Environments (IDE) existing today
are not designed to solve this particular issue. Instead, the software
seem to be an additional handicap. ZinjaI is a new IDE for writing C++
programs developed with student's needs in mind, with powerful
features for making design, edition, debugging and logic tracing of
programs simpler tasks. The utilization of this tool in several first year
cohorts seems to make a significant improvement for the learning
process.

Keywords: Integrated Development Environment, programming
teaching, C++.

1 Introduction

Argentinian universities have minimal admission requirements for degree careers and
the students pay no fee for their studies. In addition, middle school is going through a
crisis. All these factors produce that meaningful number of applicants for coursing a
degree career have serious difficulties for successfully finish the first year subjects of
its curriculum. These difficulties are increased in the engineering careers, like the case
of study (Ingeniería Informática, in Universidad Nacional del Litoral, Santa Fe,
Argentina).

1 The National Universities are public and free in Argentina.

 This career has an initial enrollment of about 300 students, and the drop out in the
first year is approximately 50%. Through surveys and assessment process analysis it
was possible to detect the subject Fundamentos de Programación (Programming
Fundamentals) as one of the most difficult ones for students. This subject develops
computational algorithm concepts and the students have to solve problems creating
computer programs using the standard language ANSI C++.

It was observed that professional C++ programming environment in addition to

some cryptic characteristics of the language, tends to confuse and slow down the
learning process of programming concepts for inexpert students. The language syntax,
the programming environment, the error messages, the English language (the students
are Spanish speakers), etc., constitute additional obstacles to basic difficulty when
learning the concepts, the logic and basic structures of computational algorithmic: the
main objective of the subject.

As a result of this analysis, it was proposed the development of new IDE,

ZinajI[1], aimed to learning/teaching needs, with features for facilitating edition,
debugging and testing of C++ programs, and contributing in defective way to learning
programming basis in general and C++ language in particular.

2 IDE for teaching of programming

The professional IDEs provide important features for accelerating production of
complex code to developers. It is common to find in most of them: automatic
indentation, syntax highlighting, integrated debugging features for facilitating
erroneous logic detection, trace and breakpoints for code analysis, compilation and
execution a through menu commands and many other characteristics.

Besides these features for developing programs, in the learning processes, an

introductory course of C++ programming requires other characteristics that clash with
professional IDE design[2,3]:

• The programming interfaces must be clean, simple and intuitive. The
professional IDEs have generally complex interfaces flooded with tools and
commands that the student will not take advantage. These kinds of interfaces
constitutes an obstacle and distraction for learning.

• The setup must be simple and the software installed must have a minimal

resource requirement for running in obsolete PCs. It cannot demand high
hardware requirements to students who are starting to learn how to program.

• The IDE must provide to the user several levels of helps and assistance in

order to improve and smooth the learning process (i.e.: early error detection).
That means that the IDE must selects the necessary information for each

context and avoid another distracting information (i.e.: compilation
parameters, idiomatic barriers, etc).

The powerful features of professional IDEs demand the presence of many command
menus and other elements. Most of them will never be used by a beginner
programmer and only lead to confusion.

3 Pr incipal features of ZinjaI

 ZinjaI was developed having all the topics introduced in the previous section in
mind in order to provide a more suitable environment for students. Some its main
features are:

Fig. 1. ZinjaI 's basic interface. It shows emerging message wich warns the user about
potential errors detected by the auto-completion system.

• Easy distribution: it is a free and open source software. The whole system
(IDE, compiler, debugger, etc.) is deployed in an easy setup package (from 8
to 35 Mb, depending on the platform and version). The software is also
prepared to run without any installation process at all.

• Portability: the system can run in both Microsoft Windows (from Windows
98 to latest official release, Windows Vista) and GNU/Linux (in any modern
distribution), adapting projects between platforms in a transparent way for
the user.

• The initial interface is very simple and clearly intuitive. By each edition tab

the system proposes the initial code of a C++ program, so the user can start
writing his solution right inside the main function (like shows Fig. 1) through
a set of predefined templates or through the new file wizard, and test his
program with a single click. So, the system allows the rapid development of
C++ programs without need to create, configure and customize projects.

• It has several edition facilities, like syntax highlight, intelligent and

automatic indentation, advanced search and replacement, folding and
expansion of logical code blocks and some special commands for C++ like
automatic header file directive inclusion, management of source's comments,
context sensitive auto-complete system, emerging help for function, etc.

• ZinjaI presents a complete help system (IDE documentation, tutorials,

advanced features, etc) and an integrated Spanish quick help about standard
C++ language.

• The system parses and improves compiler output: errors and warnings are

organized into a tree shape, restructuring some lines o discarding others, that
result in an easier reading and interpretation.

• It also has a Project mode for management of multiple advanced execution

and compilation profiles. The fact that new ZinjaI's releases are developed
with the old ones show its capability for complex projects handling.

• Debugging system includes inspections management, hierarchical gdb

objects exploration, breakpoints (basic breakpoints, conditional breakpoints
and watchpoints with full scopes awareness), backtracing, step by step
execution, especial table layouts for classes, vectors and matrices, with
parsing and reformulation of debugger expressions in order to improve the
quality of information presented.

• Very specific student aimed features such as generating and visualizing flow

diagrams for selected pieces of code (Fig.2), sharing source and other text
files through a LAN network for facilitating the teacher's job, automatic class
hierarchy representation, etc.

• Finally, it integrates external tools without adding complexity to basic

interface and most common tasks. In addition to student aimed tools, there is
a set of advanced components for demanding users: documentation
generation through Doxygen, visual interface design through

wxFormsBuilder, profiled execution through gprof, source and text files
comparison and merging, building scripts generation, etc.

Fig. 2. Project mode interface in a debugging session. It shows some additional
tools in panels, and flow chart representation of the analyzed piece of code.

The help system of ZinjaI describes in great detail all of its features. Of course, a
beginner student in first contacts with ZinjaI can work without knowing the advanced
ones. The student can incorporate these features while getting fluency in design and
development of C++ programming for solving problems.

4 Development of ZinjaI

The software has been built employing a set of completely free and portable tools
and libraries. Development was done on a GNU/Linux platform using the standard
ANSI/ISO C++ programming language, object oriented programming paradigm, and
wxWidgets library for presenting visual components. For compiling and debugging
ZinjaI relies on GNU tools (GCC and GDB). Also, some code taken from other free
projects was adapted to implement some features (i.e.: the parser that ZinjaI internally
uses was taken from the RedHat's Source Navigator project). The main reasons for
choosing wxWidgets over other powerful alternatives such as QT, GTK+, FLTK, etc.
includes: its object oriented interface, its very high portability and its deep integration
with the host operative system, and the fact that it provides a whole framework that
also simplify process management with input/output redirection, sockets and other
networking components, files and string manipulation, and more.

5 Impact and results in classroom application of ZinjaI

To test the tools acceptance level and main aspects to guide its development an
survey was performed. Then, to verify its influence in the educational process the
survey was applied in two parallel courses with a significant number of students: one
of them (in FICH-UNL2, where the subject is called Fundamentos de Programación,
Fundamental Programming, 91 students) was employing the proposed development;
the other one (in FI-UNER3

• very similar topics were taught in both classes

, where the subject is called Computación I, 83 students)
continued in the traditional teaching mode and without the tool. The comparison gets
an special relevance due to:

• same teacher in charge of them
• similar number of students
• both courses are in the first year of their respective careers

 Analyzing the collected information, several observations can be done:

1. The tool has achieved an important acceptance level in its first
intervention: the very first ZinjaI's version was deployed in the middle of
course time and more than 75% of the students has adopted it as his main
working platform. It must be said that the every student can choose whatever
software he wants to carry on the practices, considering that the university
labs provide several free and commercial alternatives. Asking for the reasons
to the students that choose not to work in ZinjaI the most frequent one is that
they where already very familiar with other specific software.

• The tool is user friendly: when the students where interrogated about their

reasons to work with it, the main answers where the teacher's
recommendation (53%), the ease of use (40%) and the fact that its interface
and help is in their home language (36%). In average, the grade of additional
difficulty perceived by the students working with ZinjaI when they start
programming and change from pseudocode to C++ is very similar. However,
when they were asked about the comfort and help level that the software
provides the difference is bigger in benefit of ZinjaI (about 3 points in a 1-10
scale for both aspects).

• Some of the strongest system feature where not explicitly appreciated by the

students: between the main reasons for choosing that software, “the amount
of different features” (considering the specific ones aimed to classroom
work) or “low requirements” (as an example, it only takes about 11MB in
memory when running in its initial mode) has showed low percentages
(around 14% each).

2 FICH-UNL: Facultad de Ingeniería y Ciencias Hídricas, Universidad Nacional del Litoral.

Santa Fe, Argentina.
3 FI-UNER: Facultad de Ingeniería, Universidad Nacional de Entre Ríos. Entre Ríos,

Argentina.

• Students believes that ZinjaI has a positive impact in the learning process: in

contrast to the results exposed in the previous two items, when the students
where asked about how they saw the software influence, more than 72% said
that the tool contributed to the progress they made, 22% said that it only let
them work faster and in a more comfortable way but without a real influence
in their academic performance, and only 7% expressed that there was no
difference when comparing to other tools and less than 2% that it has a
negative impact. Even if those answers are loaded with a high level of
subjectivity and very conditioned by the students lack of experience, the big
number of individuals in the samples provides some extra credibility to those
numbers.

 Looking at these results it can be observed that the introduction of the new software
into the learning process has made a positive difference for the student's experience.
However, the original main design feature was supposed to be a new debugging
system conceived to create in the students the habit of taking advantage of debugging
as a process not only for finding and fixing their own bugs, but also for analyzing
right programs in order to investigate their behaviors and get a better understanding of
many theoretical and practical topics introduced in the course [4-9]. In the presented
work, the students only have had access to a limited and basic debugging system. This
feature was still under heavy development, and that's one reason why it's impact is
expected to be actually bigger with the new versions. It also must be said that in those
courses there was another tool being tested that had significant influence in the
comparison (PseInt[10,11], a pseudo-code interpreter employed in the four first weeks
to introduce the most basic and general logical aspects before getting contact with a
real programming language), reason why the student's qualifications can't be taken as
a direct indicator of how ZinjaI affects the final results.

6 Conclusions and fur ther work

 The proposed development has showed a positive impact in the learning process of
FICH-UNL students. This fact is supported by partial results extracted from surveys
analysis and comparisons between the two selected group of students. The feedback
level from academic community (both teachers and students) is determinant and
essential to lead the development of new features. The software presented is now in a
noticeable more mature and stable state comparing to the releases used for this study.
The authors pretend to continue evaluating the impact in the following cohort and
improve the software achieving a better integration between the tools usage and the
learning/teaching experience.

References

1. ZinjaI: Integrated development environment. Available at
http://zinjai.sourceforge.net/

2. Reis Charles, Cartwright Robert: Tamimng a Professional IDE for the Classrroom.
SIGCSE’04, March 3–7, 2004, Norfolk, Virginia, USA (2004)

3. Moroni, N., “Entornos Para el Aprendizaje de la Programación”
4. Valles Miguel: Técnicas cualitativas de investigación social. Editorial Síntesis,

Madrid, España (2000)
5. Cross, James H. et. al. “Using the Debugger as an Integral Part of Teaching CS1”,

32nd ASEE/IEEE Frotiers in education Conference, Noviembre 2002.
6. Ko, A. J., “Preserving Non-Programmers’ Motivation with Error-Prevention and

Debugging Support Tools”. 2003.
7. Chmiel, R. y Loui, M. C., “An Integrated Approach to Instruction in Debugging

Computer Programs”. 33rd ASEE/IEEE Frotiers in education Conference, Noviembre
2003

8. Nagvajara, P. y Taskin, B., “Design-For-Debug: A Vital Aspect in Education”.
Internacional Conference on Microelectronic Systems Education, 2007.

9. Gallego, C. M. et. al., “Depuración Estructural: Acercando la teoría a la práctica de la
Programación”.

10. Loyarte Horacio. y Novara Pablo: “Desarrollo de un Intérprete de Pseudocódigo para
la Enseñanza de Algorítmica Computacional”. I Congreso de Tecnología en Educación y
Educación en Tecnología. TE&ET. La Plata, Argentina (2006)

11. PseInt: Spanish pseudocode interpreter. Available at http://pseint.sourceforge.net/

http://zinjai.sourceforge.net/�
http://pseint.sourceforge.net/�

