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Supernovae, CMB, and gravitational leakage into extra dimensions
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We discuss observational constraints coming from CMB and type Ia supernovae for the model of an
accelerated universe produced by gravitational leakage into extra dimensions. Our fits indicate that the model
is currently in agreement with the data. We also give the equations governing the evolution of cosmological
perturbations. Future observations will be able to severely constrain the model.
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I. INTRODUCTION

Supernovae observations have recently provided evidence
that the expansion of the Universe is undergoing a late time
acceleration @1–3#. This acceleration can be explained in the
framework of standard cosmology by a nonvanishing cosmo-
logical constant. Although in agreement with current obser-
vations, such an explanation exacerbates the usual cosmo-
logical constant problem because it requires an explanation
for its very small, but nonzero, value.

One may wish to find alternative explanations for the ac-
celeration, and there are several proposals in the literature.
Here we explore a scenario proposed in @4,5#, based on the
model of Dvali-Gabadadze-Porrati of brane-induced gravity
@6#. This proposal explains the observed late time accelera-
tion of the expansion of the Universe through a large scale
modification of gravity coming from ‘‘leakage’’ of gravity at
large scale into an extra dimension, and without requiring a
nonvanishing cosmological constant. The interesting point
about this model from a phenomenological perspective is
that it is a testable alternative to a cosmological constant
model with the same number of parameters. This is in con-
trast with models of ‘‘quintessence’’ where the equation of
state of the new component becomes a free function that
needs to be constrained.

In @5# it has been shown that the model was in qualitative
agreement with all known cosmological observations. The
purpose of this work is to go one step further and quantita-
tively confront the model with observations of supernovae
and the cosmic microwave background ~CMB!.

The paper is organized as follows. In Sec. II we discuss
the dynamics of the background metric of the universe in the
model. We first introduce in a few words the brane-induced
gravity model of Dvali-Gabadadze-Porrati @6# ~see also
@7–9#! which provides the framework ~Sec. II A!. We then
discuss the cosmological dynamics for the accelerated solu-
tion considered in this paper ~Sec. II B!. In the following, we
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confront the model with the supernovae observations of the
Supernova Cosmology Project ~SCP! @2# ~Sec. III A! and
CMB data ~Sec. III B!.

Our fits indicate that the model is currently in agreement
with supernova type Ia ~SNIa! and small scale CMB data.
One can hope to discriminate the model from standard cos-
mology using future precision cosmological parameters mea-
surements, but also maybe modifications in the growth of
large scale structures.

II. MODEL DEFINITION AND BACKGROUND
DYNAMICS

In the following subsections we summarize the main fea-
tures of the model under consideration and study the dynam-
ics of the background metric.

A. Brane-induced gravity models in a few words

The brane-induced gravity models are a particular class of
brane-world models, which can be defined as models where
our four dimensional ~4D! universe is considered to be a
surface ~called brane! embedded into a higher dimensional
bulk space-time.

Brane world models are inspired by superstring-M theory,
and can be regarded as some low energy effective models of
more fundamental underlying theories, but have also interest
on their own in providing new phenomenological ideas. We
will only consider here the case where the bulk is five di-
mensional ~5D!. The brane embedding into the bulk is de-
fined by the coordinates XA(xm) of the brane world volume
~parametrized by coordinates xm) into the 5D space-time.
The dynamics of gravity is governed by the usual 5D
Einstein-Hilbert action

SEH5
M (5)

3

2 E d5X Au(5)gu (5)R , ~1!

where M (5) denotes the 5D reduced Planck mass. The bulk
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metric (5)gAB induces through the embedding XA(xm) a met-
ric gmn on the brane ~called induced metric! defined by1

gmn5 (5)gAB]mXA]nXB. ~2!

In the above equation, we have put an upper index, (5), on
quantities ~e.g., the 5D Ricci scalar (5)R or the 5D metric
(5)gAB) to distinguish them from their 4D counterparts, de-
pending only on the induced metric ~e.g., R or gmn).

In the brane-induced gravity models @6–10#, the gravita-
tional action contains another term Seh , in addition to the 5D
Einstein-Hilbert term ~1!, given by

Seh5
M Pl

2

2 E
brane

d4x Augu R . ~3!

This term is the usual 4D Einstein-Hilbert term computed
here on the brane and with the induced metric, with M Pl a
mass parameter. The latter can be interpreted as the usual 4D
reduced Planck mass, from the calculation ~see below! of the
force between two static massive sources on a flat brane and
bulk background.2 The origin of Seh in brane world models is
discussed in more detail in @6–8#. It arises generically from
quantum correction coming from the coupling between bulk
space-time and brane localized matter fields when the con-
formal invariance of the brane theory is broken ~see, e.g.,
@14#!. In the model at hand the dynamics of gravity is then
governed by the sum of the two kinetic terms SEH and Seh .

As a consequence of the presence of the brane-induced
term ~3!, one can show @6# that the gravitational force expe-
rienced by two static pointlike sources located on the brane
is the usual 4D gravitational 1/r2 force for distances smaller
than the crossover scale rc defined by

rc5
M Pl

2

2M (5)
3 . ~4!

For distances larger than rc , on the other hand, the force
turns to a 5D regime where it follows the 5D 1/r3 behavior.
On scales smaller than M (5)

21 one also expects modifications
in the gravity law; however, for the parameter choice rel-
evant to this work, the modifications occur on scales much
smaller than those accessible by gravity experiments @9#.

This perturbative behavior has an exact parallel in cos-
mology, where one can show @4# that, for a Z2 symmetric
brane world ~see @15,17,18# for discussions of cases where
the Z2 symmetry is relaxed!, the expansion of the Universe is
governed by the usual 4D Friedmann’s equations whenever

1In the following, we use upper case latin letters A ,B , . . . to
denote 5D indices, greek letters m ,n , . . . to denote indices parallel
to the brane world volume, 5 an index transverse to the brane, and
latin letters i , j , . . . to denote space-like indices parallel to the
brane world volume.

2We will not address here the issue of the van Dam–Veltman–
Zakharov ~vDVZ! discontinuity, see @11# and @12,13# for discus-
sions of this issue.
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the Hubble radius H21 is smaller than rc , and enters into a
nonconventional regime for larger Hubble radii.

In the following section we will discuss in greater detail
this cosmological evolution. At this point let us first say that
an obvious criteria that the model should reach in order to
comply with the known behavior of gravity at large distance,
as well as with the observed cosmology, is that rc should be
made large enough. The more stringent limit comes indeed
from cosmology requiring rc to be of the order of, or larger
than, today’s Hubble radius H0

21. When rc;H0
21, one thus

expects that cosmology is very close to standard cosmology
up to very late time, and in particular all successes of stan-
dard cosmology such as big bang nucleosynthesis ~BBN! are
left unchanged by this choice of parameters. However, the
very recent evolution of the universe is different. Indeed, as
will be noted in more detail in the next section, a particular
class of solutions shows a late time accelerated expansion
without the need for a nonzero cosmological constant. For
values of rc of order H0

21, as needed to fit the Supernovae
observations ~see Sec. III A!, one finds from Eq. ~4! that
M (5);10–100 MeV. Such a low value of the 5D Planck
mass is perfectly consistent with observations and high en-
ergy experiments as shown in @8,9#. Induced-gravity models
have been shown to provide a framework for realizing mod-
els with a very low quantum gravity scale without conflicting
with any experimental facts @9#.

B. Background cosmological dynamics

In the model considered here, the geometry of our 4D
universe is at all time described by an ordinary Friedmann-
Lemaitre-Robertson-Walker ~FLRW! space-time with a line
element of the form

ds25gmndxmdxn ~5!

52dt21a2~ t !dxidx jg i j ~6!

52dt21a2~ t !@dr21Sk
2~r !dc2# , ~7!

where c are angular coordinates, k521,0,1 parametrizes
the brane world spatial curvature, and Sk is given by

Sk~r !5H sin r ~k51 !

sinh r ~k521 !

r ~k50 !.
~8!

The cosmological standard observers are assumed, as usual,
to be at rest with respect to the comoving coordinates xi. The
only difference with standard cosmology is in the dynamics
of the metric which is encoded into Friedmann-like equa-
tions different from the ordinary 4D ones. For a given con-
tent of the universe, with total energy density r ~and pressure
p), the standard first Friedmann’s equation is now replaced
by @4#

H21
k

a2 5SA r

3M Pl
2 1

1

4rc
21

1
2rc

D 2

, ~9!

where
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H[
1
a

da
dt ~10!

is the Hubble parameter of our universe.3 The energy-
momentum conservation equation, on the other hand, takes
the usual form

ṙ13H~p1r!50. ~11!

Equations ~9! and ~11! are all what is needed to characterize
the cosmology we are interested in here. They lead to

H2~z !5H0
2H Vk~11z !2

1SAVrc
1AVrc

1(
a

Va~11z !3(11wa)D 2J ,

~12!

where z is the redshift and we have assumed that r is given
by the sum of the energy densities ra of different compo-
nents ~labeled by a) with constant equation of state param-
eters wa . The Vs for matter and curvature are defined in the
usual way by

Va[
ra

0

3M Pl
2H0

2a0
3(11wa) , ~13!

Vk[
2k

H0
2a0

2 , ~14!

whereas Vrc
is given by

Vrc
[

1

4rc
2H0

2 . ~15!
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The normalization condition for the Vs,

Vk1SAVrc
1AVrc

1(
a

VaD 2

51, ~16!

differs from the usual relation Vk1(aVa51.
Equation ~9! implies that whenever r/M Pl

2 is large com-
pared to 1/rc

2 ~or in other words, whenever H21 is small with
respect to rc), the cosmological evolution follows that of
standard cosmology. In this case Eq. ~9! reduces to the stan-
dard Friedmann’s equation

H21
k

a2 5
r

3M Pl
2 . ~17!

When ~and if! r is driven to smaller values by the cosmic
expansion, the expansion of the Universe enters into a non-
conventional phase and asymptotes to a de Sitter solution
when r becomes negligible with respect to M Pl

2 /rc
2 . One has

a transition to an accelerated expansion happening approxi-
mately when the Hubble radius H21 crosses the threshold
rc . We would like to stress that this last accelerated phase is
not triggered by a cosmological constant ~that can be consis-
tently set to zero! but is due to the presence of two kinetic
terms for the graviton in the action. Namely, bulk gravity
sees the induced kinetic term on the brane ~3! as a source
term, and for an empty universe, there is a self-inflationary
solution4 to Einstein’s equations to which a universe with
decreasing energy will asymptote. This solution acts as a late
time attractor to early standard cosmology.

In the following we will then only consider a universe
with a zero cosmological constant, and usual ~dark, baryonic,
. . . ! matter content. One can further notice that the above
described cosmology is also exactly reproduced by standard
cosmology with a dark energy component with a z-dependent
equation of state parameter wX

e f f(z). For a universe contain-
ing only nonrelativistic matter, wX

e f f(z) is given by ~see @5#!
wX
e f f~z !5

1

SA 4Vrc

VM~11z !3
14D SA Vrc

VM~11z !3
1A Vrc

VM~11z !3
11D 21. ~18!

3There is another set of solutions for a Z2 symmetrical brane. Those were derived in @4# and are not considered here.
4This solution is in a way the late time analog of Starobinsky’s first model of inflation where terms quadratic in the Ricci tensor are

sourcing similarly a self-inflationary solution @16#.
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At large redshift wX
e f f tends toward 21/2 reflecting the fact

that the dominant term in Eq. ~12!, after matter and curvature
terms, redshift as (11z)3/2 at large z. At low z, however,
wX

e f f decreases toward an (Vk ,VM)-dependent asymptotic
value. For a flat universe, the latter is simply given by5

21/(11VM).
In the following sections we give the results of fitting

SNIa and CMB observables with different cosmological pa-
rameters in the framework of the cosmology defined by Eqs.
~9! and ~11!. We will denote u a set of cosmological param-
eters such as Vrc

or VM characterizing a given cosmology.

III. CONFRONTATION WITH OBSERVATIONS

A. Confrontation with supernovae observations

We have fitted the supernovae data set from the SCP @2#
with the luminosity distance calculated using Eq. ~12!. Be-
cause the geometry of the Universe is given by usual FLRW
~5! one can use the standard formula for the luminosity dis-
tance dL as a function of the redshift z,

dL5H0
21~11z !

Sk@AuVkudC~z !#

AuVku
, ~19!

with dC(z) defined by

dC~z !5E
0

z
H0

dy
H~y !

, ~20!

and H(z) given by Eq. ~12!. We then use this luminosity
distance to fit the data. The fit is done using 4 free param-
eters: the cosmological parameters u5(VM ,Vrc

), the intrin-
sic magnitude of the supernova M, and a parameter a re-
lated to the intrinsic luminosity-decline rate relation ~stretch
factor s). x2 is given by

x2~u,a ,M!

5(
i51

n
$M1a~12si!15 log10@dL~u,zi!#2mi%

2

s i
2 .

~21!

The data set consisting of 54 supernovae ~18 nearby ones
and 36 at high redshift! is shown in Fig. 1. Since we assume
no prior knowledge of the parameters and as we are not
interested by a and M, we have to marginalize over them.
We do this in a Bayesian framework assuming flat priors and
Gaussian errors. These integrations can be carried out ana-
lytically, as shown in @19#. We quote the results in Appendix
A. We have then computed confidence contours for the mod-
els u5(VM ,Vrc

) model with no prior on the cosmology.
These contours are plotted in Fig. 2.

5E.g., for VM50.3 and k50, wX
e f f at low z tends toward 20.77.
02401
Assuming a spatially flat space-time, one is only left with
one free parameter ~after integration over M and a), e.g.
VM . Vrc

is then given by the normalization condition ~16!

Vrc
5S 12VM

2 D 2

, Vrc
,1 and VM,1. ~22!

The results of the x2 minimization gives for a flat uni-
verse ~one sigma levels!

VM50.1820.06
10.07 or Vrc

50.1720.02
10.03 , ~23!

FIG. 1. Magnitude vs redshift diagram for the SNIa data of Ref.
@2# used in this paper. All magnitude are plotted, respectively, to an
empty universe (VM50 and VL50). Over-plotted are three differ-
ent flat cosmological models: the best fit flat model in standard
cosmology ~with VM50.28 and VL50.72, solid line!, in the gravi-
tational leakage cosmology ~with VM50.18, dotted line! and a flat
model in the gravitational leakage cosmology with VM50.3
~dashed line!. We also show two approximate confidence level in-
tervals for the z51.7 supernova of Ref. @3#; the outer light-gray
surface represents the 95% confidence intervals and the inner dark
gray surface represents approximately the 68% confidence interval.
This last supernova was not included in the fit. The values of a
~related to the stretch factor! and M ~intrinsic magnitude! have
been fitted independently for all the models. The data are plotted
here with a50.6.

FIG. 2. 68.3%, 90% and 99% confidence regions for (VM ,Vrc
)

in the gravitational leakage scenario, assuming no prior knowledge
of a and M.
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with x2557.96 for 52 ~54 SNe, 2 parameters! degrees of
freedom.6 This best fit model is shown in Fig. 1. Equation
~23! leads to an estimate for rc in terms of the Hubble radius
H0

21 given by

rc51.2120.09
10.09H0

21 . ~24!

B. Confrontation with CMB observations

Another set of cosmological observables which has re-
cently been measured with great precision is the CMB tem-
perature power spectrum. In this section we would like to
compare the predictions of the model considered in this pa-
per to the results of these observations.

For this purpose, we used a modified CMBFAST @22# re-
placing the first Friedmann’s equation by Eq. ~9!. The equa-
tions for the growth of cosmological perturbations were kept
the same as in usual cosmology ~except for the background
evolution!. As is discussed qualitatively in Appendix B, this
is justified for the small scale perturbations and for processes
happening early enough in the history of the Universe. On
the other hand, one can expect deviations from the standard
picture at large scale ~and late time! where ~and when! the
effect of the extra dimension began to be felt. This concerns
scales of order of today’s Hubble radius and processes hap-
pening in the late history of the Universe. A more refined
discussion of this, which involves the integration of bulk
equations of motions for perturbations, is left for future work
@23#.

We explored the six-dimensional parameter space, u
5(Vk ,Vrc

,vd ,vb ,n ,A), where vd5Vcdmh2, vb5Vbh2

and A and n are the amplitude and slope of the primordial
spectrum of perturbations. We used a Markov chain method
to explore the likelihood in this parameter space. When it has
converged the method produces a chain of models that are
sampled from the probability distribution of u. The details of
our procedure are given in Appendix C.

Figure 3 shows the probability distribution for each of the
six parameters obtained. As expected the CMB data prefers
spatially flat models. Figure 4 shows the results of our analy-
sis in the VM-Vrc

plane. The shaded region was drawn to
contain approximately 95% of the models in our chain, the
line marks the location of spatially flat models. The con-
straint on Vrc

is coming mainly from the position of the
acoustic peaks so there is a natural degeneracy in the
VM-Vrc

plane which is apparent in the plot.
The probability distribution for Vk shown in Fig. 3 peaks

around Vk50, a spatially flat universe. Thus it is natural to
further restrict ourselves to flat universes which we can do by

6These numerical results are in agreement with the fit done in
@20#. We, however, disagree with the conclusions of that work as
will be discussed later ~see also Ref. @21# for a discussion of this
paper!. Note in particular that, contrary to the claims made in @20#,
the z51.7 supernova of Ref. @3# is fitted as well by the model
considered in this paper or by standard cosmology with a cosmo-
logical constant ~see Fig. 1!.
02401
considering only samples in our chain with negligible curva-
ture. The probability distribution for VM under this assump-
tion is shown in Fig. 5.

Figure 5 shows that a model with VM50.3 provides a
good fit to both SN and CMB data. It should be noted, how-
ever, that the CMB prefers a slightly larger value of VM than
the SN, although both ranges overlap at 1s . In turn, the
CMB can constrain the physical densities in matter quite
accurately, vM1vb’0.12. This constraint translates VM
50.3 to a Hubble constant h’0.63 in good agreement with

FIG. 3. Marginal distribution for each of the 6 parameters used.

FIG. 4. Allowed region in the VM-Vrc
plane ~shaded!. The line

shows the location of spatially flat models. The shaded region was
drawn to contain approximately 95% of the models in our chain.
9-5
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direct measurements, e.g., h50.7260.08 from the HST key
project @40#.

In Fig. 6 we show what we could call our ‘‘concordance’’
model, u5(Vk ,Vrc

,vd ,vb ,n ,A)5(0,0.1225,0.1,0.02,0.96,
0.57) which has VM50.3 and x2’140 for the full data set

FIG. 5. Marginal distributions for VM under the assumption that
the universe is spatially flat. The solid line shows the results from
CMB and the dashed line from the SN.

FIG. 6. Model predictions and current CMB data. The solid
curve curve is for a model with u5(Vk ,Vrc

,vd , vb ,n ,A)
5(0,0.1225,0.1,0.02,0.96,0.57) while the dashed curve is for stan-
dard cosmology with a cosmological constant VL50.7 ~other pa-
rameters were kept the same!.
02401
~135 data points!. For reference we also show the power
spectra for a standard cosmology model with VL50.7, a
model that has all other parameters the same but where the
acceleration is produced by a cosmological constant. Both
models provide an acceptable fit to the current data, but be-
cause their angular diameter distance to the last scattering
surface differs by approximately 4% they should be easily
distinguishable by future generation of CMB experiments.
The difference at low multipoles should be regarded with
care because on this very large scale the physical effects we
ignored could be relevant ~see Appendix B!.

IV. CONCLUSIONS

The fits done in this work show that the model of an
accelerated universe through gravitational leakage into an
extra dimension of Refs. @4,5# is in current agreement with
SNIa and CMB data. The degeneracies in parameter estima-
tions using one data set ~e.g. CMB! can be partially lifted
using the other ~e.g. SNIa! as in standard cosmology. The
supernovae data prefer a slightly lower value of VM (VM
50.1820.06

10.07) than the CMB for a flat universe; however, a
concordance model with (Vk ,Vrc

,vd , vb ,n ,A)
5(0,0.1225,0.1,0.02,0.96,0.57) which has VM50.3 @and
x2’140 for the full data set ~135 data points!# provide a
good fit to both sets, all the more as we have not included
systematic errors in our parameter estimations. For this
model the crossover distance between 4D and 5D gravity is
given by rc;1.4 H0

21.
We have also given the equation of evolution for cosmo-

logical perturbations. Those equations were used to justify
the approximation we made to compute cosmological pertur-
bations, namely we used standard four dimensional evolution
equations over a background with a scale factor given by the
accelerated solution given in @5#. This is justified for small
scale CMB anistotropies ~scale smaller than the crossover
scale rc). From those equations, and the known behavior of
gravity in the model at hand, one can also expect modifica-
tions in the growth of large scale structure. This could poten-
tially lead to a way to discriminate between standard cosmol-
ogy and the model considered in this work, and is left for
future investigation.

We want to end by noting that the model under consider-
ation is very predictive in the sense that future observations
have the potential to rule it out. In contrast to quintessence
models, this model has the same number of free parameters
as the usual LCDM model. With the advent of new precision
cosmological measurements such as new SNIa observations,
CMB measurements, ongoing galaxy surveys such as Sloan
and 2dF, weak lensing surveys, etc., it should be possible to
test the model very accurately ~for a recent summary of how
different observations will constrain the matter content of the
universe see @41# and references therein!.
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APPENDIX A: MARGINALIZATION FOR SUPERNOVAE

Following @19# the x2 defined by Eq. ~21! can be inte-
grated analytically over M and a to yield

xa-int
2 ~u!522lnF E

2‘

‘

da expS 2
1
2 xM-int

2 ~u,a! D G
~A1!

5A82
B82

C8
2

S F2
B8E

C8
D 2

D2
E2

C8

, ~A2!

A85(
i51

n
$5 log10@dL~u,zi!#2mi%

2

s i
2 , ~A3!

B85(
i51

n 5 log10@dL~u,zi!#2mi

s i
2 , ~A4!

C85(
i51

n 1

s i
2 , ~A5!

D5(
i51

n
~12si!

2

a i
2 , ~A6!

E5(
i51

n
~12si!

a i
2 , ~A7!

F5(
i51

n
$5 log10@dL~u,zi!#2mi%~12si!

s i
2 , ~A8!

where xM-int
2 (u,a) is defined by

xM-int
2 ~u,a!522 lnF E

2‘

‘

dMexpS 2
1
2 x2~u,M,a! D G .

~A9!

APPENDIX B: DYNAMICS OF SCALAR COSMOLOGICAL
PERTURBATIONS

We briefly summarize here the equations governing the
cosmological perturbations in the model at hand. These
equations will be derived and discussed in more details else-
where, and are only given here for the case of a flat universe.

Our starting point is an equation derived in @24#, relating
02401
the 4D Einstein’s tensor Gmn to a tensor Pmn quadratic in
whatever source T̃mn of 5D Einstein’s equations is localized
on the brane, and a traceless tensor Emn defined in terms of
the 5D bulk Weyl tensor. The corresponding equation reads

Gmn5
1

M (5)
6 Pmn2Emn , ~B1!

with Pmn given by

Pmn52
1
4T̃maT̃n

a1
1
12T̃T̃mn1

1
8T̃abT̃abgmn

2
1
24T̃2gmn , ~B2!

and Emn is defined by

Emn5Cm5n
5 , ~B3!

from the bulk Weyl’s tensor7 C BCD
A . In our case T̃mn is

given by

T̃mn5Tmn2M Pl
2 Gmn , ~B4!

where Tmn is the brane energy momentum tensor and Gmn is
the 4D Einstein’s tensor. Tmn is conserved with respect to the
4D metric on the brane, so that one has

DmTn
m50, ~B5!

DmT̃n
m50, ~B6!

where Dm denotes the covariant derivative compatible with
the 4D metric on the brane, and the last equality follows
from Bianchi identities. Equations ~B1! and ~B5! lead to the
background equation of motion ~12!, once one knows the
background expression for Emn . In the cosmological case,
Emn is in general given by some version of Birkhoff’s theo-
rem @25–29#. We have assumed for simplicity in Eq. ~12!
that it vanishes in the background, in which case the five
dimensional space-time is simply a Minkowski space-time.8

We now derive from Eq. ~B1! the evolution equations for
the cosmological perturbations. We write

Gn
m5BGn

m1dGn
m , ~B7!

Tn
m5BTn

m1dTn
m , ~B8!

E n
m5dE n

m , ~B9!

where the superscript B stands for the background value of
the corresponding tensor component. We define then the sca-

7We have chosen here implicitly a Gaussian normal coordinate
with respect to the brane.

8As far as the background is concerned a nonvanishing Emn is
manifesting itself as a radiation component into the Friedmann’s
equations; see Ref. @4# where the background equations are given in
full generality.
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lar perturbations in energy density dr , momentum dq , pres-
sure dP , and anisotropic stress dp for ordinary matter as

dT0
052dr , ~B10!

dTi
05„idq , ~B11!

dT j
i5dPd j

i1S „ i„j2
1
3 d j

i„2D dp , ~B12!

where „i is the covariant derivative adapted to the back-
ground spatial metric g i j parallel to the brane. We also define
similar quantities for the Weyl’s fluid, following @30–33#

dE 0
05

1

M Pl
2 drE , ~B13!

dE i
052

1

M Pl
2 „idqE , ~B14!

dE j
i52

1

M Pl
2 FdPEd j

i1S „ i„j2
1
3 d j

i„2D dpEG . ~B15!

The Weyl’s fluid is related to the perturbation of the bulk
Weyl’s tensor ~gravitational waves in the bulk! through Eq.
~B3!.

Other useful quantities are the trace, dGT , and traceless
traceless part, dGTF , of dG j

i defined by

dG j
i5dGTd j

i1S „ i„j2
1
3 d j

i„2D dGTF . ~B16!

After some algebra, one gets then from Eq. ~B1! the per-
turbed Einstein’s tensors over the background ~11!, ~12!

dG0
0S 12

1
2Hrc

D52
1

M Pl
2 S dr2

drE
2Hrc

D , ~B17!

dGi
0S 12

1
2Hrc

D5
1

M Pl
2 S „idq2

1
2Hrc

„idqED , ~B18!

dGTFS 12
H

rc~Ḣ12H2!
D 5

1

M Pl
2 S dp2dpE

H

rc~Ḣ12H2!
D ,

~B19!

dGTS 12
1

2Hrc
D5

1

M Pl
2 S dP2

1
2Hrc

dPE1
Ḣ

3H2

dr2drE
2Hrc21 D .

~B20!

These equations replace the perturbed Einstein’s equations of
ordinary cosmology ~see, e.g. @34# for a review!.

One can derive from Eq. ~B5! the usual conservation
equations for the matter perturbations. As far as the Weyl’s
fluid is concerned, by taking the covariant derivative of Eq.
~B1! and using Eq. ~B5! one can show that the Weyl’s fluid
energy density drE is conserved but that the Weyl’s fluid
02401
momentum dqE in general is not @31#. Moreover, one does
not have an evolution equation for the Weyl’s fluid aniso-
tropic stress dpE . This means that the system of equations
for cosmological perturbations does not close on the brane,
and one needs to solve the equations of motion for gravita-
tional waves in the bulk ~see @31#!. On large scales, however,
the usual adiabatic curvature perturbation on hypersurfaces
of uniform ~ordinary or Weyl! matter density is conserved
@31#, since it is a mere consequence of the conservation of
the energy density perturbation @35#. However, one still can-
not compute the Sachs-Wolf effect because of the lack of
knowledge of dpE @31#.

Let us make here some simple remarks. In the formalism
used so far, the deviation from usual 4D cosmological per-
turbations equations can be separated into two different
parts. We first note that the direct coupling between ordinary
matter and gravitational perturbations is H dependent, for
example one can rewrite Eq. ~B17! as

dG0
052

1

M̃ Pl
2 S dr2

drE
2Hrc

D ~B21!

with the effective direct gravitational coupling between mat-
ter and gravity given by

M̃ Pl
2 5M Pl

2 S 12
1

2Hrc
D . ~B22!

One can check that this coupling is never negative for the
late time accelerated solution considered in this paper, since
one always has Hrc>1. Moreover, in the early time of the
Universe ~whenever Hrc@1), one has M̃ Pl;M Pl so that one
can consistently ignore this effect at least up to last scattering
~in contrast to what is happening in usual brane cosmology!,
which is all what matters as far as CMB is concerned. At the
epoch of last scattering, for example, M̃ Pl coincides with M Pl
within a part per thousand. However, Hrc becomes of order
unity at late time @see Eq. ~23!#, and one can be concerned
that this can have dramatic effects on large scale structure
formation.9 To be consistent one should also consider in this
regime the effects of the Weyl’s fluid source terms in the
left-hand side of the perturbed Einstein’s equations ~B17!–
~B20! ~as well as possible nonlinear corrections, see @11#!,
and this can only be done properly solving for the bulk equa-
tions of motions for perturbations. With the formalism used
so far, those source terms are the other manifestation of the

9This could also have a potentially observable signature through
standard tests of gravity. We, however, expect that when one looks
at fluctuations over a given background, a local curvature scale l21

should typically replace H21 in the above equations so that we do
not expect that the l dependence of M̃ Pl could have observable
effects on systems where the curvature is much greater than today’s
H0 (;rc

21). This issue is likely to be related to the disappearance of
the vDVZ discontinuity ~see @11–13#! and will be discussed else-
where.
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extra dimension that we would like to discuss now qualita-
tively as far as the CMB is concerned.

We note that those source terms are suppressed with re-
spect to their ordinary matter counterparts by a factor Hrc ,
in contrast to what happens usually for brane cosmology ~see
e.g., @33#!. This supports the fact that when Hrc→‘ the
theory looks more and more four dimensional. One can then
start with initial conditions for cosmological perturbations,
say after inflation, which are the ones provided by standard
4D cosmology, and set initially all the Weyl’s perturbations
to zero. The brane perturbations will then feed up nonzero
perturbations in the bulk, which will then backreact on the
brane through the Weyl’s fluid perturbations leading to
‘‘gravitational leakage’’ into the extra dimension. The time
scale for this leakage to occur is, however, of order rc which
is much larger than the age of the universe at
recombination.10

This discussion indicates that one can consistently use the
usual 4D cosmological perturbation equations for dealing
with the growth of small scale fluctuations observed in
CMB. The effects of gravitational leakage is then only con-
tained in the background evolution, which affects the growth
of the perturbations and also the way they appear on the sky
through a different angular diameter distance. We only ex-
pect possible deviations on large scale coming from the ef-
fects mentioned above, and also possible modifications once
compared with large scale structure data. We let these inter-
esting questions be for future investigations, as well as a
more careful check of the approximations made here.

APPENDIX C: CMB LIKELIHOOD CALCULATION

Here we describe the details of the CMB likelihood cal-
culation. To accelerate the calculation of the model predic-
tions we used the k-split approximation described in @37#. In

10This qualitative picture is supported by numerical calculations in
a scalar field toy model @36#.
02401
this approximation the high l power spectra is calculated in a
flat model with no dark energy and then shifted appropriately
in l using the angular diameter distance to recombination.
The likelihood for each model was calculated using the
RADPACK11 package. We used all currently available CMB
data ~for a description of the compilation we refer the reader
to the RADPACK documentation and to @38#!.

For the present study we did not use a grid based method
for calculating likelihoods ~such as the one described in
@37#!. Following @39# we instead chose to use the
Metropolis-Hastings algorithm to generate a Markov chain
of models. Because we are not interested in investigating
multiple priors, our parameter space is rather small so we do
not need to exploit the CMB degeneracies and we do not
want to build a database of models to be used in future stud-
ies, the Markov-chain technique was very efficient and ex-
tremely easy to implement.

In the Metropolis-Hastings algorithm a chain of models is
generated. Models are added to the chain sequentially. To
find a new model for the chain values of the parameters are
chosen at random ~we choose to select models from a Gauss-
ian distribution centered in the last model of the chain with a
covariance matrix that is estimated from the chain itself!.
The likelihood of this new model is compared to the likeli-
hood of the last model in the chain. The new model is always
accepted into the chain if the likelihood is larger than that of
the last model; if this is not the case it will be accepted with
a probability given by the likelihood ratio of the two models.
When the chain has converged ~i.e., it has run for a suffi-
ciently long time! each model can be taken as an indepen-
dent sample from the probability distribution P(uud), the
probability of some particular value of the parameters (u)
given the observed data (d). Once we have the chain of
models using histograms we can construct the distribution
function of individual parameters.

11RADPACK is a publicly available software package developed by
Lloyd Knox. It can be obtained from http://bubba.ucdavis.edu/ ˜
knox/radpack.html
@1# A.G. Riess et al., Astrophys. J. 116, 1009 ~1998!.
@2# S. Perlmutter et al., Astrophys. J. 417, 565 ~1999!.
@3# A.G. Riess et al., Astrophys. J. 560, 49 ~2001!.
@4# C. Deffayet, Phys. Lett. B 502, 199 ~2001!.
@5# C. Deffayet, G. Dvali, and G. Gabadadze, Phys. Rev. D 65,

044023 ~2002!.
@6# G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485,

208 ~2000!.
@7# G. Dvali and G. Gabadadze, Phys. Rev. D 63, 065007 ~2001!.
@8# G. Dvali, G. Gabadadze, M. Kolanovic, and F. Nitti, Phys.

Rev. D 64, 084004 ~2001!.
@9# G. Dvali, G. Gabadadze, M. Kolanovic, and F. Nitti, Phys.

Rev. D 65, 024031 ~2002!.
@10# G. Dvali, G. Gabadadze, X. Hou, and E. Sefusatti,

hep-th/0111266.
@11# C. Deffayet, G.R. Dvali, G. Gabadadze, and A.I. Vainshtein,

Phys. Rev. D 65, 044026 ~2002!.
@12# A. Lue, hep-th/0111168.
@13# A. Gruzinov, astro-ph/0112246.
@14# S.L. Adler, Rev. Mod. Phys. 54, 729 ~1982!; 55, 837~E!

~1983!.
@15# R. Dick, Class. Quantum Grav. 18, R1 ~2001!.
@16# A.A. Starobinsky, Phys. Lett. 91B, 9 ~1980!.
@17# R. Cordero and A. Vilenkin, Phys. Rev. D 65, 083519 ~2002!.
@18# R. Dick, Acta Phys. Pol. B 32, 3669 ~2001!.
@19# M. Goliath, R. Amanullah, P. Astier, A. Goobar, and R. Pain,

Astron. Astrophys. 380, 6 ~2001!.
@20# P.P. Avelino and C.J. Martins, Astrophys. J. 565, 661 ~2002!.
@21# C. Deffayet, G. Dvali, and G. Gabadadze, astro-ph/0106449.
@22# U. Seljak and M. Zaldarriaga, Astrophys. J. 469, 437 ~1996!.
@23# C. Deffayet, A. Lue, and M. Zaldarriaga ~in preparation!.
@24# T. Shiromizu, K.i. Maeda, and M. Sasaki, Phys. Rev. D 62,

024012 ~2000!.
@25# P. Kraus, J. High Energy Phys. 12, 011 ~1999!.
9-9



DEFFAYET, LANDAU, RAUX, ZALDARRIAGA, AND ASTIER PHYSICAL REVIEW D 66, 024019 ~2002!
@26# P. Binetruy, C. Deffayet, U. Ellwanger, and D. Langlois, Phys.
Lett. B 477, 285 ~2000!.

@27# E.E. Flanagan, S.H. Tye, and I. Wasserman, Phys. Rev. D 62,
044039 ~2000!.

@28# S. Mukohyama, T. Shiromizu, and K.i. Maeda, Phys. Rev. D
62, 024028 ~2000!; 63, 029901~E! ~2000!.

@29# F. Bonjour, C. Charmousis, and R. Gregory, Phys. Rev. D 62,
083504 ~2000!.

@30# D. Langlois, Phys. Rev. Lett. 86, 2212 ~2001!.
@31# D. Langlois, R. Maartens, M. Sasaki, and D. Wands, Phys.

Rev. D 63, 084009 ~2001!.
@32# D. Langlois, Phys. Rev. D 62, 126012 ~2000!.
@33# H.A. Bridgman, K.A. Malik, and D. Wands, Phys. Rev. D 65,

043502 ~2002!.
024019
@34# V.F. Mukhanov, H.A. Feldman, and R.H. Brandenberger, Phys.
Rep. 215, 203 ~1992!.

@35# D. Wands, K.A. Malik, D.H. Lyth, and A.R. Liddle, Phys. Rev.
D 62, 043527 ~2000!.

@36# A. Lue ~private communication!.
@37# M. Tegmark, M. Zaldarriaga, and A.J. Hamilton, Phys. Rev. D

63, 043007 ~2001!.
@38# X. Wang, M. Tegmark, and M. Zaldarriaga, Phys. Rev. D 65,

123001 ~2002!.
@39# N. Christensen, R. Meyer, L. Knox, and B. Luey, Class. Quan-

tum Grav. 18, 2677 ~2001!.
@40# W.L. Freeman et al., astro-ph/0012376.
@41# M. Tegmark, astro-ph/0101354.
-10


