
Towards an Ontology-based Integration of Federated Information
Sources

Agustina Buccella and Alejandra Cechich

Departamento de Ciencias de la Computación, Universidad Nacional del Comahue,
 Buenos Aires 1400, Neuquén, Argentina
Email: abuccel,acechich@uncoma.edu.ar

Nieves R. Brisaboa

Departamento de Computación, Universidade de A. Coruña,
 Campus de Elviña s/n, 15071 – A. Coruña, España

Email:brisaboa@udc.es

Abstract. Integrating data from a Federated System is a very complex process that involves a series of tasks.
Characteristics such as autonomy of the information sources, their geographical distribution and heterogeneity
are some of the main problems we face to perform the integration. In this paper we focus on the problem of
heterogeneity, more specifically on semantic heterogeneity. The semantic heterogeneity makes the integration
difficult because of its bearing problems on synonymous, generalization/specialization, etc. Here, we briefly
explain our three level approach to solve these problems. Then we show the structure of software components
used to implement our supporting tool.

Keywords: Federated Databases, Ontology, Semantic Heterogeneity.

1. Introduction
The federation of different data sources is a long-standing and thoroughly studied problem. Since
the appearance of the ontologies and the proliferation of the Semantic Web [1], this problem has
regained much attention. Nevertheless, integration of data from different sources is still an open
issue. The autonomy of the information sources, their geographical distribution and the
heterogeneity among them, are the main problems we must face to perform the integration [12]. The
semantic heterogeneity has been one of the most researched aspects in the last years. Works like
[7,13] are aimed to fill the semantic gap among the information sources, using the semantic
information provided by the ontologies.

In recent works [2,3,4,5,6] we have proposed an architecture and a three level approach to solve
semantic heterogeneity problems [13]. Our architecture [3,4] is based on three main components: a
global ontology or shared vocabulary, an ontology mapping and source ontologies. The global
ontology component contains the generic concepts that will be used to query the system. The
Ontology Mapping (OM) component deals with the information flow between the source ontologies
and the shared vocabulary. This component contains a set of mappings relating concepts in the
sources ontologies with concepts in the shared vocabulary. Once a user chooses the concepts from
the shared vocabulary and makes a query, the system uses the OM component to know which
concepts are related with. Thereby, through the source ontologies, the system gets access to the
information sources to produce the data. There is only one source ontology for each information
source.

To develop the architectural components, our method [6] defines three main stages: building the
source ontologies, building the mappings among source ontologies and building the shared
vocabulary. Each of these stages serves as a guideline to create the aforementioned components.

This paper is organized as follows: Section 2 presents a summary of our three level approach to
find similarities between concepts. Then, in Section 3 we will briefly describe the software

components used to develop our automated tool, which implements our approach to calculate
similarity of concepts. Future work and conclusions will be discussed afterwards.

2. A Three Level Approach for Searching Similarities
Finding similarities between concepts of different ontologies is a very complex activity. In general,
it is not possible to determine fully automatically all mappings between them. Therefore, our
approach only determines mapping candidates that users should accept, reject or change.
Furthermore, a user might specify mappings for concepts for which the system was unable to find
satisfactory match candidates.

Figure 1 shows our three level approach [3,4] for searching similarities among concepts. In this
paper, we only show the structure of our method; for a detailed description including the similarity
functions applied in it, we refer the reader to [3,4].

In the figure, the double bounded boxes represent external modules used to retrieve information.

Figure 1. Method for searching similarities

First of all, the Ontology Instantiation module obtains the object structure [4] from ontologies
described for example in OWL [15]. The ontology is divided into classes and properties. The
classes are subdivided into common classes and attribute classes. The common classes have the role
of representing things about the domain, and the attribute classes have the role of representing
information about a common class (attribute). For example, an ontology can have the Animal class
as a common class and the Organ class as an attribute class because Organ exists to describe a
characteristic about a common class. The Organ class has no properties. On the other hand, the
properties are also subdivided into datatype properties and special properties. The properties have
restrictions to denote functions, cardinality, domain, range, etc. The datatype properties are
properties relating a class or a set of classes (intersection of classes) with a data type; for example,
“animal name” is a datatype property between the Animal class and the String data type. The
special properties are properties relating classes to each other. For example, relationships relating

the Animal class to the Organ class in order to describe the organs of an animal. Thus, a common
class has both datatype properties and special properties, and attribute classes do not have
properties.

The Thesaurus module is an important source of semantic information. Thesauruses are used to
search for synonyms, which are detected by the module through the use of a similarity function. The
function returns 1 if a synonym relationship is found, and 0 otherwise.

Accordingly to our approach, a user indicates the first mapping, for example between the Animal
class of one ontology and the Creature class of another ontology. These two mapped classes are
inputs of the Retrieve Properties and Attribute Classes module. This module retrieves the attribute
classes and special and datatype properties of each concept by using the object structure of each
ontology. This information enters as input of the Syntactic Comparison module, which syntactically
analyses classes and properties relating with the concepts.

Then, special properties included in the common classes must be compared. The comparison is
similar to the previous case, but the data type of the properties is not compared because the ranges
of the properties are also classes. Therefore we take into account the range (classes) of the special
properties together with their properties. Therefore, this is a recursive method that will stop when
the ranges are attribute classes (because they do not have properties).

Finally, the classes are compared syntactically. Results of all calculations are stored to be used by
the following module. It is the Semantic Comparison module, which compares the classes and
properties semantically. To do so, we extract semantic information of the Thesaurus module. Again,
the algorithm is divided into comparisons between datatype and special properties and classes.
Using the results of the syntactic level functions, we construct functions that combine these values
together with the thesaurus information.

All temporal mappings found for the properties and attribute classes will be showed to the user
and they will decide if the mappings are correct. This is the main task of the Interaction with the
User module within the User Level. The mappings accepted by the user will be classified as
definitive mappings.

Then, if the classes are common classes, these definitive mappings enter to the Semantic
Comparison for common classes module. This module works at the semantic level, and uses the
mappings added by the comparison of properties in order to denote the set of similar attributes of
both classes. A temporal mapping is added if the final function exceeds the threshold.

Once all similarity values are obtained for two classes, the temporal mappings are displayed to the
user (in the Interaction with the User module) and again they must decide if these mappings must be
added permanently.

3. A Supporting Tool
In order to implement our approach for searching similarities, we have developed an automated
software tool. The tool was developed using the Java Platform [10], and Eclipse [8] as the working
environment. The interfaces were created in the Web browser. The connection between the users
and the server is made by using the technology of Java Servlet [11]. The server uses the Linux
operating system and the PostgreSQL [14] database. Currently, the system is off-line and only
works locally because it is still under testing.

Figure 2 shows the structure of software components used to implement the supporting tool. The
diagram shows the components and their dependencies where the structure is represented using the
UML notation [9]. We refer the reader to [5] for a detailed description of the components, their
interfaces and dependency relationships in the diagram.

Following, the most important components are briefly described in terms of their interfaces and
sub-components, and others are only mentioned for brevity reasons.

• The Coordinator Component: The intent of this component is to coordinate all the
processes accordingly by using each component at a time. Once the ontology is loaded by

the user (in OWL Language [15]), the Coordinator calls the Parser and Instantiation
Component to obtain an object structure (representing an instantiation of the Ontology
Model Component) as a result. In this way the whole ontology, its common and attribute
classes and its special and datatype properties, will be objects of the Ontology Model. In
order to calculate the similarity values among the concepts included in the related contexts,
the Similarity Searcher Component is invoked.

• The Parser and Instantiation Component: The component should parse the OWL code
loaded by the user in order to create an object structure which represents a valid
instantiation of the Ontology Model Component. Besides, error codes generated during the
parsing process or the creation of an instance are returned to the Coordinator Component.
Users should use some ontology editor such as Protégé [16] to avoid syntactic problems.

• The Ontology Model Component: This component corresponds to the Java translation [10]
of the Ontology.

• The Similarity Searcher Component: This component has the task of calculating the
similarity values. It uses the Ontology Model Component in order to obtain the common
and attribute classes, and the special and datatype properties, and to use them in our
similarity method (Figure 1).

Figure 2. Component diagram of the software tool

In this first stage of our work we do not implement the Context Creator and Context Model

Component. Contexts, as ontologies, are useful tools to model concepts which are in conflict with
one another. Possible implementations of these two components and contexts are included in future
works.

4. Conclusions
We have briefly presented our three level approach and the structure of software components used
to implement the supporting tool that calculates the similarity among concepts included in different
ontologies. This stage, called building the mappings among source ontologies, has a series of steps
involved which should be followed to come up to the final results. The tool widely simplifies the
user’s work when they are making integration tasks.

Our work is, by now, in a development stage for a number of tasks which are still being
developed. As a future work, we are testing our tool with real cases of study and comparing our
approach with others in the literature in order to show the advantages and problems associated with
it. Also, we are working on the implementation of contexts to obtain more advantages in the process
of searching similarities.

5. References
1. Berners-Lee, T. Weaving the Web. Texere Publishing Ltd. ISBN: 0752820907. June 2001.
2. Buccella A., Cechich A. and Brisaboa N.R. Ontology-based Data Integration: Different

Approaches and Common Features. Encyclopedia of Database Technologies and Applications.
Rivero,L., Doorn, J. and Ferraggine, V. Editors. Idea Group Publishing, to appear 2005.

3. Buccella A., Cechich A., and Brisaboa N. A Federated Layer to Integrate Heterogeneous
Knowledge, VODCA 2004: First International Workshop on Views on Designing Complex
Architectures, Bertinoro, Italia, 11-12 Sept. 2004. Electronic Notes in Theoretical Computer
Science, Elsevier Science B.V.

4. Buccella A., Cechich A. “A Three-level Approach to Determine Ontological Similarity”.
Jornadas Chilenas de Computación. JCC 2004. Arica, Chile, 10-12 de Noviembre 2004.

5. Buccella A., Cechich A. and Brisaboa N.R. An Ontology-based Environment to Data
Integration. VII Workshop Iberoamericano de Ingeniería de Requisitos y Desarrollo de
Ambientes de Software. IDEAS 2004, pp. 79-90, 3-7 May, 2004.

6. Buccella A., Cechich A. and Brisaboa N.R. An Ontological Approach to Federated Data
Integration. 9° Congreso Argentino en Ciencias de la Computación, CACIC’2003, La Plata,
October 6-10, pp. 905-916, 2003.

7. Euzenat, J., Valtchev, P. An integrative proximity measure for ontology alignment. CEUR
Workshop Proceedings. Sanibel Island, Florida, October 20, 2003.

8. Eclipse Home Page. http://www.eclipse.org.
9. Fowler, M. and Scott, K. UML distilled, Addison-Wesley 1997.
10. Java SE Platform. http://java.sun.com.
11. Java Servlet. http://java.sun.com/products/servlet/.
12. Hasselbring, W. Information System Integration. Communications of the ACM. June 2000.
13. Maedche, A. and Staab, S. Measuring Similarity between Ontologies. In: Proc. Of the

European Conference on Knowledge Acquisition and Management - EKAW-2002. Madrid,
Spain, October 1-4, 2002. LNCS/LNAI 2473, Springer, 2002, (pp. 251-263).

14. PostgreSQL Home Page. http://www.postgresql.org/.
15. Smith, M.K.,Welty, C., McGuinness, D.L. OWL Web Ontology Language Guide. W3C,

http://www.w3.org/TR/2004/REC-owl-guide-20040210/. February 10, 2004.
16. Stanford, U., Protégé 2000, Available at http://protege.stanford.edu/doc/users guide/index.html.

