
Combining Partial Order Planning with Defeasible
Argumentation

Diego Garćıa Guillermo Simari Alejandro Garćıa
drg@cs.uns.edu.ar grs@cs.uns.edu.ar ajg@cs.uns.edu.ar

Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering

Universidad Nacional del Sur
Av. Alem 1253, (8000) Bah́ıa Blanca, Argentina

Tel: (0291) 459-5135 / Fax: (0291) 459-5136

This research line involves the study of combining defeasible argumentation and different
planning techniques. In this work we focus on the use of argumentation in combination with
Partial Order Planning.

1 Defeasible Reasoning and Actions

In previous work [SGC04, SG02, SG01], we have introduced a formalism where agents represent
their knowledge about their environment using the language of Defeasible Logic Programming
(DeLP) [GS04], and have a set of actions that they can execute in order to change the envi-
ronment where they are performing their tasks. In this section we include a brief description
of this formalism.

The agent’s knowledge base will be represented by a defeasible logic program P = (Ψ,∆),
where Ψ should be a consistent set of facts, and ∆ a set of defeasible rules. The results already
obtained for such argumentation-based form of logic programming will be used here freely, but
a brief description of DeLP will be introduced below.

In DeLP, a literal L is warranted from the agent’s knowledge base if there exists a non-
defeated argument A supporting L. An argument structure A for a literal L, denoted 〈A, L〉,
is a minimal and consistent set of defeasible rules that allows to infer L. In order to establish
whether 〈A, L〉 is a non-defeated argument, a dialectical analysis is performed by considering
counter-arguments that could be defeaters for 〈A, L〉.

Besides its knowledge base, an agent will have a set of actions Γ that it may use to change
its world. Once an action has been applied, the effect of the action will change the set Ψ. The
formal definitions that were introduced in [SG01] are recalled below.

Definition 1 [Action] An action A is an ordered triple 〈X,P,C〉, where X is a consistent
set of literals representing consequences of executing A, P is a set of literals representing
preconditions for A, and C is a set of constraints of the form not L, where L is a literal. We
will denote actions as follows:

{X1, . . . ,Xn} A←− {P1, . . . , Pm}, not {C1, . . . , Ck}

Notice that the notation not {C1, . . . , Ck} represents {not C1, . . . , not Ck}.

Partially Supported by the Agencia Nacional de Promoción Cient́ıfica y Tecnológica (PICT 2002 Nro
13096 - PICT 2003 15043) and SeCyT Universidad Nacional del Sur.

The condition that must be satisfied before an action A = 〈X,P,C〉 can be executed
contains two parts: P, which mentions the literals that must be warranted, and C, which
mentions the literals whose negations must not be warranted. In this way, the satisfaction
of the preconditions could also depend on the fact that some information is unknown (un-
warranted).

Definition 2 [Applicable Action] Let K = (Ψ,∆) be an agent’s knowledge base. Let Γ be
the set of actions available to this agent. An action A in Γ, defined as before, is applicable if
every precondition Pi in P has a warrant built from (Ψ,∆) and every constraint Ci in C fails
to be warranted.

Definition 3 [Action Effect] Let K = (Ψ,∆) be an agent’s knowledge base. Let Γ be the
set of actions available to this agent. Let A be an applicable action in Γ defined by:

{X1, . . . ,Xn} A←− {P1, . . . , Pm}, not {C1, . . . , Ck}

The effect of executing A is the revision of Ψ by X, i.e. Ψ∗X = Ψ∗{X1,...,Xn}. Revision will
consist of removing any literal in Ψ that is complementary of any literal in X and then adding
X to the resulting set. Formally:

Ψ∗X = Ψ∗{X1,...,Xn} = (Ψ− X) ∪ X

where X represents the set of complements of members of X.

In [SG01], we have shown that the interaction between actions and the defeasible argumen-
tation formalism is twofold. On one hand, as stated by Definition 2, defeasible argumentation
is used for testing preconditions and constraints through the warrant notion. On the other
hand, actions may be used by agents in order to change the world (actually the set Ψ) and then
have a warrant for a literal L that has no warrant from the current knowledge base (Ψ,∆).

A simple formulation of a planning problem defines three inputs [Wel99]: a description of
the initial state of the world in some formal language, a description of the agent’s goal, and
a description of the possible actions that can be performed. The initial state is the agent’s
current representation of the world, and in our case it will be the set Ψ. In order to achieve
its goals, the agent will start in the initial state Ψ and it will execute a sequence of actions
transforming Ψ into Ψ′. The agent’s goals will be represented as a set G of literals. The agent
will satisfy its goals when through a sequence of actions it reaches some state Ψ′ where each
literal of G is warranted.

2 Argumentation in Partial Order Planning

The formalism described above defines when actions are applicable and how to compute its
effects, but it does not describe how to construct a plan for achieving agent’s goals. The aim of
the research line introduced here is to study the combination of this formalism with different
planning techniques. In this work we focus on Partial Order Planning.

The basic idea behind a regression Partial Order Planning (POP) algorithm [PW92] is to
search backwards through plan space instead of state space, as state-based planners do. The

planner starts with an initial plan that consist solely of a start step (whose effects encode
the initial state conditions) and a finish step (whose preconditions encode the goals) (see
Figure 1(a)). Then it attempts to complete this initial plan by adding new steps (actions) and
constrains until all step’s preconditions are guaranteed to be satisfied. The main loop in the
POP algorithm makes to type of choices:

• Supporting unsatisfied preconditions: all steps effects that could possibly be constrained
to unify with the desired proposition are considered. It choose one step nondeterministi-
cally and then adds a causal link to the plan to record that the precondition is achieved
by the chosen step.

• Resolve threats: If a third step might possibly interfere with the precondition being
supported by the casual link, it nondeterministically chooses a method to resolve the
threat: either by reordering steps in the plan (adding ordering constraints), posting
additional subgoals, or by adding new equality constraints.

In the argumentation formalism described above, and action is applicable if every precon-
dition of the action has a warrant built from the agent’s current knowledge base, and every
constraint fails to be warranted. To combine this formalism with POP, we must consider the
use of arguments for supporting unsatisfied preconditions, besides actions. As we will describe
below, arguments can not be constructed from a set of facts, as usual, because at the moment
of the argument construction it is impossible to know which literals are true. The following
definition is introduced for identifying this set of literals.

Definition 4 (Argument base) Given an argument structure 〈B,h〉 the argument base for
B will be the set of all literals that appear in the bodies of the rules in B, and are not a head
of a rule in B. For example, the set {d, e} is the argument base for B= { (b –≺ c, d), (c –≺ e) }.

The combined use of argumentation and actions to build plans introduces new issues not
present in the traditional POP algorithm that need to be addressed. We will analyze some of
this issues through the following example. For the sake of simplicity we will use a propositional
language and actions without constraints.

Example 1 Suppose that an agent has the following knowledge base: Ψ = {e, f, h} and ∆=
{ (b –≺ c, d), (c –≺ e), (d –≺ i), (∼b –≺ j) }. The agent’s goal is G = {a, g}, and the available
actions are:

{a} A1←− {b}, not {}

{c} A2←− {e}, not {}

{d} A3←− {f}, not {}

{g, j} A4←− {h}, not {}

Figure 1 show different (and possibly incomplete) plans obtained from choosing different al-
ternatives to achieve the unsatisfied preconditions. The square nodes represent steps (actions).
The squares labeled start and finish represent the start and finish steps respectively. The
literals that appear below a step represent the preconditions of that step, and the literals that
appear above represent its effects. The solid arrows in the figure represent causal links and

Figure 1: Different partial plans for Example 1

dashed arrow represents ordering constrains. Finally, triangles represents arguments. The
literal at the top of the triangle is the literal supported by the argument, and the literals at
the base of the triangle represent the argument base (Definition 4). Observe that Figure 1(a)
depicts the initial plan.

Figure 1(b) shows an incomplete plan where only actions (not arguments) were considered
to achieve the unsatisfied preconditions. Initially the are two unsatisfied preconditions: a and
g, and the only possible way to satisfy them is by actions A1 and A4 respectively. Introducing
this two steps add new unsatisfied subgoals b and h (the preconditions of A1 and A4). The
start step achieve h so no new step is needed: a casual link is added. Observe finally that b
remains unsatisfied, because none of the actions available achieve this precondition.

However, note that from the rules ∆ of the agent’s knowledge base it is possible to construct
the (potential) argument B={ (b –≺ c, d) } that supports b. Therefore, an alternative way to
achieve b would be to use B for supporting b, and then to find a plan for satisfying all the
literals in the argument base of B ({c, d}). Figure 1(c) shows this situation. The argument
B is chosen to support b and actions A2 and A3 are selected to satisfy c and d respectively.
The preconditions of both actions are achieved by the start step, so the proper causal links
are added.

Note that B={ (b –≺ c, d) } is a potential argument because it is conditioned to the existence
of a plan that satisfy its argument base. This argument can not be constructed from a set of
facts, as usual. The reason is that at the moment of the argument construction it is impossible
to know which literals are true, because they depend on steps that will be chosen later in the
planning process.

Another thing to consider is that the existence of this argument B is not enough to have
a warrant for b, because B could be defeated by a counter-argument. Again, this counter-
argument will be also potential and it will depend on the decisions made later in the planning
process. Therefore, as suggest by Pollock in [L.P98], the planning process should be done in
an optimistic way. That is, plan for each subgoal separately, assuming that all the potential
arguments constructed are non-defeated, until all preconditions are satisfied in some way. After
that verify that the plan obtained do not contain destructive interferences: called threads in
POP and defeaters in our approach.

For example, in the case depicted in Figure 1(c) the planning process has not been done
following the traditional POP algorithm introduced above. Instead, it has been done in an
optimistic way, without checking for “threads” as new steps or arguments were added to the
plan. Therefore, once a possible plan is obtained, the planner must search for defeaters for
the used arguments. If a defeater is found, then the planner will attempt to repair the plan
reordering the plan steps. Following our example, if action A4 is executed before A1 then at
the moment that b is needed for A1 the argument B is defeated with {∼b –≺ j} (because j is
an effect of A4). However, if the plan is reordered to execute A1 before A4, then at the state
where B is used for supporting b, no defeater for B exists.

During the planning process the trade-off between using actions or arguments could affect
the search space. Considering the agent’s knowledge base of Example 1 there are two more
potential arguments for supporting b: C= {(b –≺ c, d), (c –≺ e)} and D= {(b –≺ c, d), (d –≺ i)}.
For example, as shown in Figure 1(d), a shorter plan can be obtained using the argument C
to support b, however, if the argument D is used (see Figure 1(e)) it is not possible to find a
plan because the precondition i can not be satisfied.

References

[GS04] Alejandro J. Garćıa and Guillermo R. Simari. Defeasible logic programming: An
argumentative approach. Theory and Practice of Logic Programming, 4(1):95–138,
2004.

[L.P98] John L.Pollock. Defeasible Planning. In Integrating Planning, Scheduling, and Exe-
cution in Dynamic and Uncertain Environments AIPS Workshop. Ralph Bergmann
and Alexander Kott, Cochairs., 1998.

[PW92] J. Penberthy and D. S. Weld. UCPOP: A Sound, Complete, Partial Order Planner
for ADL. In In Proc. of the 3rd. Int. Conf. on Principles of Knowledge Representation
and Resoning, 113-124., 1992.

[SG01] Guillermo R. Simari and Alejandro J. Garćıa. Actions and arguments: Preliminaries
and examples. In Proceedings of the VII Congreso Argentino en Ciencias de la
Computación, pages 273–283. Universidad Nacional de la Patagonia San Juan Bosco,
El Calafate, Argentina, October 2001. ISBN 987-96-288-6-1.

[SG02] Guillermo R. Simari and Alejandro J. Garćıa. Using defeasible argumentation in
progression and regression planning: Some preliminary explorations. In Proceedings
of the VIII Congreso Argentino en Ciencias de la Computación, pages 273–283.
Universidad de Buenos Aires, Argentina, October 2002.

[SGC04] Guillermo R. Simari, Alejandro J. Garćıa, and Marcela Capobianco. Actions, Plan-
ning and Defeasible Reasoning. In In Proceedings of the 10th International Workshop
on Non-Monotonic Reasoning (NMR2004), pages 377–384, 2004. ISBN. 92-990021-
0-X.

[Wel99] Daniel S. Weld. Recent advances in AI planning. AI Magazine, 20(2):93–123, 1999.

