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Abstract. This paper presents a parallel architecture for a radial basis function 

(RBF) neural network used for pattern recognition. This architecture allows 

defining sub-networks which can be activated sequentially. It can be used as a 

fruitful classification mechanism in many application fields. Several 

implementations of the network on a Xilinx FPGA Virtex 4 - (xc4vsx25) are 

presented, with speed and area evaluation metrics. Some network 

improvements have been achieved by segmenting the critical path. The results 

expressed in terms of speed and area are satisfactory and have been applied to 

pattern recognition problems. 
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1   Introduction 

Artificial neural networks are used as a modeling technique that emulates the human 

brain. The main characteristic of a neuronal network is its ability to learn internal 

features by through data sets analysis. A neuronal network is made of a set of simple 

processing units, each one with a natural capability to store experimentally acquired 

knowledge together with the ability to use them readily.  

The neural networks may be classified in terms of the systems they are intended to 

be used for [1]. The networks used in pattern recognition processes maybe readily 

used for classification systems. Classification procedures involve the derivation of a 

function dedicated to split data into categories, defined from a set of features. This 

function is activated by a neuron-classifier, trained to use different types of input data 

along with their categories.  

A classification network links any input vector to a well established category, 

producing an output signal identifying this category. Moreover, the network can set 

some level of input acceptance within the selected category. This means that the 

output is not just binary.  

The RBF networks [2] [3] [4] are commonly used as neural-classifiers. This type of 

networks is made of an input layer with branching nodes, a hidden layer and an output 

layer. Each node of the hidden layer has a special type of activation function located 

in central vector of the cluster: this function generates a most prominent response for 

those vectors closest to the center. The nodes of this layer are weighted. The output 



layer is responsible for producing the sum of the products obtained from the hidden 

layer weights (Fig. 1.). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Radial Basis Function Neural Network 

The hidden layer applies a function depending from the distance between the 

parametric charge vector (vi) and the input vector. These functions represent a special 

class of functions whose main feature is a response decreasing with the increasing 

distance to the central point. A typical example is the Gaussian function.  

Each radial basis function has an influence only in its receptive field, which is a 

small region of the featured space. The important regions of space are covered by a 

number n of functions. 

Each radial basis function is attending to a small convex region called receptive 

field. A number of these functions cover a large space portion with their receptive 

fields. The output layer may thus associate some of them to regions with classes not 

linearly separable. Therefore, the number of RBF´s must be large enough to cover all 

subclasses that are linearly separable. Fig. 2 shows how the radial basis functions can 

cover any area of interest, no matter the shape of those regions. 

Hardware Implementation of neural techniques has a significant number of 

advantages, mainly in the processing speed. For networks with large numbers of 

neurons and synapses, the conventional processors are not able to provide real time 

responses and training capacities, while parallel processing of multiple simple 

procedures achieves a large increase in speed. 

 

 
Fig. 2.  RBF Contour curves in 2D space. 
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Another advantage of implementing neural computing dedicated hardware is its 

ability to provide robust solutions for applications where it is not possible to install a 

PC. Such is the case for toys or autonomous robots for industrial uses or exploration. 

Numerous neural networks hardware implementation are available, such as the IBM 

ZISC78 device, Hitachi Digital Chip, Philips L-Neuro 1.0, Nestor Ni 100 [5] [6] [7], 

ZISC78[8], CM1K[9] devices.  

The section 2 presents the hardware architecture of a RBF neural network 

implementation on a FPGA and section 3 analyzes the implementation in terms of 

area and speed. A several number of implementations were made, evaluating these 

parameters against the prototype size, the neurons number, and segmentation registers 

number. Finally, the section 4 describes the conclusions of this work. 

2   Implementation 

A neural network is made of a neuron set, each of them being associated with a 

category. Its operation basically begins with the occurrence of an input vector from 

which the neurons calculates the distance of this vector with the prototype stored in 

each of them. This prototype vector describes the "learning" of the neuron. The 

distance is compared with the influence field, which describes the receptive field. If 

the input vector lies in the neuron influence area, then the neuron is fired. Among the 

fired neurons, one is selected, with the shortest distance. The resulted category is then 

the one contained in this neuron. 

Particular cases exist where the active (fired) neurons have different categories. In 

these cases, the network must indicate that the result is uncertain, as the system 

cannot determinate a confident response. 

Given this behavioral description of a RBF neural network, this paper proposed an 

architecture which consists of a set of neurons and a controller responsible for 

coordinating the operations. Each neuron is composed of a prototype, a register which 

stores the influence field (NAIF), the category to which it belongs (CAT) and an 

additional register storing the distance (DST) between the feature vector and the 

stored prototype (Fig. 3). Both, the influence field and the category status are 

instantiated in VHDL code. 

The function of distance is calculated allowing the following distance norms for 

the input feature vector (FV) and the prototype stored in the neuron (P): 

L: DST =Σ | FVi - Pi | (1) 

LSUP: DST = Max( | FVi - Pi |) (2) 

 

The distance (DST) is updated when a load enable signal occurs. Then, one neuron 

is fired (Fire = 1) if its influence field (NAIF) is less than the calculated distance. 

Feature vectors are used because it is recommendable to eliminate unnecessary 

information. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Artificial neuron architecture. 

The inter-neural communication bus is composed by four signals. The first of 

them, indicates the pattern identification (Id), the next one indicates whenever a 

pattern has to be associated with two or more categories, making the classification 

uncertain (Unc). The other two signals consist of the smaller distance (Dst) together 

with the category (Cat) which involves this distance. Depending on the neuron state 

in front of an output enable signal, the bus controller behaves according to Table 1, 

where in-1 is an input bus signal while in is an output bus signal, i = {Id, Unc, Cat, 

Dst}. 

Table 1.  Inter-neuron communication bus behavior. 

Fire=1 

Id n-1 = 1 

CAT = Cat n–1 CAT <> Cat n-1 

 

Fire=0 Id n -1 = 0 

Dst n–1 < DST Dst n–1 >= DST Dst n–1 < DST Dst n–1 >= DST 

Id n Id n–1 1 1 1 1 1 

Uncn Uncn–1 0 Uncn–1 Uncn–1 1 1 

Cat n Cat n-1 CAT Cat n–1 CAT Cat n–1 CAT 

Dst n Dst n-1 DST Dst n–1 DST Dst n–1 DST 

 

 

If the neuron is not fired, the input bus is mapped directly onto the output bus. 

However, if the neuron is fired the identification signal of the output bus will be 1    

(Idn =1). On the other hand, if the input bus indicates an earlier identification (Idn-1 = 

1) while the neuron is set active, an uncertainty arises about the equality between the 

category stored in the neuron and that of in the input bus. If they diverge, an uncertain 

signal will be activated on the output bus (Uncn = 1), otherwise the uncertainty output 

will be that of the input (Uncn = Uncn-1). Actually, although no difference exists 

between both inputs, the bus contains the category of smallest distance found, up to 

the moment some uncertainty is carried out. 
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For the distance to the output bus, the controller simply verifies that the distance 

from the neuron (DST) is less than that of the input bus (Dstn). If so, the distance of 

the output bus will be the one calculated by the neuron while the output category 

(Catn) wills the one that corresponds to the neuron. If the distance from the neuron is 

greater than the input bus distance, these signals will be mapped along with the 

category of the output bus.   

For the first neuron in the network, identification signal and uncertainty signal 

must be 0 while the distance must be the greatest possible (Table 1).  

The interconnection neuron buses ease the linkage of several neurons in 

cascade.Those buses impose a critical path in what concerns the system design, 

directly associated with the number of neurons in the network. It is well known that 

these critical paths can be resolved through the use of registers, in such a way to 

divide paths with greater latency into shorter ones.  For this sake, one proposes to 

include intermediate registers, uniformly distributed on the inter-neuron 

communication bus.  

The controller allows the existence of multiple subnets to be triggered in serial 

form; In figure 4, net is the active subnet, nets_number the number of subnets 

contained, fv_count corresponds to the position vector with entries belonging to the 

subnet currently analyzed, fv_size(i) is the size of the i
th

 subnet contained in the 

device, NR  is the number of delay cycles (number of neuronal interconnection bus 

registers) needed to validate the output data of the inter- neuron communication bus 

and nc_count the actual delay cycle. 

 
 

Fig. 4.  Controller state machine. 

The controller operational sequence is presented in Table 2, where (k) is the set of 

operations of the transition (k) of the preceding state machine, rej(i) is the reading 

request for the   j
th

 characteristic vector position, lej(i) represents the load enable signal 



for the j
th

 position of the characteristic vector, oej is the output enable signal, CATj 

indicates the category storage and DSTj the stored distance, for the j
th

 subnet. The 

table shows an instruction overlap reducing the number of the required cycles for the 

operation. 

Table 2.  Controller operational sequence. 

Cycle Re le oe DST CAT  

0 re0(0)  (1) 

1 re0(1) le0(0) 

… … … 

N re0(N) le0(N-1) 

(2) 

(2) 

(2) 

N+1 re1(0) le0(N) 

 

(3) 

N+2 re1(1) le1(0) oe0 (4) 

... ... ... ... (5) 

N+NR+2 re1(NR+1) le1(NR) oe0 

  

(5) 

N+NR+3 re1(NR+2) le1(NR+1) DST(0) CAT(0) (6) 

N+NR+4 re1(NR+3) le1(NR+2) (2) 

... ... ... (2) 

N+M re1(M) le1(M-1) (2) 

N+M+1 le1(M) 

 

(7) 

N+M+2 oe1 (8) 

… ... (9) 

N+M+NR+2 oe1 

  

(9) 

N+M+NR+3 

 

 

 DST(1) CAT(1) (10) 

 

There are so many control signals (oe, we, re) as subnets into the device. Assuming 

that a neural network contains multiple subnets, the number of cycles associated to its 

classification (CClassify), is given by: 

 

Cclassify = ∑
=

++

rnets_numbe

0j

) dim(3 jFVNR  (3)

 

where NR is the inter neuron communication bus registers number and FVj the 

characteristic vector corresponding to the j
th

 subnet. As it can be observed, the number 

of cycles is independent of the classification results.  

This implementation does not support embedded (on-the-chip) learning. To carry 

out this feature it would be necessary to adopt a strategy for receptive field centers 

selection [10], incorporating a number of empty (untrained) neurons. Reconfigurable 

logic could be a valuable approach. 

3   Experimental Results 

Several networks were generated with different parameters (number of neurons, 

prototype vector size and inter neurons register number). All the networks were 



composed by a single subnet. The prototype vectors stored in the neurons were 

generated randomly. 

These architectures were implemented on  Xilinx  Virtex4 (xc4vsx25-11-ff668) 

FPGA [11]. The synthesis has been achieved with XST (Xilinx Synthesis 

Technology) [12] while the physical implementation used Xilinx ISE (Integrated 

Software Environment) version 7.1.04i [13], using default options in both cases.  In 

this presentation no mention is made about the input data stream. These data can be 

stored in LUTs, block RAMs or external memory. 

The behavior of an architecture without inter neuronal registers has been analyzed 

with different prototype vector sizes (16, 32, 64) in a range of 6 to 30 neurons. This 

size relies on the application field. It has been observed that the influence of the 

vector size is practically zero both on area (Fig. 5) and latency (Fig. 6). 
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Fig. 5.  Prototype vector size effect on area 
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Fig. 6.  Prototype vector size effect on latency 

Figures 7 and 8 emphasize a growing proportion of both parameters with regard to 

the number of neurons in the network. According to the results it is possible to 

roughly estimate the area (number of slices) and the latency from the number of 

neurons (equations 4 and 5) by linear approximation:  

 



             # Slices ≅  59.53 x Neurons + 54.57 (4) 

             Latency ≅  2.92 x Neurons + 2.019 (5) 

The other important aspect to be looked at is the benefit of incorporating inter-

neuron registers. A number of neural networks have been automatically generated 

with a number of neurons between 4 and 20, with prototype vector size fixed to 16, 

and inter-neuron registers number fixed to 0, 1 and 2. Fig. 8 and 9 display the results 

obtained in function of area and latency. 
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Fig. 7.  Inter-neural registers effect on area 
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Fig. 8.  Inter-neural registers effect on latency 

These figures show that the number of intermediate registers has a significant 

impact in both area and maximum operating frequency. Incorporating one inter-

neuron register an  89% acceleration is achieved; incorporating two registers, the 

acceleration reaches 169% figure with respect to an unsegmented architecture. 

Nevertheless, the maximum number of characteristic vectors analyzed per second 

decreases with the size of the vector, as the number of cycles needed to achieve a 

classification directly depends upon the size (Fig. 9). 
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Fig. 9.  Analysis of the dimension effect on the operating frequency  

The ZISC78 devices needs at least feature vector size + 34 cycles to perform a 

classification, with 33 MHz clock frequency. This performance is constant with any 

number of neurons, being the maximum per chip of 78. The chip allows connecting 

multiple chips in chain to form greater neural networks. Comparing the performance 

obtained by the implementation and the ZISC78 devices, the implementation has a 

greater throughput at least for a small number of neurons (Fig. 10). 
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Fig. 10.  ZISC78 vs. implementation throughput 

4   Conclusions 

This architecture has been tested for visual pattern recognition processes using 

different case of studies. Good results have been registered both in functionality and 

performance. Using a 12-trained-neuron network with a characteristic input vector 

sized 32, one succeeded to classify up to 170064 patterns per second [14] [15]. It must 

be pointed out that this application test also involves a characteristics extraction phase 

creating a composite profile, activated sequentially. The classification phase 



consumes a large portion of operating time. Better results can be obtained optimizing 

the characteristics extraction phase and incorporating a pipelining. The inter-neuron 

registers allowed an operating frequency of 50 MHz, impossible to achieve otherwise. 

The comparison between this implementation and ZISC commercial chip 

demonstrates that this architecture is well suitable for application with small number 

of neurons demand.  

Prospective future works will use this generated architecture in other areas of 

application (e.g. signals) and incorporate embedded learning. 
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