Tasks Schedule Analysis in
RTAI/Linux-GPL

Claudio Aciti and Nelson Acosta

INTIA - Depto de Computacion y Sistemas - Facultad de Ciencias Exactas
Universidad Nacional del Centro de la Provincia de Buenos Aires
(7000) - Tandil - Argentina
http://wuw.exa.unicen.edu.ar/~inca

Abstract. Preemptive real-time operating systems allow the kernel to
stop a running task to execute other task with higher priority. The tasks
compete for the resources producing anomalies such as starvation, dead-
lock and priority inversion that can reduce the perceived performance
of the system. The scheduler is in charge of the synchronization when
priorities are considered and of avoiding these anomalies to occur.
Among the FOSS' community, the RTAI? real-time extension for the
Linux kernel is one of the most applied and with major projection within
the automatic control area. To synchronize priority tasks, RTAI has im-
plemented the Priority Ceiling and the Priority Inheritance mechanisms.
The main goal of this work is analyze the functioning of these mechanisms
for different situations, in RTAI/Linux-GPL.

Key words: Real-Time Scheduling; RTAI; Priority Inversion; Priority
Inheritance; Priority Ceiling

1 Introduction

By using preemptive real-time operating systems, the synchronization of tasks
is difficult because the tasks compete for the access to the resources and this sit-
uation degrades the performance of the system. The resources, external hardware
devices, computer components and software elements (mutex, queues, semaphores,
etc), have critical sections to be used in a non interruptive and exclusive way by
one task at a time. Though it is true that the execution of a task can be stoped
for the system to do context switch and begin executing other task. This is the
reason why when a task requires a resource it must request for it and then block
it in order to be able to use it in a exclusive and non interruptive way; when
finish using it the task must unblock the resource to release it. If the request for
a resource fails, the requesting action is the one to be blocked waiting for the
nedeed resource to be released. This situation causes that, in real time systems,
the critical tasks have higher priority that the rest of the tasks [1] [2] [3].

1 FOSS: Free Open Source Software.
2 RTAI: Real Time Aplicattion Interfaces.

2 Claudio Aciti and Nelson Acosta

The use of priorities to schedule tasks can make the assignment of resources
not to be fair and can cause long delays, and even the starvation of some of them.
To implement a real time functionality requires a careful design of the scheduling
and all the issues related to the operating system. First, the tasks must have
a priority assigned (the more critical the task is the higher the priority it has)
which should not degrade. Second, the delay of dispatching must be short for
the a task to begin running as soon as possible once it is ready[4].

This kind of problems affects the normal functioning of control systems,
causing a gradual degradation of the performance or even a temporary or total
inactivity of the system. The better known example happened in 1997, the Mars
Rovers Pathfinder landed on Mars in order to execute tests for researching.
After a few days of right operation, the system began experiencing repeated and
unexpected system resets, resulting in losses of data and the early abort of the
mission. It was determined that the anomaly was due to a priority inversion
problem [5] [6].

Among the FOSS community, the RTAI real-time extension for the Linux
kernel is one of the most applied and with major projection within the auto-
matic control area. To do the scheduling of priority_based preemption tasks,
RTAI has implemented the Priority Ceiling and the Priority Inheritance mech-
anisms. The RTAI allows the tasks scheduler to preempt a running task. The
main goal of this paper is to analyze the performance of the scheduler for this
operating system, in different cases and using several mechanisms for controlling
the priority inversion[7].

Next, in the 2"?%section, the RTAI scheduler is presented. In the 3"¢ section
the priority inversion problem is revised. The work carried out and the results
obtained are detailed in the 4" and the 5" sections. In the 6" section the
conclusions are given and in the 7' section the future works are presented.
Finally, the used bibliography is detailed.

2 RTAI/Linux-GPL Tasks Scheduler

By using the RTAI scheduler a task can accomplish its job with hard real time
constraints and be able to execute in a deterministic way, which means that
the task can be executed exactly as it was designed and it is not restricted
by the general scheduler of Linux. In RTAI, the real time tasks have priorities
with values among 0 (highest priority) and 0x3fffffff (lowest priority); the
scheduler takes them as always active, so a real-time task inhibits (prevents) the
execution of a non real-time one.

In the rt_task_struct structure, all the information related to a real time
task is kept. Within that structure, the scheduling aspects, identifiers, relation
with other tasks, memory used by the task, open files, etc. can be specified. The
most important fields the rt_task_struct structure contains are: the task state
(state), whether the task is running or not (running), the CPU where the task
is running (runnable_on_cpus), the current priority of the task (priority), the
policy used when the task arrives to the scheduler (FIFO by default, Round

Tasks Schedule Analysis in RTAI/Linux-GPL 3

Robin, Monotonic Scheduling , Shortest Task Scheduling), the base priority of
the task (base_priority), the time when the task has to resume execution
(resume_time) and the time in which the task must yield the CPU (yield_time).

The scheduler points to the active task, and from this one, there has the
pointers to the previous and next tasks. The tasks are sorted by priority and
state. The rt_queue structure, links the rt_task_struct for all the running
tasks. Similarly, for common tasks, there exist the runqueue structure which in
combination with the rt_queue structure, sorts all the tasks in a ready state(Fig.
1).

rt_queue
o+

process

priorities

0200000000

real — time
process

0x3FFFFFFF

0z7FFFFFFF

noreal — timel
process

OxFFFFFFFF
---------- Bunqueue

Fig. 1. Queues of real-time and non real-time ready processes

The tasks scheduler executes in one of two situations: 1) if a timer interrup-
tion occurs (rt_timer handler() is executed for this case); 2) if there exists a
scheduled system call (rt_schedule() is executed ; the system call can be due
to a task being inserted in the ready queue, the current task is put to sleep or a
task is blocked. rt_timer _handler () and rt_schedule() are similar, only that
the first has to deal with timer and interrupts to be transmitted to the Linux
kernel.

The main goal of the scheduler is to replace the running task for the next
one in the list of ready tasks. If there is no task with higher priority than the
running one, no change is made. In the case of having to change the task that
is executing, the scheduler has to do a context switch. The function to call for
doing the switching is rt_switchto (), responsible for saving all the associated
information related to the task being stopped in order to be able to resume.

2.1 Threads

The RTAI pthread module implements the POSIX 1003.1c. standard. It provides
dynamic creation and termination of threads, so the amount of threads has not
to be known till run-time. The POSIX threads use attribute objects to represent

4 Claudio Aciti and Nelson Acosta

the threads properties. Features such as stack size and scheduling policy are set
for each of the threads by means of its attributes. A thread has a type identifier
pthread_t, a stack, an execution priority and an initial address for executing. A
POSIX thread is created dynamically using the pthread_create function which
creates a thread and places it on the tail of the ready queue. During its lifetime
a thread can be in any of these states: Ready to execute, running, blocked or
terminated.

In most of cases the applications that use pthreads have the responsibility of
sharing data among threads and guarantee that certain actions are performed
in a coherent sequence. To accomplish this the activity of the pthreads needs
to be synchronized when accessing to the shared data in order to avoid wrong
functioning and non desired effects. In RTAI, the synchronization of functions
for the applications is available through mutex and condition variables.

Mutual exclusion is the most common synchronization method for multiple
threads to share a resource. A mutex is used to provide mutual exclusion locking
capability for the pthreads to control the access to code sections and data that
require atomic access. In this conditions only one thread can hold the lock and,
hence, use the resources the mutex is protecting. A mutex can also be used
to guarantee an exclusive entry to code sections o routines known as critical
sections.

One of the main differences between a mutex and a condition variable is that
a mutex allows the pthreads to be synchronized controlling the access to the
data, and a condition variable permits the threads within a data value to be
synchronized. A condition variable provides a method for transmitting informa-
tion about the state of the shared data. E.g., this information could be a counter
reaching certain value, a queue becoming empty.

The mutexes are defined using three alternative synchronization protocols:

— NO_PRIO_INHERIT: The thread priority does not depend on its owner rela-
tionship over any mutex (a thread is the owner of the mutex that it blocks).

— PRIO_INHERIT: The thread owner of a mutex inherits the priorities of the
threads waiting for the mutex. This is the priority basic inheritance protocol.

— PRIO_PROTECT: When a thread acquire a mutex, it inherits the priority
called ceiling priority of the mutex, defined usually as the priority of the task
with higher priority able to block that mutex.

The non restricted priority inversion can be avoided by using different al-
gorithms, hence getting high level utilization of systems with hard real time
requirements.

3 Priority Inversion

Priority inversion is a problem that occurs when competing for resources. On
the other hand, a task scheduler is responsible for solving the problem once this
has happened, trying to reduce the amount of context switches and the latency
of the tasks with higher priority.

Tasks Schedule Analysis in RTAI/Linux-GPL 5

A low priority task can stop the execution of a high priority task because
of competing for the same resource. Also, a medium priority task can stop the
execution of a high priority task without even compete for the same resource.
These anomalies make the high priority task to be affected both by the increase
of the total execution time and the latency till it enters its critical section. For
the low priority task the increase of time is noticed running within its critical
section (Fig. 2.a).

RTAT implements two mechanisms to control the priority inversion: Priority
Inheritance and Priority Ceiling. When using Priority Inheritance a low priority
task that holds a shared resource that is required by a high priority task “in-
herits” the priority of this high priority task from the moment of the request.
A low priority task can stop the execution of a high priority task by holding a
shared resource, but to inherit the highest priority keeps a medium priority task
from pre-empting the low priority task; this way the medium priority task can
not stop the execution of a high priority task without even compete for the same
resource. In fact, the medium priority can not request for CPU use (Fig. 2.b).

The Priority Ceiling mechanism, also implemented in RTAI, works in a dif-
ferent way. Before execution, the scheduler must know which resources are to be
more used and the tasks that will use them. In that way, a table for mapping
resources-tasks is created before run-time to be looked up during the execution.
In this case, a low priority task can stop the execution of a high priority one
that competes for the same resource, but inheriting immediately the highest pri-
ority that the resource can have avoids the situation of a medium priority task
stopping the execution of a high priority task. The medium priority task has no
right even to request for CPU use, thus avoiding loss of time deciding whether
it corresponds to preempt the active task or not. One of the anomalies of this
mechanism is that the execution of the medium priority tasks can be delayed
because of tasks of lower priority (Fig. 2.c).

B execution W criticalsection minit contextswitch
priority
high B - - | —
& — | - — | C—
low [] [| L [| (-]
a)withoutControl b)withPriorityInheritance c)withPriorityCeiling
Scheduling mechanism mechanism

Fig. 2. Priority inversion mechanism

4 Cases of Study

The object of study is to analyze the performance of the tasks scheduler of the
RTAI/Linux-GPL, at the moment of assigning the resources of the computer to

6 Claudio Aciti and Nelson Acosta

the high priority tasks, considering all the possible load situations and applying
different scheduling techniques.

4.1 Measure Strategy

The analysis of the scheduler performance is designed based on the use of pro-
prietary time primitives of the RTAI operating system. Through the use of these
primitives the exact time since the computer was turned on can be measured;
also by means of some mathematical calculations that value can be converted to
microseconds. It is possible to measure the time spent by some code sections by
introducing those primitives at specific points.

The variables to be analyzed are:

— the latency of a real time task: The time a system takes to respond to a
request for a process to begin operation.

— the blocking time on a critical region: The period time that the task can be
prevented from execution within a critical region.

— total execution time: Time since an event occurs till the task is completely
processed.

The following pseudocode is an example of strategy to be used:

example (t_process_init){

/*Process initx*/
latency= rt_get_cpu_time_ns() - t_process_init;

INIT SECTION

/*critical section initx*/
t_critical_section_init= rt_get_cpu_time_ns();

CRITICAL SECTION

/*critical section exitx*/
t_critical_section_use= t_critical_section_init - rt_get_cpu_time_ns();

FINAL SECTION

t_process= t_process_init - rt_get_cpu_time_ns();

4.2 Samples

The studied population is the real time operating system, RTAI/Linux-GPL. The RTAI
version is 2.0 and runs over a Linux kernel 2.6.24 or higher, with a 32 bit x86 archi-
tecture. This operating system is used in hard real time conditions. The programming

Tasks Schedule Analysis in RTAI/Linux-GPL 7

language used is native C compiled with gcc 4.1. The measures were taken with software
installed in the same computer used for testing through time primitives. The accuracy
of these measures are tied to the performance of the computer hardware which is the
non controlled variable.

The following are the taken samples:

— A real time task of highest priority is scheduled, within an environment where no
other highest priority task is requesting for resources.

— A real time task with a mutex and no priority inversion mechanism. This test
is performed with different number of threads, both real-time and non real-time
trying to block the same critical section.

— A real time task with a mutex and a priority inversion mechanism, the Priority
Inheritance method.

— A real time task with a mutex and a priority inversion mechanism, the Priority
Ceiling method.

5 General Results

By analyzing the taken samples, the generalities listed below are inferred. The studied
variables are: total execution time 7', latency L and blocking time lock_time; the tasks
priorities: highest priority task M P, medium priority tasks IP, and lowest priority
tasks mp; CPU use times: initial time ¢ and final time use f; context switch C'S; and
for blocking, the variables are: time of blocking attempt ¢/, and blocking time C.

5.1 Samples without Control Scheduling

If the scheduler does not uses a control mechanism, when a task with higher priority
than the running task arrives, the scheduler yields the CPU (Fig. 3).

prioryty
: . - Lyp =0
o - =
[
h Thp = Lpp + CS + tipy + timp+
_—

i = - = Flip 1o+ C5+ Cip + thip

low
L C =t;, +t;, +C
g coecution gy ?Zéﬁfﬁf Jinit gz)vﬁzﬁt lp lp T tip Ip

Fig. 3. Without Control Scheduling

5.2 Samples with Priority Inheritance mechanism

If the scheduler uses the Priority Inheritance control mechanism, when a task with
higher priority than the running task blocking a resource arrives, the scheduler yields
the CPU use to the arriving task. At the moment when the current running task
requests for the shared resource, the blocking task automatically inherits the priority
of the higher priority task (Fig. 4).

8 Claudio Aciti and Nelson Acosta

priority

- — Ly =0
high -
B
| Thp = Lpp + CS + tipy + tlimp+
I +Tip +le + CS + Cip + tfip
i W [jereit]
low
L Clp = tip + tip + C,
: critical i context ip lp ip lp
-emecutzon - section -I-lnlt switch

Fig. 4. With Priority Inheritance mechanism

5.3 Samples with Priority Ceiling mechanism

If the scheduler uses the Priority Ceiling control mechanism, when a task with higher
priority than the running task blocking a resource arrives, it has to wait for the lower
priority task to finish using the shared resource and then start executing (Fig. 5).

priority

Lo Enp =0
] P
high i
| N
l Tpp = Lpp + CS + tipy + timp+
EHIT +Tip +le+ CS+Cip +tfip
4 s
low
— C =1t +t;, + C
. critical .y context tp v ® lP
-execution - section lln’Lt switch

Fig. 5. With Priority Ceiling mechanism

5.4 Metrics

The more relevant metrics obtained are detailed next. In table 1, the total time for
context switches for the highest priority task is shown. In table 2, the quantity of
blocking attempt during the execution time for the highest priority task is shown. In
table 3, the total time for context switches for the highest priority task is shown. In
table 4, it is shown the quantity of blocking attempt during the blocking time for the
lowest priority task when this task blocks a resource. Finally, in table 5, the latency
for the highest priority task for this to begin executing.

medium priority task
mechanism| 1 [2 [3 [4 [5 [6
none 16 pS|16 uS|8 uS|16 uS|20 puS|16 uS
inheritance| 8 uS | 8 uS |0 S| 0 S |0 uS | 0 uS
ceiling [0 uS {0 uS [0 uS|0uS|{0 uS|0 uS
Table 1. Context switches during the execution time for the highest priority task

Tasks Schedule Analysis in RTAI/Linux-GPL 9

medium priority task
mechanism|1 [2 [3 [4 [5 [6
none 2 3 (1 12 |2 |2
inheritance(l |1 |1 |1 |1 |1
ceiling |1 |1 |1 (1 |1 |1
Table 2. Blocking attempt during the execution time for the highest priority task

medium priority task
mechanism1[2[3[4[5[6
none |16 puS|20 puS|28 uS|36 ©S|40 ©uS|40 uS
inheritance| 8 S |16 pS|12 pS|12 pS|12 pS|12 uS
ceiling |0 uS |0 uS|{0uS|0uS|{0uS|0uS
Table 3. Context switches during the blocking time for the lowest priority task

medium priority task
1 2 34 5 6

none 2 (3 |4 |5 |5 |5
inheritance[l (1 |1 |1 |1 |1
ceiling (0 |0 [0 [0 |0 |O
Table 4. Blocking attempt during the blocking time for the lowest priority task

mechanism

medium priority task
mechanism 1 [2 [3 [4 [5 [6
none O0KHz | 0KHz | 0 KHz | 0 KHz | 0 KHz | 0 KHz
inheritance| 0 KHz | 0 KHz | 0 KHz | 0 KHz | 0 KHz | 0 KHz
ceiling 400 KHz|300 KHz|600 KHz|600 KHz[{400 KHz|600 KHz
Table 5. Latency for the highest priority task

6 Conclusions

The functioning of the scheduler without priority inversion control has a very poor
performance compared with one that implements a control mechanism. Though, for
this case, the tasks latency is almost zero, the total time of a high priority task will
be excessively high, causing delay on release of some blocked resource. The lack of a
control mechanism makes the scheduler to do more context switches increasing the
execution time for all the tasks. The blocking time of a resource by a low priority task
significatively affects the performance of the system; every higher priority task that
requests for CPU takes the active control.

The latency of a highest priority task, when using an Inheritance mechanism, is
almost null; the total execution time makes the performance of the system not to be

10 Claudio Aciti and Nelson Acosta

affected. Something similar happens with the blocking time caused by a low priority
task, since once a higher priority task arrives, the low priority one inherits the higher
priority and is able to finish executing. The delay arises from all the intermediate tasks
that may have to be executed till the highest priority task arrives.

The Priority Ceiling protocol has good performance when the load of tasks for the
scheduler is high. This is due to the fact that the tasks sharing a resource acquire the
priority of that resource, hence avoiding blocking delays and context switches. With this
protocol, the tasks that use other resource can be repeatedly delayed by lower priority
tasks, without any possibility of reverting this situation. In this case, the requirements
of the system must be taken into account; i.e., whether it is better to handle the highest
priority task without taking care of the intermediate tasks or if these latter are also
rather important.

The problem with this mechanism is how to determine the value for a blocking
ceiling in advance; this is not easy, since the compiler needs to have access to the whole
code, to know which tasks uses which resources. There exists a table with a mapping
among resources and its highest priority; the creation of this table causes an initial
delay but then the performance of the mechanism is superior compared with the rest
of the mechanisms.

7 Future Works

As future work it is suggested the implementation of other priority inversion control
mechanisms over the RTAI/Linux-GPL operating system. Examples of these mecha-
nisms are BandWidth Inheritance, Recursive Priority Inheritance, Immediate Priority
Ceiling or some other one.

Acknowledge

To the Eng. Carolina Tommasi, for the discussions on the previous versions, and for
her collaboration with the final revision of the article

References

1. Buttazzo, G. (2006). Why real-time computing? Proccedings of the 2006 ANIPLA.
International Congress on Methodologies for Emerging Techonologies in Automa-
tion.

2. Gai, P., Abeni, L., Giorgi, M., and G., B. (2001). A new kernel approach for modular
real-time systems development.

3. Barabanov, M. and Yodaiken, V. (1997). Introducing real-time linux. Linux Journal,
1997:5.

4. Silverchatz, A. and Galvin, P. B. (1999). Sistemas Operativos. Prentice Hall.

5. Jeffay, K., Smith, F., Moorthy, A., and Anderson, J. (1998). Proportional share
scheduling of operating system services for real-time applications. Proceedings of
the IEEE Real-Time Systems Symposium, pages 480-491.

6. Jones, M., Rosu, D., and Rosu, M. (1997). Cpu reservations and time constraints:
Efcient, predictable scheduling of independent activities. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles. Francia, pages 198-211.

7. Real Time Applicattion Interfaces, http://www.rtai.org

