Fuzzy Prolog with Default Knowledge

Claudio Vaucheret
Departamento de Ciencias de la Computación -Fa.E.A.
UNIVERSIDAD NACIONAL DEL COMAHUE
Buenos Aires 1400 - 8300 Neuquén - Argentina
TEL/FAX (54) (299) 4490312/3
e-mail: cvaucher@uncoma.edu.ar

Abstract
This work extends the semantics and implementation of fuzzy prolog presented in [VGM02] in order to include Default Knowledge capability. The new semantic allows non-uniform default assumptions and has Closed World Assumption (CWA) and Open World Assumption (OWA) as particular cases.

1 Introduction
In [VGM02] we presented a definition of a Fuzzy Prolog Language that models $\mathcal{B}([0,1])$-valued Fuzzy Logic, and subsumes former approaches because it uses a truth value representation based on a union of sub-intervals on $[0,1]$ and it is defined using general operators that can model different logics. We also presented the implementation of an interpreter for this conceived language using Constraint Logic Programming over Real numbers CLP(\mathbb{R})). It was straightforward to extend the implementation in order to include Default Knowledge. In this paper we adapt the formal semantics given including Default Knowledge.

An assumption defines default knowledge to be used to complete the available knowledge provided by the facts and rules of a program. For example, the Closed World Assumption (CWA) asserts that any atom whose truth-value cannot be inferred from the facts and rules is supposed to be false, on the other hand, the Open World Assumption (OWA) asserts that every such atom is supposed to be unknown or undefined.

2 Language
The following definitions describe the language presented in [VGM02]. Membership functions assign to each element of the universal set one element of the Borel Algebra over the interval $[0,1]$. These sets are defined by functions of the form $A : X \rightarrow \mathcal{B}([0,1])$, where an element in $\mathcal{B}([0,1])$ is a countable union of sub-intervals of $[0,1]$.

Definition 2.1 (interval-aggregation) Given an aggregation $f : [0,1]^n \rightarrow [0,1]$, an interval-aggregation $F : \mathcal{E}([0,1])^n \rightarrow \mathcal{E}([0,1])$ is defined as follows:

$$F([x_1^l, x_1^u], \ldots, [x_n^l, x_n^u]) = [f(x_1^l, \ldots, x_n^l), f(x_1^u, \ldots, x_n^u)].$$

Actually, we work with union of intervals and propose the definition:

Definition 2.2 (union-aggregation) Given an interval-aggregation $F : \mathcal{E}([0,1])^n \rightarrow \mathcal{E}([0,1])$ defined over intervals, a union-aggregation $\mathcal{F} : \mathcal{B}([0,1])^n \rightarrow \mathcal{B}([0,1])$ is defined over union of intervals as follows:

$$\mathcal{F}(B_1, \ldots, B_n) = \bigcup\{F(\mathcal{E}_1, \ldots, \mathcal{E}_n) \mid \mathcal{E}_i \in B_i\}.$$
If p is an n-ary predicate symbol, and t_1, \ldots, t_n are terms, then $p(t_1, \ldots, t_n)$ is an atomic formula or, more simply an atom.

A fuzzy program is a finite set of fuzzy facts, and fuzzy clauses and we obtain information from the program through fuzzy queries. They are defined below:

Definition 2.3 (fuzzy fact) If A is an atom,
$$A \leftarrow v$$
is a fuzzy fact, where v, a truth value, is an element in $\mathcal{B}([0,1])$ expressed as constraints over the domain $[0,1]$.

Definition 2.4 (fuzzy clause) Let A, B_1, \ldots, B_n be atoms,
$$A \leftarrow_F B_1, \ldots, B_n$$
is a fuzzy clause where F is an interval-aggregation operator, which induces a union-aggregation, as by definition 2.2, \mathcal{F} of truth values in $\mathcal{B}([0,1])$ represented as constraints over the domain $[0,1]$.

Definition 2.5 (fuzzy query) A fuzzy query is a tuple
$$v \leftarrow A ?$$
where A is an atom, and v is a variable (possibly instantiated) that represents a truth value in $\mathcal{B}([0,1])$.

3 Semantics

3.1 Least Model Semantics

The Herbrand Universe U is the set of all ground terms, which can be made up with the constants and function symbols of a program, and the Herbrand Base B is the set of all ground atoms which can be formed by using the predicate symbols of the program with ground terms (of the Herbrand Universe) as arguments.

Definition 3.1 (default value) We assume there is a function default which implement the Default Knowledge Assumptions. It assigns an element of $\mathcal{B}([0,1])$ to each element of the Herbrand Base. If the Closed World Assumption is used, then default(A) = $[0,0]$ for all A in Herbrand Base. If Open World Assumption is used instead, default(A) = $[0,1]$ for all A in Herbrand Base.

Definition 3.2 (interpretation) An interpretation I consists of the following:

1. a subset B_I of the Herbrand Base,
2. a mapping V_I, to assign

 (a) a truth value, in $\mathcal{B}([0,1])$, to each element of B_I, or
 (b) default(A), if A does not belong to B_I.

The Borel Algebra $\mathcal{B}([0,1])$ is a complete lattice under \subseteq_{BI}, that denotes Borel inclusion, and the Herbrand Base is a complete lattice under \subseteq, that denotes set inclusion, therefore a set of all interpretations forms a complete lattice under the relation \subseteq defined as follows.

Definition 3.3 (interval inclusion \subseteq_{II}) Given two intervals $I_1 = [a, b]$, $I_2 = [c, d]$ in $\mathcal{E}([0,1])$, $I_1 \subseteq_{II} I_2$ if and only if $c \leq a$ and $b \leq d$.

Definition 3.4 (Borel inclusion \subseteq_{BI}) Given two unions of intervals $U = I_1 \cup \ldots \cup I_N$, $U' = I'_1 \cup \ldots \cup I'_M$ in $\mathcal{B}([0,1])$, $U \subseteq_{BI} U'$ if and only if for all $I_i \in U$ $\exists I'_j \in U'$, $I_i \subseteq_{II} I'_j$ where $i \in 1..N$, $j \in 1..M$.

Definition 3.5 (interpretation inclusion \subseteq) $I \subseteq I'$ if and only if $B_I \subseteq B_{I'}$ and for all $B \in B_I$, $V_I(B) \subseteq_{BI} V_{I'}(B)$, where $I = \langle B_I, V_I \rangle$, $I' = \langle B_{I'}, V_{I'} \rangle$ are interpretations.

Definition 3.6 (valuation) A valuation σ of an atom A is an assignment of elements of U to variables of A. So $\sigma(A) \in B$ is a ground atom.

Definition 3.7 (model) Given an interpretation $I = \langle B_I, V_I \rangle$

- I is a model for a fuzzy fact $A \leftarrow v$, if for all valuation σ, $\sigma(A) \in B_I$ and $v \subseteq_{BI} V_I(\sigma(A))$. 2
• \(I \) is a model for a clause \(A \leftarrow F B_1, \ldots, B_n \) when the following holds: for all valuation \(\sigma \), \(\sigma(A) \in B_I \) and \(v \subseteq B_I V_I(\sigma(A)) \), where \(v = F(V_I(\sigma(B_1)), \ldots, V_I(\sigma(B_n))) \) and \(F \) is the union aggregation obtained from \(F \).

• \(I \) is a model of a fuzzy program, if it is a model for the facts and clauses of the program.

Every program has a least model which is usually regarded as the intended interpretation of the program since it is the most conservative model. Let \(\cap \) be the meet operator on the lattice of interpretations \((I, \subseteq) \), then we can prove the following result.

Theorem 3.1 (model intersection property) Let \(I_1 = \langle B_{I_1}, V_{I_1} \rangle, I_2 = \langle B_{I_2}, V_{I_2} \rangle \) be models of a fuzzy program \(P \). Then \(I_1 \cap I_2 \) is a model of \(P \).

Proof. Let \(M = \langle B_M, V_M \rangle = I_1 \cap I_2 \). Since \(I_1 \) and \(I_2 \) are models of \(P \), they are models for each fact and clause of \(P \). Then for all valuation \(\sigma \) we have

• for all fact \(A \leftarrow v \) in \(P \),
 \[
 \sigma(A) \subseteq B_{I_1} \text{ and } \sigma(A) \in B_{I_2} \text{ then } \sigma(A) \in B_{I_1} \cap B_{I_2} = B_M.
 \]
 \[\forall v \subseteq B_I V_I(\sigma(A)) \text{ and } v \subseteq B_I V_{I_2}(\sigma(A)), \text{ then } v \subseteq B_I V_{I_1}(\sigma(A)) \cap V_{I_2}(\sigma(A)) = V_M(\sigma(A)) \]
 therefore \(M \) is a model for \(A \leftarrow v \)

• and for all clause \(A \leftarrow F B_1, \ldots, B_n \) in \(P \)
 \[
 \sigma(A) \in B_{I_1} \text{ and } \sigma(A) \in B_{I_2} \text{ then } \sigma(A) \in B_{I_1} \cap B_{I_2} = B_M.
 \]
 \[
 \forall v = F(V_M(\sigma(B_1)), \ldots, V_M(\sigma(B_n))), \text{ since } F \text{ is monotonic, } v \subseteq B_I V_{I_1}(\sigma(A)) \text{ and } v \subseteq B_I V_{I_2}(\sigma(A)),
 \]
 \[
 \text{then } v \subseteq B_I V_{I_1}(\sigma(A)) \cap V_{I_2}(\sigma(A)) = V_M(\sigma(A))
 \]
 therefore \(M \) is a model for \(A \leftarrow F B_1, \ldots, B_n \)

and \(M \) is model of \(P \).

Remark 3.1 (Least model semantic) If we let \(M \) be the set of all models of a program \(P \), the intersection of all of these models, \(\bigcap M \), is a model and it is the least model of \(P \). We denote the least model of a program \(P \) by \(\text{lm}(P) \).

3.2 Fixed-Point Semantics

The fixed-point semantics we present is based on a one-step consequence operator \(T_P \). The least fixed-point \(\text{lfp}(T_P) = I \) (i.e. \(T_P(I) = I \)) is the declarative meaning of the program \(P \), so is equal to \(\text{lm}(P) \).

Let \(P \) be a fuzzy program and \(B_P \) the Herbrand base of \(P \); then the mapping \(T_P \) over interpretations is defined as follows:

Let \(I = \langle B_I, V_I \rangle \) be a fuzzy interpretation, then \(T_P(I) = I', I' = \langle B_{I'}, V_{I'} \rangle \)

\[
B_{I'} = \{ A \in B_P \mid \text{Cond} \}
\]
\[
V_{I'}(A) = \bigcup \{ v \in B([0,1]) \mid \text{Cond} \}
\]

where \(\text{Cond} = \{ A \leftarrow v \} \) is a ground instance of a fact in \(P \) and \(\text{solvable}(v) \) or \(A \leftarrow F A_1, \ldots, A_n \) is a ground instance of a clause in \(P \), and \(\text{solvable}(v), v = F(V_I(A_1), \ldots, V_I(A_n)) \). Note that since \(I' \) must be an interpretation, \(V_{I'}(A) = \text{default}(A) \) for all \(A \notin B_P \).

The set of interpretations forms a complete lattice so that, \(T_P \) it is continuous. Recall the definition of the ordinal powers of a function \(G \) over a complete lattice \(X \):

\[
G \uparrow \alpha = \begin{cases}
\bigcup \{ G \uparrow \alpha' \mid \alpha' < \alpha \} & \text{if } \alpha \text{ is a limit ordinal,} \\
G(G \uparrow (\alpha - 1)) & \text{if } \alpha \text{ is a successor ordinal,}
\end{cases}
\]
\[
G \downarrow \alpha = \begin{cases}
\bigcap \{ G \downarrow \alpha' \mid \alpha' < \alpha \} & \text{if } \alpha \text{ is a limit ordinal,} \\
G(G \downarrow (\alpha - 1)) & \text{if } \alpha \text{ is a successor ordinal,}
\end{cases}
\]

Since the first limit ordinal is 0, it follows that in particular, \(G \uparrow 0 = \bot_X \) (the bottom element of the lattice \(X \)) and \(G \downarrow 0 = \top_X \) (the top element). From Kleene’s fixed point theorem we know that the least fixed-point of any continuous operator is reached at the first infinite ordinal \(\omega \). Hence \(\text{lfp}(T_P) = T_P \uparrow \omega \).
Lemma 3.1 Let P a fuzzy program, M is a model of P if and only if M is a prefixpoint of T_P, that is $T_P(M) \subseteq M$.

Proof. Let $M = (B_M, V_M)$ and $T_P(M) = (B_{T_P}, V_{T_P})$.

We first prove the “if” direction. Let A be an element of Herbrand Base, if $A \in B_{T_P}$, then by definition of T_P there exists a ground instance of a fact of P, $A \leftarrow v$, or a ground instance of a clause of P, $A \leftarrow F A_1, \ldots, A_n$ where $\{A_1, \ldots, A_n\} \subseteq B_M$ and $v = F(V_M(A_1), \ldots, V_M(A_n))$. Since M is a model of P, $A \in B_M$, and each $v \subseteq B_I V_M(A)$, then $V_{T_P}(A) \subseteq B_I V_M(A)$ and then $T_P(M) \subseteq M$. \square. If $A \notin B_{T_P}$ then $V_{T_P}(A) = \text{default}(A) \subseteq B_I V_M(A)$.

Analogously, for the “only if” direction, for each ground instance $v = F(V_M(A_1), \ldots, V_M(A_n))$, $A \in B_{T_P}$ and $v \subseteq B_I V_{T_P}(A)$, but as $T_P(M) \subseteq M$, $B_{T_P} \subseteq B_M$ and $V_{T_P}(A) \subseteq BI V_M(A)$. Then $A \in B_M$ and $v \subseteq BI V_M(A)$ therefore M is a model of P. \square

Given this relationship, it is straightforward to prove that the least model of a program P is also the least fixed-point of T_P.

Theorem 3.2 Let P be a fuzzy program, $lm(P) = lfp(T_P)$.

Proof. $lm(P) = \bigcap \{M \mid M$ is a model of $P\} = \bigcap \{M \mid M$ is a pre-fixpoint of $P\}$ from lemma 3.1 = $lfp(T_P)$ by the Knaster-Tarski Fixpoint Theorem [Tar55]\square

3.3 Operational Semantics

The procedural semantics is interpreted as a sequence of transitions between different states of a system. We represent the state of a transition system in a computation as a tuple (A, σ, S) where A is the goal, σ is a substitution representing the instantiation of variables needed to get to this state from the initial one and S is a constraint that represents the truth value of the goal at this state.

When computation starts, A is the initial goal, $\sigma = \emptyset$ and S is true (if there are neither previous instantiations nor initial constraints). When we get to a state where the first argument is empty then we have finished the computation and the other two arguments represent the answer.

A transition in the transition system is defined as:

1. $\langle A \cup a, \sigma, S \rangle \rightarrow \langle A \theta, \sigma \cdot \theta, S \wedge \mu_a = v \rangle$ if $h \leftarrow v$ is a fact of the program P, θ is the mgu of a and h, μ_a is the truth value for a and solvable$(S \wedge \mu_a = v)$.

2. $\langle A \cup a, \sigma, S \rangle \rightarrow \langle (A \cup B) \theta, \sigma \cdot \theta, S \wedge c \rangle$ if $h \leftarrow F B$ is a rule of the program P, θ is the mgu of a and h, c is the constraint that represents the truth value obtained applying the union-aggregation F to the truth values of B, and solvable$(S \wedge c)$.

3. $\langle A \cup a, \sigma, S \rangle \rightarrow \langle A, \sigma, S \wedge \mu_a = v \rangle$ if none of the above are applicable and solvable$(S \wedge \mu_a = v)$ where $\mu_a = \text{default}(a)$.

The success set $SS(P)$ collects the answers to simple goals $p(\bar{x})$. It is defined as follows:

$SS(P) = \langle B, V \rangle$

where $B = \{p(\bar{x})\sigma \mid p(\bar{x}) \in \text{false} \}$ is the set of elements of the Herbrand Base that have been instantiated and that have succeeded; and $V(p(\bar{x})) = \cup \{v \mid \langle p(\bar{x}), \emptyset, \text{true} \rangle \rightarrow^* \langle \emptyset, \sigma, S \rangle, \text{and } v \text{ is the solution of } S \}$ is the set of truth values of the elements of B that is the union (got by backtracking) of truth values that are obtained from the set of constraints provided by the program P while query $p(\bar{x})$ is computed.

In order to prove the equivalence between operational semantic and fixed-point semantic, it is useful to introduce a type of canonical top-down evaluation strategy. In this strategy all literals are reduced at each step in a derivation. For obvious reasons, such a derivation is called breadth-first.

Definition 3.8 (Breadth-first transition) Given the following set of valid transitions:

$$
\langle \{A_1, \ldots, A_n\}, \sigma, c \rangle \rightarrow \langle \{A_2, \ldots, A_n\} \cup B_1, \sigma \cdot \theta_1, \{S \wedge \theta_1 \} \rangle \\
\langle \{A_1, \ldots, A_n\}, \sigma, c \rangle \rightarrow \langle \{A_1, A_3, \ldots, A_n\} \cup B_2, \sigma \cdot \theta_2, \{S \wedge \theta_2 \} \rangle \\
\vdots \\
\langle \{A_1, \ldots, A_n\}, \sigma, c \rangle \rightarrow \langle \{A_1, \ldots, A_{n-1}\} \cup B_n, \sigma \cdot \theta_n, \{S \wedge \theta_n \} \rangle
$$
a breadth-first transition is defined as
\[\{A_1, \ldots, A_n\}, \sigma, S \rightarrow_{BF} \{B_1 \cup \ldots \cup B_n, \sigma \cdot \theta_1 \cdot \ldots \cdot \theta_n, S \land \epsilon_1 \land \ldots \land \epsilon_n\} \]
in which all literals are reduced at one step.

Theorem 3.3 Given an ordinal number \(n \) and \(T_P \uparrow n = \langle B_{T_P}, V_{T_P}\rangle \), there is a successful breadth-first derivation of length less or equal to \(n + 1 \) for a program \(P \), \(\langle\{A_1, \ldots, A_k\}, \sigma, S_1\rangle \rightarrow_{BF} \{\emptyset, \theta, S_2\} \) iff \(A_i \in B_{T_P} \) and solvable\((S \land \mu_{A_i} = v_i) \) and \(v_i \subseteq_B V_{T_P}(A_i \theta) \).

Proof. The proof is by induction on \(n \). For the base case, all the literals are reduced using the first type of transitions or the last one, that is, for each literal \(A_i \), it exits a fact \(h_i \leftarrow v_i \) such that \(\theta_i \) is the mgu of \(A_i \) and \(h_i \), and \(\mu_{A_i} \) is the truth variable for \(A_i \), and solvable\((S_1 \land \mu_{A_i} = v_i) \) or \(\mu_{A_i} = default(A_i) \). By definition of \(T_P \), each \(v_i \subseteq_B V_{T_P}(A_i \theta) \) where \(\langle B_{T_P}, V_{T_P}\rangle = T_P \uparrow 1 \).

For the general case, consider the successful derivation,
\[\{A_1, \ldots, A_k\}, \sigma_1, S_1\rangle \rightarrow_{BF} \{B, \sigma_2, S_2\} \rightarrow_{BF} \{\emptyset, \sigma, S_3\} \]
the transition \(\{A_1, \ldots, A_k\}, \sigma_1, S_1\rangle \rightarrow_{BF} \{B, \sigma_2, S_2\} \)
When a literal \(A_i \) is reduced using a fact or there is not rule for \(A_i \), the result is the same as in the base case, otherwise there is a clause \(h_i \leftarrow B_1, \ldots, B_m \) in \(P \) such that \(\theta_i \) is the mgu of \(A_i \) and \(h_i \in B \sigma_2 \) and \(B_j, \theta_i \in B \sigma_2 \), by the induction hypothesis \(B \sigma_2 \subseteq B_{T_P\uparrow -1} \) and solvable\((S_2 \land \mu_{B_{\theta_i}} = v_{j_i}) \) and \(v_{j_i} \subseteq_B V_{T_P\uparrow -1}(B_{j_i}, \sigma_2) \) then \(B_{j_i} \theta_i \subseteq B_{T_P\uparrow -1} \) and by definition of \(T_P \), \(A_i \theta_i \in B_{T_P} \) and solvable\((S_1 \land \mu_{A_i} = v_i) \) and \(v_i \subseteq_B V_{T_P}(A_i \sigma_1) \). \(\square \)

Theorem 3.4 For a program \(P \) there is a successful derivation
\[(p(\bar{x}), \emptyset, true) \rightarrow^* \langle \emptyset, \sigma, S \rangle \]
iff \(p(\bar{x}) \sigma \in B \) and \(v \) is the solution of \(S \) and \(v \subseteq_B V(p(\bar{x}) \sigma) \) where \(lfp(T_P) = \langle B, V \rangle \)

Proof. It follows from the fact that \(lfp(T_P) = T_P \uparrow \omega \) and from the Theorem 3.3. \(\square \)

Theorem 3.5 For a fuzzy program \(P \) the three semantics are equivalent, i.e.
\[SS(P) = lfp(T_P) = lm(P) \]

Proof. the first equivalence follows from Theorem 3.4 and the second from Theorem 3.2. \(\square \)

3.4 Conclusions

We have presented different semantics of our fuzzy language, and it is proved the equivalence between them. These semantics support non-uniform default assumptions. The Ciao system including our Fuzzy Prolog implementation can be downloaded from http://www.clip.dia.fi.upm.es/Software/Ciao.

References

