
Evolution of Recurrent Fuzzy Controllers

Carlos Kavka, Patricia Roggero and Javier Apolloni

LIDIC
Departamento de Informática

Universidad Nacional de San Luis
Ejército de los Andes 950

D5700HHW - San Luis - Argentina
Tel: 02652-420823 Fax: 02652-430224

e-mail: {ckavka,proggero,javierma}@unsl.edu.ar

Abstract

The main advantage of a recurrent architecture is the ability to store information from prior
system states. A recurrent fuzzy controller includes hidden fuzzy variables which makes the con-
troller more appropriate to deal with dynamic systems. We are currently investigating the effect
of evolution of recurrent fuzzy controllers by applying the FV representation, which provides a
set of advantages that can significatively benefit the quality of the knowledge insertion process.

1 Introduction
One of the most successful areas of application of fuzzy logic is control, where fuzzy controllers
have proven to be very effective in the context of controlling complex ill defined processes [8]. A
fuzzy controller is usually designed by representing the knowledge of a human expert with a set of
linguistic variables and fuzzy rules [5]. However, there is still no systematic way to perform this
process. A large number of methods to automate this task and to evaluate and fine tune the obtained
fuzzy controllers have been proposed in the literature, with methods based on reinforcement learning,
neural networks and evolutionary algorithms being the most successful ones [9] [11]. Particularly, the
methods based on evolutionary algorithms, usually called genetic fuzzy systems, do not suffer from
the local minimum problem, with affects most other methods.

In most genetic fuzzy systems [2], the incorporation of previous knowledge (knowledge insertion)
consists in the definition of fuzzy sets for the input variables and fuzzy rules. The benefit for the
evolution is that the algorithm can obtain significatively faster good controllers. However, the adverse
effect is that a restriction on the output values and the partition of the input space is introduced in the
evolutionary process, which can limit the quality of the solution. One interesting representation for
fuzzy systems is the Fuzzy-Voronoi (FV) model proposed by Kavka et al. [6, 7], where the a-priori
knowledge is introduced by specifying behavior in single points in the input domain without a strict
specification of the area of application of the fuzzy rules. In this way, the adverse effect of imprecisely
defined inserted knowledge is reduced to a minimum.

Recurrent fuzzy systems are rarely studied, even if an impressive amount of research has been
done in the area of recurrent neural networks and neuro fuzzy systems [10]. Recurrent fuzzy systems
were introduced by Gorrini et al. [4]. The main advantage of a recurrent architecture is the ability
to store information from prior system states, which makes it more appropriate to deal with dynamic



systems. We are currently investigating the effect of evolution of recurrent fuzzy systems by applying
the FV representation, which provides a set of advantages that can significatively benefit the quality
of the knowledge insertion process.

The paper is organized as follows: section 2 introduces the main characteristics of the FV repre-
sentation for fuzzy systems, section 3 presents details on recurrent fuzzy systems, and section 4 our
current developments.

2 The Fuzzy Voronoi Partition
The Fuzzy Voronoi representation belongs to the class of approximative representations [1] for fuzzy
systems, where each fuzzy rule defines its own fuzzy sets, being in this case determined by a single
multivariate membership function. In this section, we are just covering the domain partition induced
by the representation, without entering into details on other aspects. The interested reader is redirected
to [6, 7] and the references therein.

2.1 Voronoi diagrams and Delaunay triangulation
The domain partition strategy is based on Voronoi diagrams. A Voronoi diagram induces a subdivision
of the space based on a set of points called sites. Formally [3], a Voronoi diagram of a set of n points
P is the subdivision of the plane into n cells, one for each site in P , with the property that a point
q lies in the cell corresponding to a site pi if and only if the distance between q and pi is smaller
than the distance between q and pj for each pj ∈ P with j 6= i. Figure 1 illustrates an example of a
Voronoi diagram in R2. The definition can be straightforward extended to Rn, with n ≥ 2. A related

Figure 1: An example of a Voronoi diagram (left) and the corresponding Delaunay triangulation
(right) for a set of points in R2

concept that will be used in the paper is the so called Delaunay triangulation. A triangulation [3] of a
set of points P is defined as the maximal planar subdivision whose vertex set is P . A maximal planar
subdivision S is a subdivision such that no edge connecting two vertices can be added to S without
destroying its planarity. A triangulation T of a set of points P is a Delaunay triangulation if and only
if the circumcircle of any triangle in T does not contain a point of P in its interior. A circumcircle of
a triangle is defined as the circle that goes through its three summits. Figure 1 illustrates an example
of a Delaunay triangulation in R2.

2.2 The FV induced partition
In the FV representation, the rule Rk defines the joint fuzzy set by just specifying a point pk in the
input domain. This point corresponds to the center of the Voronoi region Vk associated to the rule.



The complete fuzzy system consisting of ω rules R = {R1, R2, . . . , Rw} defines a Voronoi diagram
where the points P = {p1, p2, . . . , pω} are the centers of the Voronoi regions V = {V1, V2, . . . , Vω}.

The output produced by a fuzzy rule in the FV representation does not depend on the rule itself,
it also depends on other rules defined in the database. The area of application A of a fuzzy rule
Ri is defined as the union of all Delaunay regions which contain the point pi, center of the rule Ri.
Formally:

A(Ri) =
⋃

pi∈Dj
Dj Dj ∈ D = {D1, . . . , Dγ}. (1)

where pi is the center of the rule Ri and D = {D1, . . . , Dγ} is the Delaunay partition induced by the
points P = {p1, . . . , pω}. The figure 2 shows an example of the application area of a single rule. The

(a) (b) (c) (d)

Figure 2: The diagram (a) shows the application area of a fuzzy rule and the diagram (b) shows the
application area of a neighbor rule. The diagram (c) shows the application area of the first rule when
the second rule is removed and the diagram (d) the application area of the first rule when a third rule
is added between the first and the second rule. The diagrams correspond to a regular partition, where
the unbounded rays of the open Voronoi regions are not shown

application area of a rule depends on the application areas of the other rules by its own definition.
The application area of a rule is reduced if a new rule that defines a neighbor Voronoi region is added
in the database. The application area of the rule Ri is modified when the rule Rω+1 is added only if
A(Ri) ∩ A(Rω+1) 6= ∅. Inversely, the application area of a rule is enlarged if a rule that defines a
neighbor Voronoi region is removed (see figure 2).

The evolutionary algorithm evolves individuals that represent fuzzy systems defined by a set of
fuzzy rules synergically related, and not fuzzy systems defined with a set of independent fuzzy rules.

3 Recurrent fuzzy systems
The k-th rule of a fuzzy rule base of a σ order recurrent fuzzy system looks like:

if s(t) is Ak0 and x1 is Ak1 and . . . and xn is Akn
then s(t+ 1) is Ok

0 and yk is Ok
1

where the Ak
i are the antecedent fuzzy sets (or antecedent linguistic labels) associated to each input

variable xi, yk is the output variable, Ok
i are the consequent fuzzy sets and s(t) is the status of the

system at time t. The system contains internal fuzzy variables than act like a short term memory. In
this way, the output of a recurrent fuzzy system depends not only on the values of the current inputs,
but also on the values of the previous system conditions:

y(t) = f(y(t− 1), . . . , y(t− σ), x1(t− 1), . . . , xn(t− 1), . . . , x2(t− 2), . . . , xn(t− σ))

Gorrini et al. [4] propose a gradient based learning algorithm to adapt the membership functions
to model high order dynamic processes. Surmann et al. [12] uses genetic algorithms to optimize



the width and position of the membership functions. Nurnberger [10] trains neural networks that
represent hierarchical recurrent fuzzy systems.

4 FV based recurrent fuzzy systems
We are currently studying the application of evolution of recurrent fuzzy systems represented with
the FV representation. One of the most important properties of the FV representation is the synergic
relation between the rules, where the area of application of a rule is not determined by the rule itself,
but depends also on the other rules. This synergic relation guarantees also the completeness property,
which establishes that for very input there is at least a rule that is activated with a guaranteed minimum
level of activation.

One of the most difficult problems faced with recurrent fuzzy systems is that it is not easy to de-
fine rules by using linguistic terms, with the possibility to define wrong a-priori knowledge increasing
significatively. The algorithms mentioned in section 3 can deal with these problems, since they can
update the membership functions by using gradient based algorithms. However, when using evolu-
tionary algorithms, the bias introduced with apriori knowledge can introduce strong constraints in the
search space.

In the FV representation, it is very easy to define rules that produce a certain value for a particular
input point, without a specification of the area of application of the rule. Due to the completeness
property, the whole domain is covered by the apriori rules, something that does not happen with most
other representations. Evolution with FV based individuals that include the apriori rules produce new
fuzzy systems that include the default behavior in the specified points. However, the application area
of the rules (and the output produced in these areas) is modified by new rules in neighbor Voronoi
regions. These changes in behavior are produced without an explicit modification of the apriori rules,
which remain always the same. Just as an example, the figure 3 shows the change of the application
area of an apriori rule during evolution for a problem with three input variables.

(a) (b)

Figure 3: The application area of an apriori rule before evolution and after evolution.

Recurrent fuzzy rules can be defined by using the same strategy. In particular, the definition of
output values for a single point in the domain is as simple as in the non recurrent case. Experiments
are being carried on the evolution of recurrent fuzzy controllers for avoiding moving obstacles. Note
that a non recurrent controller cannot determine if an obstacle is moving, due to the static nature of
its input/output behavior.



References
[1] R. Babuška. Fuzzy modeling: Principles, methods and applications. In C. Bonivento, C. Fan-

tuzzi, and R. Rovatti, editors, Fuzzy Logic Control: Advances in Methodology, pages 187–220.
World Scientific, Singapore, 1998.

[2] O. Cordon, F. Herrera, and A. Peregrin. A practical study on the implementation of fuzzy logic
controllers. The International Journal of Intelligent Control and Systems, 3:49–91, 1999.

[3] M. de Berg, M. van Kreveld, M. OVermars, and O. Schwarzkopf. Computational Geometry,
Algorithms and Applications. Springer Verlag, 1998.

[4] V. Gorrini and H. Bersini. Recurrent fuzzy systems. In Proceedings of the Fifth IEEE Interna-
tional Conference on Fuzzy Systems, pages 193–198, New Orleans, 1996.

[5] F. Hoffmann. Evolutionary algorithms for fuzzy control system design. Proceedings of the
IEEE, Special Issue on Industrial Innovations using Soft Computing, 2001.

[6] C. Kavka and M. Schoenauer. Voronoi diagrams based function identification. In Proceedings
of the Genetic and Evolutionary Computation Conference, 2003.

[7] C. Kavka and M. Schoenauer. Evolution of voronoi-based fuzzy controllers. Submitted to the
International Conference on Parallel Problem Solving from Nature PPSN VIII, Birmingham,
UK 2004.

[8] C. Lee. Fuzzy logic in control systems: Fuzzy logic controller - part i. IEEE Transactions on
Systems, Man and Cybernetics, 20(2):404–418, March/April 1990.

[9] P. McQuesten. Cultural Enhancement of Neuroevolution. PhD thesis, The University of Texas
at Austin, August 2002.

[10] A. Nurnberger. A hierarchical recurrent neuro-fuzzy model for system identification. Interna-
tional Journal of Approximate Reasoning, 32:153–170, 2003.

[11] A. Saffiotti. The uses of fuzzy logic in autonomous robot navigation. Soft Computing, 1(4):180–
197, 1997.

[12] H. Surmann and M. Maniadakis. Learning feed-forward and recurrent fuzzy systems: a genetic
approach. Journal of Systems Architecture, 47(7):649–662, August 2001.


