
SOLVING UNRESTRICTED PARALLEL MACHINE SCHEDULING PROBLEMS
VIA EVOLUTIONARY ALGORITHMS

Gatica C., Ferretti E., Gallard R.
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)1

Departamento de Informática
Universidad Nacional de San Luis

Ejército de los Andes 950 - Local 106
(5700) - San Luis -Argentina

e-mail: ´{crgatica, ferretti, rgallard@unsl.edu.ar}
Phone: +54 2652 420823
Fax : +54 2652 430224

Abstract
Parallel machine scheduling, also known as parallel task scheduling, involves the assignment of
multiple tasks onto the system architecture’s processing components (a bank of machines in
parallel).

A basic model involving m machines and n independent jobs is the foundation of more complex
models. Here, the jobs are allocated according to resource availability following some allocation
rule. The completion time of the last job to leave the system, known as the makespan (Cmax), is one
of the most important objective functions to be minimized, because it usually implies high
utilization of resources, but other important objectives must be also considered. These problems are
known in the literature [9, 11] as unrestricted parallel machine scheduling problems. Many of these
problems are NP-hard for 2≤ m ≤ n, and conventional heuristics and evolutionary algorithms (EAs)
have been developed to provide acceptable schedules as solutions.

This presentation shows the problem of allocating a number of non-identical independent tasks in a
production system. The model assumes that the system consists of a number of identical machines
and only one task may execute on a machine at a time. All schedules and tasks are non-preemptive.
A set of well-known conventional heuristics will be contrasted with evolutionary approaches using
multiple recombination and indirect representations.

1 The LIDIC is supported by the Universidad Nacional de San Luis and the ANPCYT (National Agency to Promote
Science and Technology).

mailto:rgallard@unsl.edu.ar}

1. Introduction

Unrestricted parallel machine scheduling problems are common problems in production systems. In
the literature, minimization of the makespan is extensively approached and benchmarks can be
easily found. This is not the case for other important objectives such as the due-date-related
objectives (e.g. maximum, average and weighted values for lateness, tardiness and number of tardy
jobs). Various heuristics, which fits differently on different problems, have been developed. Some
of them are: longest processing time (LPT), weighted longest processing time (WLPT), shortest
processing time (SPT), weighted shortest processing time (WSPT), earliest due date (EDD), least
slack (Slack), Hodgson´s algorithm (HDG), weighted Hodgson (WTD HDG), Rachamadugu and
Morton (R&M).

In previous research we have been working with evolutionary approaches to solve the Pm| |Cmax
problem and contrast their results against LPT for makespan minimization [6]. At this time we want
to extend our work to Pm| |Obj, where Obj is some of the above indicated due-date-related
objectives and contrast the EAs against those conventional heuristic which would perform better.

Because well-known experimental repositories do not provide testing cases, to extend our work we
need to develop our own benchmarks. The idea is to collect data, which have been designed for
distinct scheduling due date related problems and use it in our algorithms. In this way due dates,
processing times and arrivals are proved to be consistent.

The next step is to run a software package, Parsifal, provided by Morton and Pentico [11], to
determine the best-performers among the conventional heuristics and to contrast them against our
EAs.

2. The evolutionary multirecombined approach

The evolutionary algorithms to be developed belong to the multirecombined family. We describe
now their main characteristics. Multiple Crossovers per Couple (MCPC) [7] and Multiple
Crossovers on Multiple Parents (MCMP) [8] are multirecombination methods, which improve EAs
performance by reinforcing and balancing exploration and exploitation in the search process. In
particular, MCMP is an extension of MCPC where the multiparent approach of Eiben [3, 4, 5] is
introduced. Results obtained in diverse single and multiobjective optimization problems indicated
that the searching space is efficiently exploited by the multiple application of crossovers and
efficiently explored by the greater number of samples provided by the multiple parents.

A further extension of MCMP is known as MCMP-SRI (stud and random immigrants) [10]. This
approach considers the mating of an evolved individual (the stud) with random immigrants. The
process for creating offspring is performed as follows. From the old population the stud is selected
and inserted in the mating pool. The number of parents in the mating pool is completed with
randomly created individuals (random immigrants). The stud mates every other parent a number of
times. The best offspring is inserted in the new population.

A latest extension MCMP-SRSI (stud, random and seed immigrants) includes problem-specific-
knowledge in the EA algorithm, seeds are recombined in the evolutionary process. Seeds are good
solutions provided by heuristics specifically designed for the problem under our concern and they
can help the evolutionary process by guiding the search more rapidly towards the promising areas
of the solutions space.

3. Representations

From the representation perspective many evolutionary computation approaches to the general
scheduling problem exists. With respect to solution representation these methods can be roughly
categorized as indirect and direct representations (Bagchi et al, 1991 [1], Bruns R. 1993 [2]).

In the case of indirect representation of solutions the algorithm works on a population of encoded
solutions. Because the representation does not directly provides a schedule, a schedule builder is
necessary to transform a chromosome into a schedule, validate and evaluate it. The schedule builder
guarantees the feasibility of a solution and its work depends on the amount of information included
in the representation. We decided to use three approaches with indirect representation; the first
belongs to the indirect-permutation representation class, and the other two are of the indirect-
decode representation class.

Permutation-based representation

In this approach we use permutations, which describe a list of tasks priorities. The schedule builder
takes the first ready task from the list, and assigns it to an available processor. If two or more
processors are available, the one with lowest identifier processes the ready task.

Decoder-based representation

In the first decoder-based approach, called processor dispatching priorities indirect-decode
representation, a schedule is encoded in the chromosome in a way such that the task indicated by
the gene position is assigned to the processor indicated by the corresponding allele, as indicated in
Fig.1. Here the chromosome gives instructions to a decoder on how to build a feasible schedule. In
our case the decoder is instructed in the following way: By following the task priority list, traverse
the chromosome and assign the corresponding task to the indicated processor as soon as it is
available. In this way a priority for processors is established telling which processor is assigned to
which job. Even if other processors are available the job waits until the designed processor becomes
available. Regarding tasks, a task priority list is defined at the beginning and remains the same
during the search (i.e. canonical order).The processor priorities for dispatching tasks
(chromosomes) change while searching for an optimal schedule (minimum makespan).

In the second decoder-based approach, called task priority list indirect-decode representation each
individual in the population represents a list of task priorities. Each list is a permutation of task
identifiers. Here a chromosome is an n-vector where the ith component is an integer in the range
1..(n – i +1). The chromosome is interpreted as a strategy to extract items from an ordered list L and
builds a permutation. We briefly explain how the decoder works. Given a set of tasks represented
by a list L and a chromosome C, the gene values in the chromosome indicate the task positions in
the list L. The decoder builds a priority list L´ as follows: traversing the chromosome from left to
right it takes from L those elements whose position is indicated by the gene value, puts this element
in L´ and deletes it from L (shifting elements to left and reducing L length). It continues in this way

Fig. 1. Chromosome structure for the task allocation problem

 proc →
 task →

1 2 3 2 1 3 1 2
1 2 3 4 5 6 7 8

until no element remains in L. Fig. 2 shows the list L, the chromosome C and the resulting priority
list L´.

1 2 3 4 5 6

3 2 2 1 1 1

3 2 4 1 5 6

4. Genetic operators

The kind of representation for a chromosome we choose in an evolutionary algorithm imposes
constraints on the genetic operator we will use and this fact influence the search process.

To obtain valid offspring and avoid repair actions, especial crossover operators such as PMX, OX
or CX, must be used in permutation-based representation. This will ensure that a child will also be a
permutation. PMX crossover and exchange mutation, are natural and efficient proved operators.
This approach is also natural for MCPC, where once selected a pair of parents, multiple crossover
are applied by defining different cut points. But in the case of MCMP, the exchange of genetic
material is limited to pairs of parents from the mating pool. This means that to create offspring all
possible pairs could be formed, obtaining 2 children from each pair after a single crossover
operation. In both cases (MCPC and MCMP), after crossover, one or more children are selected
according with some criteria, to insert in the next population. The process is repeated as many times
as needed to complete the population size.

Decoder-based representation is more flexible. Most common operators produce valid offspring.
Children from decoders are decoders. In the case of MCPC, any of the traditional crossovers (one-
point, multipoint, uniform, etc) can be safely used, while for mutation little creep, big creep and
exchange are of common use. In the case of MCMP, two of the scanning crossover (SX) family;
uniform scanning crossover (USX), and fitness based scanning (FBSX) could be used. In this case for
the exchange of genetic material all parents from the mating pool contribute as donnors,
simultaneously in a single crossover operation creating a single child. Again in both cases (MCPC and
MCMP), after crossover, selection of children and completion of the next population is done as
described above.

5. Current and future work

At this time the first versions of the algorithms for a variety of objective functions and instances of
different problem sizes are being implemented and tested for different parameter settings in the
static scheduling domain.
In the future larger problem sizes will be studied and partially or totally dynamic scheduling
problems will be faced to contrast evolutionary algorithms against conventional approaches.

 L =

chromosome C =

 L’ =

Fig.2. L is the task list, L’ is the priority task list.

6. References

[1] Bagchi S., Uckum S., Miyabe Y., Kawamura K. – Exploring problem-specific recombination
operators for job shop scheduling- Proceedings of the Fourth International Conference on
Genetic Algorithms, pp 10-17, 1991.

[2] Bruns R. – Direct chomosome representation and advanced genetic operators for production
scheduling. Proceedings of the Fifth International Conference on Genetic Algorithms, pp 352-
359, 1993.

[3] Eiben A.E., Raué P.E., and Ruttkay Z., “Genetic algorithms with multi-parent
recombination”, Proceedings of the 3rd Conference on Parallel Problem Solving from
Nature, Springer-Verlag, 1994, number 866 in LNCS, pp. 78-87.

[4] Eiben A.E., Van Kemenade C.H.M., and Kok J.N., “Orgy in the computer: Multi-parent
reproduction in genetic algorithms”. Proceedings of the 3rd European Conference on
Artificial Life, Springer-Verlag, 1995, number 929 in LNAI, pages 934-945.

[5] Eiben A.E. and. Bäck Th., “An empirical investigation of multi-parent recombination
operators in evolution strategies”. Evolutionary Computation, 5(3):347-365, 1997.

[6] Esquivel S., Gatica C., Gallard R. – “Evolutionary Approaches with Multirecombination for the
Paralell Machine Scheduling Problem”, XX Conferencia Internacional de la Sociedad Chilena de
Ciencias de la Computación, Noviembre 2000, Santiago, Chile. IEEE Publishing Co, págs. 1 – 6.

[7] S. Esquivel, A. Leiva, R. Gallard, “Multiple Crossover per Couple in Genetic Algorithms”,
Proceedings of the Fourth IEEE Conference on Evolutionary Computation (ICEC'97),
Indianapolis, USA, April 1997, pp 103-106.

[8] S. Esquivel, H. Leiva,.R. Gallard, “Multiple crossovers between multiple parents to improve
search in evolutionary algorithms”, Proceedings of the Congress on Evolutionary
Computation (IEEE). Washington DC, 1999, pp 1589-1594.

[9] T. Morton, D. Pentico, “Heuristic scheduling systems”, Wiley series in Engineering and
technology management. John Wiley and Sons, INC, 1993.

[10] Pandolfi D., De San Pedro M., Villagra A., Vilanova G., Gallard R.- “ Studs mating immigrants
in evolutionary algorithm to solve the earliness-tardiness scheduling problem” . Aceptado
para publicación en Cybernetics and Systems del Taylor and Francis Journal, (U.K.) July
2002.

[11] Pinedo M, Scheduling Theory, Algoritms, and Systems. Prentice-Hall -1995.
mpinedo@stern.nyu.edu

