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Abstract. Component-Based Software Development is focused on assembling previously existing 
components (COTS and other non-developmental items) into larger systems, and migrating existing systems 
toward component approaches. Ideally, most of the application developer’s time is spent integrating 
components. We present an approach that can be used in the process of establishing component integration’s 
quality as an important field to resolving CBS quality problems – problems ranging from CBS quality 
definition, measurement, analysis, and improvement to tools, methods and processes.  In this paper, we  
introduce an important property we called system’s stability as part of a cycle for assessing and improving 
component-based systems.  This property is the basis for determining the impact of incorporating COTS 
components into a stable system.  
 
 
1. Introduction 
 

Ideally, most of the application developer’s time is spent integrating components. In essence, 
using components to build systems reduces complexity because composers do not need to know 
how a component works internally. Components are plugged into a software architecture that 
connects participating components and enforces interaction rules. Architectures mediate and 
regulate component interaction. For example, in (Wallnau et al., 2001), there is a strong condition to 
integrate architectural reasoning and component technology: that the architectural structure used to 
reason about the quality attributes of a system is very similar to the structure of a deployed 
component assembly that implements the system. As another example, the method presented in 
(Bose, 1999), focuses on the role of the connectors to provide causal connection between the 
components and coordinate the component behaviours to satisfy scenario specific ordering 
constraints.  

Interactions might potentially be characterised along many dimensions, depending on the 
architecture they are immerse. Interactions, as part of a component model, require an accepted 
component vocabulary and a set of design standards (Sparling, 2000). In general, the application 
composer should be able to search for patterns of interaction that reveal possible adaptation 
problems and allow calculating interaction effort. For example, the proposal in (Yakimovich et al., 
1999), presents a general classification of possible types of mismatches between COTS products 
and software systems, which includes architectural, functional, non-functional, and other issues. As 
another example, the work presented in (Davis and Gamble, 2002), combines model-based 
development (e.g. architectural modelling) with component-based development (e.g. COTS and 
legacy systems), and shows how their mismatch-detection capabilities complement one another to 
provide a more comprehensive coverage of development risks.  

As important as determining architectural mismatching is calculating integration effort. Decisions 
on CBS investments are strongly influenced by technological diversity: today technology is diverse 
and brings with it thousands of choices on components, with their opportunities and risks. 



Architectural frameworks such as CORBA can help in determining the effort; however, estimation 
is not straightforward. BASIS (Ballurio et al., 2002), for example, combines several factors in order 
to estimate the effort required to integrate each potential component into an existing architecture – 
architectural mismatching, complexity of an identified mismatch, and mismatch resolution.  

Finally, architectures used to build composite applications provide a design perspective for 
addressing interaction problems, although little attention is paid to the evolvability of these 
architectures. For example, the proposal in (Davis and Gamble, 2002), uses the history of 
interoperability conflicts and resolution decisions as a basis for understanding the design, thus 
evolution is possible with minimal changes to the integration solution. 

In this paper, we briefly present an important property we called system’s stability.  This property 
is the basis for determining the impact of incorporating COTS components into a stable system.  
We discuss future work and conclusion afterwards. 
 
 
2. Defining System’s Stability 
The characteristics of the system’s stability are defined at two levels. At the highest level, the 
stability is conceptualized in terms of its functionalities for system’s users. The users include client 
representatives, managerial staff, corporate lawyers, marketing experts, etc. Their perceptions of 
what constitutes a stable system need to be captured and reconciled. Hence, users must 
communicate, collaborate, and coordinate. At the lower level, one would identify the architecture’s 
basic units and components and their relationships. In practice, often it is necessary to group units 
together. Thus, a careful management of the relationships between basic and compound units, and 
the corresponding processes that perform the mappings are critical because of their architectural 
impacts. 

With the characteristics of the product specified, the next step is to identify its quality 
requirements considering the perspectives of developers, consumers, and managers. To introduce 
our approach, a number of concepts must be defined. We first define the notion of constraint scope 
(CS) of a system as the set of all aspects that influence and/or constraint system’s requirements. 
Typically, the constraint scope will include aspects such as goals, schedule, cost, context, and 
domain – we consider as domain constraints those in which the application domain has been the 
cause of changes on the system’s architecture, in contrast to context constraints, which have been 
caused by execution environment conditions. The notion of system’s functionality is associated with 
a set of requirements, as distinct from the system’s quality properties more related to non-functional 
features. Finally, the notion of traced architecture is defined as a set of basic or compound 
architectural units suitable of being connected at least to one requirement.  
More formally, information for defining system’s stability, or system’s basics, can be summarised 
as the tuple SB = (CS, R, QA, TA) where CS represents the constraints on the system, R is the set of 
requirements, QA is the set of quality attributes of the system, and TA is the software architecture, 
including the definition of every piece of software with its interfaces and its relationships with one 
or more requirements. To be measured, every quality attribute has an acceptance threshold 
associated. So, let Q a particular attribute, M a measure and TH its accepted threshold, a quality 
attribute set is expressed as the QA = (Q X (M X TH)-set)-set. Similarly, let P a piece of software, 
I-set its set of interfaces – provided and required – and L a relationship that direct or indirectly links 
a piece of software to a non-empty set of requirements, a traceable software architecture is 
expressed as the TA = ((P X I-set) X L)-set. 
 

Then, we define system’s stability, SS, as a state of a system or part of a system in which a set of 
requirements is satisfied by an architecture, and whose quality attribute’s measures are acceptable 
according to given thresholds. Besides, every piece of software belonging to the architecture 
contributes to reach the requirements by providing a particular functionality identified by the 



interfaces, and the contribution to the requirements is established by trace ability. In other words, 
we refer to system’s stability as the property of a system to have a set of measurable quality 
attributes defined and committed by the users, which are satisfied by some of the system’s outputs.  
Full details of these specifications can be found in  (Cechich A. and Piattini M., 2003).  
 
3. Conclusions 
 
We have identified an important property we called system’s stability when component 
compositions are assessed.  This property is the basis for determining the impact of incorporating 
COTS components into a stable system.  
However, this is only the beginning. After a system is altered by incorporating COTS components, 
the real work starts: measuring changes and possible perturbations on the system. Some works on 
this direction propose to measure the complexity of the interactions – and its changes – by using 
metrics derived from the information theory, such as the L-metric (Chapin, 2002) (Shereshevsky et 
al., 2001), although further research is currently needed on this area. A possible future work would 
be on identifying the difference of having direct and indirect measures of system’s stability. 
Another aspect that needs further discussion is the possibility of establishing a set of measures that 
determine the stability level of a system – a system’s stability scale ranging from completely stable 
through completely unstable.  
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