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Abstract 
 

This paper presents step skipping acceleration techniques for a class of convergence algorithms 

computing arithmetic functions. In particular, an extension of the fast adder carry-skip procedure [1, 

2] is carried out for special purpose cellular array circuits implementing iterative logical functions 

for which some propagating information may be fruitfully computed ahead of the current step 

output computation. This information is thus carried to the next stage, accelerating the overall 

calculation.   

An application is given for the 2´s complement sign changing circuit, then for the step-skipping 

acceleration circuits used in the implementation of the ln(x) convergence algorithm. FPGA 

implementations on Xilinx Virtex IV [6] have been achieved with comparative analysis of 32- to 

512-bit computing algorithms. 
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1. INTRODUCTION 
 

The classical implementations of iterative functions such as ripple-carry adders, logarithmic, 

exponential or trigonometric functions are generally made up from sequential circuits (time 

iteration) or cascade circuits (space iteration). In both cases, the time complexity increases with the 

bit size of the operands. In the cascade case, some techniques have been presented to accelerate the 

processes. Most often the time saving has to be paid by some additional hardware cost. Such is the 

case for the carry look-ahead or carry-skip adders [1, 4]. 

In the carry-skip adder the cost of additional hardware is negligible in front of the notable time 

saving.  The carry-skip technique is one of the key ideas in the step-skipping implementations 

reviewed hereafter.  

A short survey of carry-skip adder is first presented to make this paper self consistent. A straight 

application to the binary 2´s complement sign changing device is then considered with comparative 

time and computational complexities. Then applications to step acceleration and step skipping 

process for some arithmetic convergence algorithms are given with complexity figures and FPGA 

implementations and testing.  

 

2. THE CARRY-SKIP ADDER REVISITED  
 

2.1 Carry chain adder 

 
The structure of an n-bit binary adder with separate carry calculation is shown in figure 1. The G-P 

(generate - propagate) cell calculates 

 

g(i) =  x(i) ∧ y(i) ,  and  p(i) =  x(i) ⊕ y(i) ; 

 

the Cy.Ch. (carry chain) cell computes q(i+1): 

 

if  p(i) = 1 then q(i+1) := q(i); else q(i+1) := g(i); end if; 

 

and the mod 2 sum cell calculates z(i) = (x(i) ⊕ y(i) ⊕ q(i)) = p(i) ⊕ q(i) . 

 

Let CGP and TGP, CCy.Ch. and TCy.Ch., Csum and Tsum, be the cost and the computation time of a G-P 

cell, Cy.Ch. cell and mod 2 sum cell, respectively. The cost and computation time of an n-bit carry 

chain adder are equal to 

 

Ccarry-chain-adder(n) = n.(CGP + CCy.Ch. + Csum),  

           (1) 

Tcarry-chain-adder(n) = TGP + (n-1).TCy.Ch. + Tsum. 

 
 

The critical path is shaded in figure 1. In the case of a VLSI implementation based on the 

Manchester carry chain configuration, the value of TCy.Ch. is equal to the drain-source propagation 

time of one n-MOS transistor. 
 
 
 
 
 



  

 
Figure 1: Carry chain adder 

 

Comment 2.1 

 
According to the carry computation algorithm the carry chain cell should compute the switching 

function p(i).q(i) ∨ not(p(i)).g(i). Nevertheless, as p(i).g(i) = 0, the preceding expression is equivalent 

to p(i).q(i) ∨ g(i). Furthermore, if the latest expression is used for defining the carry chain cell 

function, then p(i) can be substituted by any function p'(i) such that p(i) ≤ p'(i) ≤ p(i) ∨ g(i). 
 

2.2 Carry-skip adder 
 

Consider a group of s successive cells within a carry chain (figure 2). If all propagate functions 

p(i.s), p(i.s+1), ... , p(i.s+s-1) within the group are equal to 1 then q(i.s+s) = q(i.s), and the carry 

q(i.s) is said to be propagated through the group. In the contrary case, there is at least one cell, say 

number i.s+j, such that p(i.s+j) = 0 so that q(i.s+j+1) = g(i.s+j). Assume that cell number i.s+j is 

the last one such that p(i.s+j) = 0 and p(i.s+j+1) = ... = p(i.s+s-1) = 1. Then q(i.s+s) = g(i.s+j), and 

the carry q(i.s+s) is said to be locally computed within the group. 

 

 

 
Figure 2: s-bit carry chain 

 

An n-bit carry-skip carry chain is made up of n/s s-bit carry chains interconnected through 2-to-1 

multiplexers (figures 3 and 4). Besides the generate and propagate functions, the generalized 

propagate functions P(i.s+s-1:i.s) = p(i.s+s-1). ... . p(i.s+1).p(i.s) must also be computed. 
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Figure 3: Carry chain: s-bit group 

 

 

 
Figure 4: Carry-skip carry chain 

 

The structure of a carry-skip adder is shown in figure 5. It is made up of n G-P cells, n Cy.Ch. cells, 

n mod B sum cells, n/s 2-to-1 multiplexers and n/s s-input AND gates (or any equivalent circuit) for 

computing p(i.s+s-1:i.s). Its cost and computation time are equal to: 

 

Ccarry-skip-adder(n,s) = n.(CGP + CCy.Ch. + Csum) + (n/s).(Cmux2-1 + Cand(s)),  

           (2) 

Tcarry-skip-adder(n,s) = TGP + s.TCy.Ch.+ (n/s - 1).Tmux2-1 + (s -1).TCy.Ch. + Tsum. 

 

The critical path of the carry chain is shaded in figure 4. It has been assumed that s.TCy.Ch. > Tand(s) 

and Tsum > TCy.Ch.+ Tmux2-1, so that in the first group p(s-1:0) is computed in parallel with the 

multiplexer inputs, and in the  last group the critical path is from q(n-s) to z(n-1) through s-1 Cy.Ch. 

cells and one mod B sum cell. 

 

Another interesting time is the delay Tcarry(n,s) from q(0) to q(n) assuming that all propagate, 

generate and generalized propagate functions have already been calculated: 

 

Tcarry(n,s) = s.TCy.Ch. + (n/s).Tmux2-1.      (3) 

 

 

Comments 2.2 

 
1 For great values of n and s the computation time (2) is roughly equal to (n/s).Tmux2-1 + 2.s.TCy.Ch.. 

It must be compared with (1), that is to say (approximately) n.TCy.Ch.. The computation time 

reduction is due to the fact that the locally generated carries are calculated in parallel. 

 

2 The s rightmost Cy.Ch. cells of figure 4 belong to the critical path, so that the first multiplexer 

should be deleted, unless the corresponding adder is used as a building block for larger adders. 
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Figure 5: Carry-skip adder structure 

 

Comments 2.2 

 
3 For great values of n and s the computation time (2) is roughly equal to (n/s).Tmux2-1 + 2.s.TCy.Ch.. 

It must be compared with (1), that is to say (approximately) n.TCy.Ch.. The computation time 

reduction is due to the fact that the locally generated carries are calculated in parallel. 

 

4 The s rightmost Cy.Ch. cells of figure 4 belong to the critical path, so that the first multiplexer 

should be deleted, unless the corresponding adder is used as a building block for larger adders. 

 

 

3. TWO’S COMPLEMENT SIGN CHANGE CASCADE CIRCUIT 
 
Changing sign in 1’s complement expressed binary numbers is carried out through bitwise 

complementing.  This operation is readily achieved by a circuit made up of complementing gates 

(e.g. 2-input XOR) acting in parallel. In 2’s complement notation, changing sign can be basically 

performed by adding “1” to the bitwise complemented vector. An equivalent method comes from 

complementing all bits at the left of the rightmost “1”. In both cases the circuit implementation does 

not appear to be parallel. The circuit presented in figure 6 is a possible sign change circuit 

implementation for changing the sign of a 2’s complement binary vector. 

In the same way as for the carry-skip technique for adders, the propagated signal can be accelerated 

by a careful partition of the circuit into n/s slices of s modules, as it appears in figure 7 where the 

enable sub circuit has not been represented for clarity. Figure 7 displays an s-module stage. 
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Figure 6: Sign change circuit in 2’s complement representation 
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Figure 7: Accelerated sign change circuit in 2’s complement representation 

 

 

The skip signal input cin, whenever valued 1, readily feeds the XOR output gates to complete the 

parallel bitwise complementation of all variables of the slice. Moreover this signal is readily 

conveyed to next stage through an OR gate. The function of this OR gate is somewhat comparable 

to that of the multiplexers of figure 4.  

According to the technology at hand, the Boolean function of the circuit represented at figure 6 may 

be synthesized in a number of ways. Let us assume that optimized elementary modules with t-input 

binary variables are given. Each module performs the same function as that of figure 6. One deals 

with (t+1)-input, (t+1)-output components. The complete n-input circuit is thus a set of n/t modules, 

interconnected according to figure 8. In turn this set may be sliced into (n/t)/s slices of s modules 

each. Within this scheme a carry-skip like accelerated circuit may be designed (figure 9).  
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Figure 8: n/t modules circuit 
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Figure 9: Two consecutive s-module slices out of the (n/t)/s-slice circuit 

 

 

4. LN(X) CONVERGENCE ALGORITHM. 
 

This section reviews the approximation algorithm to compute ln(x) using the multiplicative 

normalization method [1, 4, 5]. 

 

One defines 

 

c(i) = 1 + ai
 
.2

-i
 ,     ai  ∈ {-1, 0, 1} (4) 

 

as the multiplicative normalizing function, where ai is selected in such a way that the sequence  

 

x(i+1) = x(i).c(i) (auxiliary sequence) x(i)∈B(2
n
) (5) 

 



  

converges towards 1. Then, the sequence 

 

y(i+1) = y(i) – ln c(i) (6) 

 

can be set to converge toward the result ln (x). If y(0) and x(0) are respectively set to 0 and to the 

argument x, and assuming x(p) ≅ 1, one can demonstrate that 

 

x(p) = x.Πi c(i) ≅ 1 � 1/x ≅ Πi c(i);  y(p) = y – Σi ln c(i) = - ln Πi c(i) = ln (x). (7)   

   
                

To make the convergence of (5) possible, the argument x needs to be in a range 

 

  0.42 ≤ x ≤ 3.45. (8) 

 
  

This means that the argument x could need to be pre-scaled to fall in the range (8). An argument x 

in the range [1, 2[ (such as e.g. a floating-point mantissa) fits perfectly; otherwise use a 

straightforward pre-scaling operation that replaces x by x’ such that x = x’.2
s 

(x’ in [1, 2[); the 

algorithm computes ln (x’), then a final additive correction of s.ln (2) is completed. Observe that the 

lower bound of (5) can be lowered to 0.21, as (1+2
0
) can be accepted as a first normalizing factor 

for computing x(1). 

 

In practical implementations of this algorithm, look-up tables are used to read out the successive 

values of ln (1±2
-i
), needed to compute y(i+1) of (6). For x in [½, 2[, ai can be selected according to 

the following rules: 

 

a0 = 0, (9) 

if x(i) > 1,  ai = - x-i (i),   i ≥ 1 (10) 

if x(i) < 1,  ai = + x-i(i).not (x-i-1(i)). i ≥ 1 (11) 

 

Comments 4  

 
1   The selection (9) is justified by the fact that a decision about multiplying by ai

 
.2

-i
 + 1 (1) cannot 

be made before knowing the next bit. Actually, considering bit x0 only (either 1 or 0) one cannot 

know whether the sequence x(i) is already 1 (end of convergence process) or not. 

2   When x(i) > 1, the strategy described by (10) consists in detecting the first non-zero bit of x(i) 

then multiplying by (-2
-i 

+ 1). When x(i) > 1, it can be shown [1] that, at step i, bits x-k > -i (i ) are 

all zero’s.  

3   When x(i) < 1, the strategy described by (11) consists in detecting the last non-zero bit of x(i) 

then multiplying by (2
-i 

+ 1). When x(i) ≤ 1, it can be shown [1] that, at step i, all bits    x-k>-i (i) 

are one. 
 

5. ALGORITHMS 
 

5.1. Algorithm 1 - Logarithm computation by multiplicative normalization 
 

The argument x is in [½, 2[: x = x(0).x(1) x(2) … x(n) . Let xx(i,j) be the component j of xx(i) = 

xx(i,0).xx(i,1) xx(i,2) … xx(i,n). Let lut(i) = ln (1+a(i).2
-i
) read from the table. 

a(0):= 0; c(0):= 1; xx(1):= x; yy(1):= 0; 

for i in 1 .. p-1 loop 

if xx(i)= 1 then exit; end if; 



  

if xx(i)> 1 then a(i):= -xx(i,i) else a(i):= xx(i,i)*not(xx(i,i+1)); end if; 

c(i):= 1+a(i)*2**(-i); xx(i+1):= xx(i)*c(i); yy(i+1):= yy(i)-lut(i);  

end loop; 

 

5.2. Algorithm 2 - Logarithm computation by multiplicative, one-shift and add, normalization 
 

The argument x is in [½, 2[: x = x(0).x(1) x(2) … x(n) . Let xx(i,j) be the component j of xx(i) = 

xx(i,0).xx(i,1) xx(i,2) … xx(i,n). Let lut(i) = ln (1+a(i).2
-i
) read from the table. 

 

a(0):= 0; xx(1):= x; yy(1):= 0; 

for i in 1 .. p-1 loop 

if xx(i)= 1 then exit; end if; 

if xx(i)> 1 then a(i):= -xx(i,i) else a(i):= xx(i,i)*not(xx(i,i+1)); end if; 

xx(i+1):= xx(i)+a(i)*xx(i)*2**(-i); yy(i+1):= yy(i)-lut(i);  

end loop; 

 

Comments 5 
 

1. Algorithm 5.1 is basically identical to algorithm 5.2. It just replaces the multiplication by 

1+a(i)*2
-i
 by a shift and add procedure, that is, whenever a(i)=1, xx(i+1) is computed as xx(i) + 

xx(i) i-shifted on the right. This eventually allows a more economical hardware implementation: 

changing the multiplier by a shifter/adder device.  

2. At the implementation level, acceleration procedures have been proposed [3] avoiding trivial 

steps whenever a(i)=0. For this sake a procedure has been implemented to detect sequences of 

zero´s (resp. Sequences of one´s). Fast detection circuits of this type are presentted further. 

 

6. FULL HARDWARE BIT-SEQUENCE DETECTION CIRCUITS 
 

6.1 0-sequences detector 

 
The circuit presented at figure 10 identifies the position of the first 1 appearing at the right of a 0-

sequence. This search is only needed when the argument x is greater than 1, so x0=1. Then the 

position of the first 1 is detected to set the step number i. Output k is set to 1 whenever xk is the first 

1 from left to right; all other output are at 0. The next step code i is then readily available through a 

coding circuit as shown at figure 11. 
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Figure 10: End of 0-sequence detector 

 



  

0  0  0     1 ... 0

coding

i-code

X

 
 

Figure 11: Next step coding  

 

6.2 1-sequences detector 

 
The circuit presented at figure 12 identifies the position of the first 0 appearing at the right of a 1-

sequence. This search is only needed when the argument x is smaller than 1, i.e. x0=0, moreover, by 

the way algorithm is carried out, one may assume that x1=1. The position of the first 0 is then 

detected to set the step number i. Output i is set to 1 whenever xi+1 is the first 0 from left to right; all 

other output are at 0. The next step code i is then readily available through a coding circuit similar 

to that of figure 11. 
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Figure 12: End of 1-sequence detector 

 

6.3 Accelerating sequence detector circuits 
 

Both circuits of figures 10 and 12 may be accelerated in the same way as the sign-change circuits of 

figure 9. Figure 13 shows how the circuits of figure 10 can be structured in module–chain sliced in 

such a way that as soon as a 1 is detected the following outputs are set to zero within a reduced 

delay. Respectively, figure 14 stands for a similar design for accelerating the propagation of the 

signal corresponding to the first detected 0. 

The circuit of figure 13 (resp. figure 14) is made up of  n/t modules, (n/t)/s 2-input OR gates (resp. 

(n/t)/s 2-input AND gates)  and n 2-input multiplexers. Their costs and computation times are equal 

to: 

C0-seq.detector(n,t,s) = n/t .(Cmod.) + (n/t)/s.(COR2-1) + n.C mux2-1,  

           (12) 

T0-seq.detector (n,t,s) = s.Tmod + (n/t)/s.(TOR2-1)+Tmux2-1  

 



  

C1-seq.detector(n,t,s) = n/t .(Cmod.) + (n/t)/s.(CAND2-1) + n.C mux2-1,  

           (13) 

T1-seq.detector (n,t,s) = s.Tmod + (n/t)/s.(TAND2-1)+Tmux2-1  

 

The cost of the decoder (figure 11) has to be considered in both cases. 
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Figure 13: Accelerated end of 0-sequence detector 
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Figure 14: Accelerated end of 1-sequence detector 

 

 

 

 



  

7. EXPERIMENTAL RESULTS 

End of 0-sequence and end of 1-sequence circuits have been implemented on FPGA Virtex 4 Xilinx 

family (xc4vlx60-12ff1148, con 26624 slices) [6]. Comparative analysis has been carried on 

considering inputs sizes up to 512 bits. Synthesis has been performed within XST (Xilinx Synthesis 

Technology) [7] while physical implementation used Xilinx ISE (Integrated System Environment) 

versión 9.2.04i [8].   

Table 1 displays the time and area performances for end of 0-sequence detection (figure 10) and end 

of 1-sequence detection (figure 12) for operands with up to 256-bit length (N).  Table 2 displays the 

same features for the accelerated algorithms (circuits of figures 13 and 14 respectively) for operands 

with up to 256-bit length considering several block sizes (K). For each input size N, the best time 

performance appears shaded table 2.   

Tabla 1.  Computation time (ns) and Area (# of slices) for end of 0-sequence (resp. end of 1-

sequence) implementations (figures 10 and 12). 

 

End of 0-sequence End of 1-sequence  
 N Time  Area  Time  Area  
16 13.78 12 14.91 11 
32 13.74 27 16.65 25 
64 16.71 56 28.80 50 
128 24.43 116 38.68 103 
256 38.08 237 50.31 224 

 

Tabla 2. Computation time (ns) and Area (# of slices) for end of 0-sequence (resp. end of 1-

sequence) accelerated algorithms implementations (figures 13 and 14). 

 

End of 0-sequence End of 1-sequence  
N 

 
K Time  Area  Time  Area  

16 4 13.78 12 13.41 11 
32 4 12.88 27 15.59 25 
32 8 15.59 24 16.22 24 
64 8 17.02 59 18.98 48 
64 16 15.69 53 17.39 54 
128 8 25.79 121 30.06 111 
128 16 17.91 110 18.96 110 
128 32 16.27 127 20.31 112 
256 8 39.70 239 40.68 234 
256 16 24.94 226 22.38 229 
256 32 21.07 264 27.04 223 
256 64 24.03 252 30.54 219 

Table 3 compares the computation times between algorithms, selecting, for the accelerated versions, 

the block size corresponding to the shortest time. One observes that the time saving increases with 

the operand size, reaching more than 50 % saving in some cases. Actually, using special purpose 

ASIC implementations, it is expected that the savings would be significantly better.  

 



  

 

Tabla 3. Time comparisons between straight and accelerated algorithms. 

 

End of 0-sequence End of 1-sequence  
 N Straight Accelerated  Saving  Straight Accelerated  Saving  
16 13.78 13.78 0 % 14.91 13.41 10 % 
32 13.74 12.78 7 % 16.65 15.59 6 % 
64 16.71 15.69 6 % 28.80 17.39 40% 
128 24.43 16.27 33 % 38.68 18.96 51 % 
256 38.08 21.07 45 % 50.31 22.38 55 % 

Table 4 deals with the areas requirements. For the accelerated algorithms the areas requirements 

correspond to the circuits with the minimum time consumption. One observes that the area 

requirements are not much different between algorithms. The greatest difference is 11 % for end of 

0-sequence detection with 256-bit operands, or 8% for end of 1-sequence detection with 64-bit 

operands.  

Tabla 4. Area requirements comparison. 

End of 0-sequence End of 1-sequence  
 N Straight Accelerated  Difference  Straight Accelerated  Difference  
16 12 12 0 % 11 11 0 % 
32 27 27 0 % 25 25 0 % 
64 56 53 -5 % 50 54 8 %  
128 116 127 9 % 103 110 7 % 
256 237 264 11 % 224 229 2 % 

A common technique to evaluate FPGA implementations performances consists of coping with 

input/output transfers, inserting I/O registers in the design. This allows evaluating delays in between 

input/output registers. Actually input/output delays in Xilinx family FPGA are not negligible at all. 

Tables 5 to 8 present the algorithms performances within the above mentioned measuring 

conditions. Table 5 displays results to be compared with those of table 1. On one hand one observes 

that computation times are significantly better. Actually Xilinx synthesizer optimizes the best when 

detecting registers leading to major clock frequencies.  On the other hand, the area consumption 

increases, as the number of slices involves is drastically incremented with respect to the figures 

displayed in table 1. Although the implementation of registers partially justifies the slice 

consumption, the leading point comes from optimization techniques (such as duplicating logic 

resources) carried on by the synthesizer. 

Table 5. Computation time (ns) and Area (# of slices) for end of 0-sequence (resp. end of 1-

sequence) implementations (figures 10 and 12), with I/O registers. 

 

End of 0-sequence End of 1-sequence  
 N Time  Area  Time  Area  
16 1.81 23 2.02 23 
32 2.48 53 2.52 48 
64 2.91 118 3.30 111 
128 5.02 268 5.27 273 
256 6.19 531 6.73 504 
512 8.11 1145 8.76 1088 



  

The same fact appears in table 6, to be compared with table 2. As in table 2 the best time figures 

appear shaded.   

Tabla 6. Computation time (ns) and Area (# of slices) for end of 0-sequence (resp. end of 1-

sequence) accelerated algorithms implementations (figures 13 and 14), with I/O registers. 

 

End of 0-sequence End of 1-sequence  
N 

 
K Time  Area  Time  Area  

16 4 1.92 23 1.86 23 
32 4 2.32 53 2.51 47 
32 8 2.60 49 2.52 48 
64 8 3.01 109 3.36 102 
64 16 2.96 97 3.23 101 
128 8 5.24 259 6.34 231 
128 16 5.66 231 5.87 255 
128 32 5.95 240 4.88 234 
256 8 7.34 522 6.03 515 
256 16 7.98 478 7.31 460 
256 32 7.01 476 6.99 471 
256 64 6.54 486 6.74 488 
512 8 21.46 942 8.56 1054 
512 16 10.19 974 9.62 937 
512 32 8.68 936 8.94 937 
512 64 8.59 966 8.87 970 
512 128 8.63 1007 7.97 1047 

 

As in table 3, table 7 compares the time figures of accelerated algorithms with respect to straight 

ones.  The variations appear irrelevant.  One assumes that the Xilinx synthesizer is leading to better 

or similar performances that the accelerated algorithms implementations. Full custom circuit will 

most probably take a better profit of the circuit reductions proposed in this paper 

Tabla 7. Time comparisons between straight and accelerated algorithms with I/O registers. 

 

End of 0-sequence End of 1-sequence  
 N Straight Accelerated  Saving  Straight Accelerated  Saving  
16 1.81 1.92 -6 % 2.02 1.86 8 % 
32 2.48 2.32 6 % 2.52 2.51 0 % 
64 2.91 2.96 -2 % 3.30 3.23 2 % 
128 5.02 5.24 -4 % 5.27 4.88 7,4 % 
256 6.19 6.54 -6 % 6.73 6.03 10 % 
512 8.11 8.59 -6 % 8.76 7.97 9 % 

Finally table 8 shows, as in table 4, the area consumption comparisons between straight and 

accelerated algorithms. It is noteworthy to observe that the accelerated algorithms lead to savings 

(up to 18 %) in slices consumption.  

 

 

 



  

Tabla 8. Area requirements comparison. 

 

End of 0-sequence End of 1-sequence  
 N Straight Accelerated  Difference  Straight Accelerated  Difference  
16 23 23 0 % 23 23 0 % 
32 53 53 0 % 48 47 -3 % 
64 118 97 -18 % 111 101 -9 %  
128 268 259  -3 % 273 234 -14 % 
256 531 486 -8 %  504 515 2 % 
512 1145 966 -16 % 1088 1047 -4  % 

 

 

8. CONCLUSIONS 
 

Some optimized procedures have been presented for recursive circuits for which skipping 

techniques provide significant time savings in propagation times. FPGA (Virtex 4 Xilinx) 

implementations have been carried out in order to evaluate performances in this particular popular 

technology.  For implementations without I/O registers, the proposed acceleration lead to time 

savings up to 50 % with less than 11 % area requirements.  With I/O registers the implementations 

do not produce time reduction although area consumption is somewhat reduced. This is due to a 

better optimization process whenever the synthesizer has to cope with I/O register design allowing a 

faster clock frequency. Actually the proposed circuits are mostly generic and not aimed at a 

particular FPGA technology. It is well assumed that full custom design would lead to a best time 

saving with minimum hardware consumption, as it appears in the performance formulas presented 

in this paper. Nevertheless FPGA technology is quite attractive as figures can be improved using 

relative location (RLOC) design techniques [9]. This remains as an open experimental project. 
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