Argumentation Driven Planning

Guillermo R. Simari Algandro J. Garcia
grs@s. uns. edu. ar aj g@s. uns. edu. ar

Labaratorio de Investigaciony Desarrollo en Inteligencia Artificial
Departamento de Ciencias de la Computacion
UNIVERSIDAD NACIONAL DEL SUR

BAHIA BLANCA - ARGENTINA

The research line reported here invalves developing an argumentation-based formalism
that an agent could use in constructing plans. The argumentation formalism will be combined
with well known planning tecniques producing a novel way of constructing a plan. Below, we
wil sketch the formalism and introduce some darifying examples.

We asame that the agent has cetain knowledge @ou the world represented by a
consistent set of fads ® and a set of defeasible rules A. This knowledge base, represented by
K=(®d,A), is in fad a restricted Defeasible Logic Program. We will fredy use the results
already obtained for such argumentation-based extension d logic programming cdled
DelLP[1].

The agent will also have aset of adions T that will be used for constructing the plan. Each
aaion A will consist of an ardered triplet [X, P, C[Jwhere X is a consistent set of literas
representing consequences of exeauting A, P isaset of literals representing preconditions for
A, and C is a set of constrains of the form nat L, where L isaliteral. For example, an adion
for printing a document will require aconreded and working printer, the file to be printed,
and the mnstrain that the printer is not out of paper. After exeauting the adion the
consequence will be to have the printed dacument. Suppase that f isafile and Ip is a printer,
then this adion could be represented by

Qprinted_file()}, { conreaed(Ip), working(Ip)}, {not out_of paper(lp)} O

For exeauting an action A, the adion must be gplicable, that is, the precondtions P of A
must hold and the constrains C of A must nat hold. Usually the knowledge that an agent has
abou the aurrent state of the world is represented by a mnsistent set @ of literals known to
be true. Therefore cdhedking if aliteral L hddsis smply cheding if L isin the set ®.

However, as mentioned before, here the knowledge of an agent will be represented by a
restricted defeasible logic program (®,4). Using this approadch, aliteral h will hold when hiis
warranted. In DelLP a literal h is warranted if the agument A that suppats h has no
defeaters, or every defeder for A isdefeaed (see[1] for detail s).

Therefore, given an action A =X, P, CLE {{Py,..., Pm}, { X1,..., Xp}, {not Cy,...,not C} [
in T, the adion A will be gplicable if every precondtion P, in P has a warrant built from
(P,A), and every constraint C; in C fallsto be warranted.

The dfed of exeauting an adion A= [IX, P, CL] will be therevision d ® by X, i.e.

where X represents the set of complements of members of X. Hence, after exeating an
applicable action, the set ® will change.

Asaume that the agent's knowledge base K= (®,A) has the set of fads
® ={ cast_away(h), at(h,bead), is(raining), has(h,coconut) }

expressng that hisacast away, hisat the beach, andit israining.

And the set Aof defeasible has the rule “has(X,sharp_stone) [< a(X,beach)”
expresing that “ usually if an agent is at the beach, it has a sharp stone”

Suppacse that the agent has the foll owing action for making a cntainer:
make_container =
Qhas(h,container), ~has(h,coconu)}, {h as(h,sharp_stone), has(h,coconu)}, {} [

The adion has one precondtion and no constrains. Observe that the preandtion
““has(h,sharp_stone)” is nat in the set @, however, thereisarulein A that alows us to buld
an argument for “has(h,ssharp_stone)’’ that has no dfeders, so it bemmes warranted.
Therefore the adion make _container is applicable and when exeauted it will add to the set
@ thelitera “has(h,container)’” andit will remove the litera “has(h,coconu)”.

If one action A is nat applicable because aprecondtion P is not warranted, then the agent
could search for other applicable adion B that could change the state of the world adding P to
the set @, exeauting B, and after that exeauting A. Thus, actionwill be chained. For example,

colled_rain = Qhas(h,water)}, { has(h,container), is(raining))}, {not aslegp(h)}

isnat applicable in K= (d,A) because there is nat warrant for “has(h,container)”. However, if
the adion“make_container” isexeauted first, then the set ® isrevised and changed to

®; ={ cast_away(h), at(h,beach), is(raining), has(h,container) }

Now, with @, the adion colled_rain is applicable. If collect_rain is exeauted the set ®;is
revised oltaining

@, ={ cast_away(h), at(h,beach), is(raining), has(h,container), has(h,water) }

An adion A could aso fail to be gplicable if one of its constraints is warrant. Using the
same idea & before, exeauting other actions previously could produce achange in the world
that invali dates the warrant of the cnstrain, and allowing A to be gplicable.

Therefore, in oder to satisfy certain goas, an agent will change its knowledge
@ performing applicable actions. If arequired action A is nat applicable, ather adions can be
used for alowing A to be gplicable. Thus, a sequenceof adions (plan) will be obtained.

References

[1] Garcia, A. J. Defeasible logic programming: Languag Definition, Operationd Semartics
and Parallelism. Ph.D. thesis, Dep. de Ciencias de la Computadén, Universidad Nadonal
del Sur, Bahia Blanca, Argentina, Decamber 2000.

