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 Ensembles of artificial neural networks (ANN) have been used in the last years as
classification/regression machines, showing improved generalization capabilities that outperform those of single
networks. We propose here a simple method for learning and validation in regression/classification ensembles of
ANN that leads to overtrained aggregate members with an adequate balance between accuracy and diversity. The
algorithm is favorably tested against other methods recently proposed in the literature, producing an
improvement in performance on the standard statistical databases used as benchmarks.

Ensemble techniques improve the generalization capabilities of single ANN [1]. However, aggregation
is  effective only for accurate and diverse ensemble members, �D���P� , networks with good individual
performances and independently distributed predictions for the test points. We provide here a simple
way of generating an ANN ensemble with members that have a good compromise between accuracy
and diversity. The method essentially amounts to the sequential aggregation of individual predictors
where, unlike standard techniques that combine individually optimized ANN [2], the learning process
of a new member is validated by the �����P���7�I�  aggregate prediction performance. That is, the early-
stopping method is applied by monitoring the generalization capabilities of the previous-stage
aggregate predictor �r�I���  the network being currently trained. In this way we retain the simplicity of
independent network training and only the validation process becomes slightly more involved, leading
in general to some controlled overtraining (“ late-stopping” ) of the individual networks.

We propose to train and validate members of ANN aggregates by the following procedure:

�7���P���}�
Generate a training set � 1 by a bootstrap re-sample [3] from dataset �  and a validation set � 1

by collecting all instances in    that are not included in ¡ 1. Produce a model ¢ 1 by training a network on£
1 until a minimum ¤ ( ¥ 1 ; ¦ 1) of the generalization error on § 1 is reached.

¨7©�ªP«­¬G®
 Generate new training and validation sets ¯ 2 and ° 2 respectively, using the procedure

described in step 1. Produce a model ± 2 by training a network until the generalization error on ² 2 of the³�´l´@µ�¶�´7³¸·O¶  predictor Φ2 = ½ (¹ 1+º 2)  reaches  a  minimum » ( ¼ 2 ; Φ2 ). In this step the parameters of
model ½ 1 remain constant and the model ¾ 2 is trained with the usual (quadratic) cost function on ¿ 2.

À7Á�ÂPÃÅÄGÆ
Iterate the process until an optimal number Ç A of models are produced. This optimal number

can be estimated by keeping an external validation set or from the behavior of È ( É7Ê  ; Φ Ë ) as a function
of Ì7Í
Notice that in this algorithm the individual networks are trained in the usual way, but with a late-
stopping method based on the current ÎyÏlÐ>ÎPÑ
ÒlÓDÎ  generalization performance. A careful analysis shows
that at every stage the algorithm is seeking for a new diverse model anticorrelated with the current
ensemble [4].

We tested the above method in the regression setting by comparing it against a standard bagging
technique adapted from [5], a simple early-stopping method of individual networks, and the recently-
proposed NeuralBAG algorithm (a description of these methods can be found in [6]). For this
comparison we used as benchmarks the Ozone, Boston Housing and Friedman#1 statistical databases.
In addition, we applied the method to the well-known sunspot time series and compared the results of
our algorithm with those of an optimal ensemble averaging of independently-trained ANN [2]. For this
problem, the results obtained here are, to the best of our knowledge, the most accurate ones reported in
the vast literature on sunspot prediction.
In order to compare the different methods’  performances we used the same training process of
individual networks for all of them, changing only the stopping-point selection criterion. We also set



Ô
A = 30 to allow direct comparison with results in [6], although this number of networks is not

necessarily optimal for our method. All the results quoted below correspond to the average over 50
independent runs of the whole procedure, without discarding any anomalous case. Notice also that in
the tables below the indicated standard deviations only characterize the dispersion in performances
due to different realizations of training and test sets; they have no direct relevance in comparing the
average performances for different methods, since in each run all methods use the same data.

Õ%Öy×�ÖBØÚÙ�× Û�ÜOÝ}Þeß�Ù Û�ÜOà�álßOÙ âãÙyÝlä>åjà�ÖTæ�ç è�â.é�ê ëwåjÜìØcí:îBæ�ç
Ozone 21.55 ± 4.15 18.91 ± 3.21 18.48 ± 3.03 18.72 ± 3.22 18.59 ± 3.20

Boston 19.95 ± 8.87 14.78 ± 6.97 14.50 ± 6.70 14.96 ± 7.40 14.46 ± 6.89

Friedman#1 4.82 ± 1.54 2.49 ± 0.45 2.43 ± 0.38 2.50 ± 0.48 2.32 ± 0.35

ïãðPñjò�ó�ô
: Mean-squared test errors averaged over 50 runs corresponding to five different algorithms for ensemble

learning. The Simple, Benchmark and NBAG algorithms are described in [6]; the results for Single correspond
to the average performance of a single ANN. The standard deviations only characterize the performance
fluctuations due to different realizations of training and test sets.

>From Table 1 we can see that the average mean-squared error obtained with our method is smaller
than the corresponding errors produced by the Simple and NeuralBAG algorithms. Only for the ozone
dataset it is slightly bigger than that of the Benchmark algorithm (which uses information contained on
a dataset twice as large as the other methods). Furthermore, for Friedman#1 our algorithm produced
more than  20% of reduction on the standard deviation of ensemble errors.

Finally, it is of interest to consider the average number of training epochs that individual networks
have to be trained before being aggregated to the ensemble. Table 2 gives these figures for the
different methods considered and shows that both NeuralBAG and the algorithm here proposed lead to
an important overtraining (late stopping) compared to the Simple and Benchmark methods (which
essentially correspond to the standard early-stopping method of single networks).
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Ozone 2318 2173 3194 3927

Boston 3879 3722 4955 5460

Friedman#1 7640 6935 14692 17510

�������! #"
: Average number of training epochs of individual networks required by the different aggregation

methods considered.
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Sunspots are dark blotches on the sun whose mechanism for appearance is not exactly known. Yearly
averages of the number of sunspots have been recorded since 1700, and this time series has served
many times as a benchmark in the statistical literature. Here we will apply the method described in the
previous section to the sunspot time series in order to compare its performance with that of an optimal
ensemble averaging of independently-trained ANN [2].

We used the records in the period 1921-1955 as the test set and the remaining ones as training set.
Results are appraised in terms of the average relative variance

F�G&H�I
 = (1/σJ )2

 E[( K-L  MON@PRQTS ))2
|( URV WRX�Y )∈ Z ]

where [ is either the training or test set and σ\  its standard deviation. Here ]�^=(_�` -1, a�b -2,.., c�d -12) is an
input vector, e i=f�g the associated target output and h i the mean annual sunspot number for year i .



For the test set above defined, the best performance reported in the literature correspond to an optimal
ANN ensemble averaging [2]. In order to compare with this work, we have considered the same
network architecture (12:4:1), learning rate (η=0.001) and maximum number of training epochs
(j E=150k). We generated an aggregate predictor according to the algorithm described above, usingk

A=30. The average of 25 independent runs of the whole procedure produced l
mon 1921-1955 = 0.0636 ±
0.0036, which compares favorably with the corresponding result p�q&r 1921-1955 = 0.0713 in [2].
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We proposed a simple method for balancing diversity and accuracy of ANN ensemble members. At
every stage, the algorithm seeks for a new member that is at least partially anticorrelated with the
previous-stage ensemble estimator. This is achieved by applying a late-stopping method in the training
process of individual networks, leading to a controlled level of overtraining of the ensemble members.
The algorithm retains the simplicity of independent network training and, moreover, it largely reduces
the computational burden compared to other algorithms like NeuralBAG [6] or the method proposed
in [2] (which require saving the intermediate networks during training, since the selection of stopping
points for the ensemble members is performed only at the end of all the training processes). Our
method is a stepwise construction of the ensemble, where each network is selected at a time and only
its parameters have to be saved. We showed, by comparison with other methods proposed in the
literature, that this strategy is effective, as exemplified by the results on three standard statistical
benchmarks, the Ozone, Boston Housing and Friedman#1 datasets, and on the sunspot time series.

The results are encouraging and we are presently performing a more extensive check of the algorithm
by comparing it with several other strategies for ensemble learning proposed in the literature. We are
also applying our method on new databases and different learning tasks, in order to establish its real
capabilities and possible weaknesses under  varying conditions.
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