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A job shop can be seen as a multi-operation model where jobs follows fixed routes, but not ne-

cessarily the same for each job. Job Shop Scheduling (JSS) attempts to provide optimal schedules
according to some criterion. Common variables to optimize are makespan, machine idleness, lateness
and total weighted completion time. According to this variables different objectives can be devised.

Multiobjective optimization, also known as vector-valued criteria or multicriteria optimization,
have long been used in many application areas where a problem involves multiple objectives, often
conflicting, to be met or optimized.

Multistage evolution and cooperative population search (CPS), as extended evolutive models,
can be applied to solve multicriteria optimization, either using a plain aggregative approach or seeking
the Pareto Front.

Multirecombination and Local Search were introduced in the CPS method in order to speed up
and to improve the evolution.
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When we are faced to a multicriteria optimization problem we can work in two different ways.

• We can make multicriteria decisions before searching. Fonseca and Flemming [7] classified as
plain aggregative approaches those methods where a single objective function resulting as a nu-
merical combination of objectives values is to be optimized.

• Or, we can first search the space for a set of slightly “good” solutions and then apply
multicrite-ria decisions. Vilfredo Pareto [9] established that there exists a partial ordering in the
searching space of a multiobjective problem. The Pareto criterion simply states that a solution
is better than another one if it is so good in all attributes, and better in at least one of these
attributes. In the problem space some solutions will not be dominated by any other solution and
they con-form the Pareto front, also known as the acceptable set.

Due to their implicit parallel search, evolutionary algorithms (EAs) are suitably fitted to deal with
JSSP [11] [6], as well as seeking solutions in Multiobjective optimization [1], [5], [7].
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In this case, it was defined a single objective function as a plain aggregative approach. A genetic algo-
rithm performs as usual finding the fittest individuals for that single aggregated function.
We considered three performance parameters to minimize:

• MS = max { C1,...,Cn} , where Ci is the completion time of Job w . It is the makespan an it is
equivalent to the completion time of the last job to leave the system.

• GE = max { 0, -GL}  where GL = MS – Gd, is the global lateness and Gd is the global due date.
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WCT , where }"~  is the weight associated to the completion time of Job � . It is the

weighted completion time.

Our multistage Genetic Algorithm (MGA) considered the 3-criteria problem optimizing three
objective functions, ��� , �.�  and ��� , corresponding to MS, GE and WCT, respectively and the aggregation
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The idea is to create one sub-population for each criterion and evolve them until convergence.

At this point another evolutionary process begin actuating on the whole population whose objective is
an aggregation of the partial objectives. This evolution step continues until reaching convergence.



After that, the whole population is subdivided into sub-populations and the original process is started
again. A final stop criterion is defined to terminate the entire process.

The multistage evolutionary approach (MGA) was contrasted against a conventional evolutio-
nary approach (SGA). Ten instances of two types, small and big [8], with known optimal makespan
were used. As optimal values of makespan were known for each instance of the test suite benchmark,
the global due date to determine GE was fixed at a value 40% greater than the corresponding optimal
makespan. Coefficients α, β, and γ for the aggregation � , were set at convenient values and normalised
for each instance in order to give higher weights to MS and GE.

As a result, at the end of the multistage evolutionary process we accomplished two different
purposes: to optimize the aggregated objective and obtain a set of good performers, which are near-
optimal solutions on their corresponding partial objective.
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Conventional approaches to crossover, independently of the method being used, involve applying the
operator only once on the selected parents. Such a procedure will be known as the Single Crossover
Per Couple (SCPC) approach.

In earlier works [3], [4], we devised a different approach: to allow multiple offspring per cou-
ple, as often happens in nature. In order to deeply explore the recombination possibilities of previously
found solutions, we decided to conduct several experiments in which more than one crossover opera-
tion for each mating pair was allowed.

The number of children per couple was fixed or granted as a maximum number and the process
of producing offspring was controlled, for each mating pair, in order not to exceed the population size.

The idea of multiple children per couple was tested on a set of well-known testing functions (De
Jong functions F1, F2 and F3 [2], Schaffer F6 [10] and other functions). A simple GA, with conventio-
nal operators and parameter values, was the basis of those initial experiments.

Basically the CPS-MCPC approach:Ç  Maintains a single population of solutions which is separately ranked by each criterion.È  Uses ranking selection to select one parent per criterion.É  Uses multiple crossovers per couple (MCPC), and the corresponding crossover and mutation
operators to generate multiple offspring.

After each mating, for insertion in the next population, selects those offspring, which are classified so
far, as globally non-dominated. If none fulfilling this condition exists then half of the newly generated
offspring are inserted, selecting first those that are non-dominated within the new offspring subset and
completing the insertions by random selection if necessary.

The last point above mentioned, implies to maintain the updated set of solutions found so far as
belonging to the Pareto front. Let us call it Pcurrent. This set is updated at the end of each generation
cycle. Essentially the proposed CPS-MCPC,Ê  Augments implicit parallel search by encouraging crossbreeding among “species”.Ë  Increases exploitation of good solutions previously found through multiple crossovers per couple.Ì  Favours for insertion in the next generation those solutions which are, at the present stage, non-

dominated (globally, at Pcurrent level, or locally, at the offspring level). If none is found then
genetic diversity is favored by random selection.

In this work we selected Í$Î  as the makespan, and ÏEÐ  as the mean absolute deviation of job com-
pletion times from a common due date Ñ , as the conflicting criteria to minimize.

During the first studies of the CPS-MCPC approach it was observed that in many cases MCPC
found better results than SCPC and best quality results were obtained allowing between 2 and 4 cross-
overs per couple.
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A new set of experiments was devised attempting to enhance performance by locally perturbing the
already found solutions in the final Pcurrent set provided by CPS-MCPC. Let us call it Pknown. Local
perturbation is achieved by adding simulated annealing (SA) as a local search heuristic. In CPS-



MCPC-LS local search was applied to each solution in Pknown and when new non-dominated solutions
were found they were added to the Pcurrent set in the SA algorithm.
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This work reports experience on multiobjective optimization applied to the Job Shop Scheduling
problem. We can remark:

First, results of these preliminary experiments with MGA show some enhancements when com-
pared with the conventional evolutionary approach. In general, overall performance is slightly better in
big instances also providing near optimal solutions, under each individual criterion.

Second, CPS-MCPC uses co-operative population searches with multirecombination. Experi-
ments to contrast multiple versus single recombination were performed using three basic representa-
tions for the JSSP. In most cases CPS-MCPC builds improved, more densely and evenly distributed
Pareto fronts than CPS-SCPC. Moreover, the final population obtained is grouped around compromise
solutions. This fact shows that the alternative solutions provided by multirecombination attempt to ba-
lance the damage caused on the conflicting objectives of the multicriteria problem.

Finally, CPS-MCPC-LS adds local search for further improvements. This new approach slightly
improves the performance of its predecessor providing better points with negligible additional compu-
tational effort.

Future work includes to start working on dynamic scheduling. First, by developing several
evolutionary heuristics to solve that kind of problems and then working on multiobjective
optimization.
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