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The flow shop scheduling problem (FSSP) [12], has held the attention of many researchers. In a
simplest usual situation, a set of jobs must follow the same route to be executed on a set of
machines (resources) and the main objective  is to optimize some performance variable (makespan,
tardiness, lateness, etc.). In the case of the makespan, it have been proved that when the number of
machines is greater than or equal to three, the problem is NP-hard.

Evolutionary algorithms (EAs) have been successfully applied to solve flow-shop problems.
Tsujimura et al [15] provided evidence of the performance of genetic algorithms (GAs) contrasted
with conventional approaches using well known crossover operators such as G?HJI
KMLMHJNON PRQES�H
G7GUTWVX IZY5[
[-Y5\]T^I  (PMX) [10], _7`9aJb^`Uc^`
_5dZd-_5e]b^`  (OX) [10] and fEg�f^hji�f^k
lnm
m-l5o]i^k  (CX), [11].

Because of the flow-shop problem is essentially a permutation schedule problem, a permutation
can be used as the representation scheme of chromosomes, which is the natural one for a
sequencing problem. The permutation representation, also called p7q9rJs^q�q
sutUq
sWv-sWwyx{zRxM|jp5w , may lead to
illegal offspring if the traditional one-point crossover operator is used. Reeves [13] proposed a
hybrid approach, which inserts a chromosome as a seed in the initial population generated by the
NEH heuristic algorithm.  He suggested genetic operators in his implementation what he called}n~J�^�E�^�J�M� �;}=�M~y���^�
}n�
�-}5�]�^�  (OCPX) � Reeves tested his GA  on Taillard’s benchmarks [14] and
concluded that simulated annealing algorithms and GAs produce comparable results for the �5�j�5����Z� �9� �-�^�=�7�W�J�^�M���  problem for most sizes and types of problems, but GAs perform relatively better
for large problems and reach a near-optimal  solution more quickly.

Another way to face a problem involving permutations is by using �J�^�^�5�J�^�9   (Grefenstette [7]).
Under this approach a chromosome gives instructions to a decoder on how to build a feasible
solution. Even if decoders are mainly used in other constrained problems, we discuss a decoding
scheme based on ordinal representation because it is easy to implement and produces feasible
offspring under different conventional crossover methods making unnecessary the use of penalties
or repair functions.

In EAs the common approach is to operate once on each mating pair after selection. Such
procedure is known as the SCPC (Single Crossover Per Couple) approach. But in nature when the
mating process is carried out, crossover is applied many times and the consequence is a multiple
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and variable number of offspring. ¡�¢5£¥¤{¦ §?£j¨ª©^«9¬®­9­-¬®¯]¨-«�§;¨W«�©-¬5¢9§?£j¨  (MCPC) [5,6] was applied to
optimize classic testing functions and some harder (non-linear, non-separable) functions. For each
mating pair MCPC allows a variable number of children. In those earlier works it was noticed that
in some cases MCPC found better results than those provided by SCPC. Also a reduced running
time resulted when the number of crossovers per couple increased, and best quality results were
obtained allowing between 2 and 4 crossover per couple. Moreover, seeking for exploitation of a
greater sample of the problem space, as an extension the multi-recombination can be applied to a
set of more than two parents. In Eiben’s  °�±5²j³M´ µ1¶7·
¸Z¹J³ (MP) approach [4], offspring creation is based
on a larger sample from the search space and consequently larger diversity is supplied. This can
help to avoid premature convergence. Eiben proposed, three scanning crossover (SX) methods;º®»7¼ ½®¾�¿ZÀÂÁWÃ
Ä5»5»7¼M»]ÅÆÃ-¿9¾®Á
Á
¾5Ç^È-¿ , É7Ê^Ê-Ë5Ì
Ì9ÍWÎ7Ê^Í�Ï®Ð7Ñ
ÍWÒÓÑ
ÊWÐ5Î�Î7ÔMÎ]Õ  and Ö®×jØÚÙJÛZÜ
ÜÞÝ®ß5Ü-Û
àáÜ-â
ß=Ù�Ù7×{Ù�ã  generating a
single offspring. On different function optimization different versions of scanning crossover
showed different behaviour. Following this idea and to improve performance, ä�å7æèçMé ê;æjë�ì^íZî5ï
ï-î5ð]ë^íñï
înò�ä�å7æuçóé ê;æjë�ê?ôDí
ëWòyçÚï  (MCMP) [2,3],  allows multiple recombination of multiple parents underõWöW÷7ø7øJùMø5úûö^ü
ýnõ
õ-ý5þ]ÿ^ü  (SX), expecting that exploitation and exploration of the problem space be
adequately balanced .
Recently we implemented MCMP-STUD where a stud (breeding individual) is selected for
recombining with a subset of parents from the old population. The members of this mating pool
subsequently undergo multiple crossover operations. Setting of parameters ���  (number of
crossovers) and ���  (number of parents) in a multirecombinated evolutionary algorithm remained as
an open question in previous works; they were empirically determined. In 
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 the parameter value is modified according with a deterministic rule, without any feedback
of the searching process performed by the strategy. In the initial stages of the evolutionary process
exploration is necessary while in the final stages exploitation of the relevant search space areas is
advisable. Consequently, in the experiments, "�# starts with a low value and then increases while $�%
starts with a high value and then decreases during the evolutionary process. The deterministic rule
is a lineal function of the current generation number. Another researchers proposed &('�)�*,+�-�.
/0 )�12)�3�/
+�/
154
687�+�1�6:9   and ;�<
= >@?�A�?�B�C�D�E
<GF�?�H�?JI�<
C�<
HLK�M8N�C�HOM�=�P [9] In the first case some feedback
information of the searching process is used to determine the direction and magnitude of the
change in the parameters, on the second case the parameters to be adapted are codified within the
chromosome and undergo genetic operations so the best individuals of the population have better
chances of survival and reproduction. Hence it is expected that better parameter values be more
intensively propagated.

QJR�S:TVU�SJWVXZY�SJ[]\_^a`V[cbdWeSf^hgeif\_^
j

All the above cited approaches were tested on a selected sets of Taillard [14] instances for the flow
shop scheduling problem. Given k  jobs and l  machines we run the experiments for the many
instances of each of the following (m x n ) problem sizes: 20x5, 20x10, 50x5, 50x10. For  each
instance a series of at least ten runs  were performed. Besides, all the EAs used the following
parameter settings: Population size: 100, Crossover Probability:  0.65, Mutation Probability: 0.01,
Maximum No. of Generations: 100 and elitism was applied, mantaining through the evolution
process  the best individual found. As an indication of the performance of the algorithms the
following relevant variables were chosen:

oqp�rhs�t
: It is the percentile error  of the best found  individual when compared with the benchmark

upper bound  for the optimal makespan. It gives us a measure of how far we are from the upper
bound.uwv]x�v

: It is the percentile error  of the final population mean fitness when compared with
bencharmk  upper bound for the optimal makespan. It tells us how far for the average indivual is
from that upper bound  makespan benchmark.



yJz�{}|a~a{}�J�]�
�Z|a~]�
�

The multi-recombinative approaches, MCPC and MCMP, applied to the Flow Shop Scheduling
Problem were tested under different chromosome representation: permutations and decoders. All
the evolutionary approaches were tested for many instances of selected FSSP problem sizes. All
methods including multirecombination outperform SCPC regarding quality of results (best and
average individuals) and speed to find near optimal solutions, in the case of permutation better
results were obtained.
In the case of MCMP-STUD approach [16], one of the latest variant of the multi-recombinative
family applied to the Flow Shop Scheduling Problem preliminary results are promising and showed
its potential by providing new near-optimal solution for the whole set of  instances selected for
testing. In this approach the main objective is to improve quality of results including a significant
set  of schedules which  their objective values are much closer to that corresponding to the best
individual. This later feature also provides fault tolerance, because if eventually the dynamics of
the system impedes using the best solution found then a better set of alternative solutions are
available. Beside elitism, the presence of the stud ensures to retain good features of previous
solutions. In the case of MCMP the open question about optimal (��� , �:� ) combination remains. We
are implementing dynamic control and self adaptation of parameters, and investigating the effect of
using alternative operators to test the method in larger benchmarks.
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