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Nearly all practical scheduling problems can be described in terms of the job-shop scheduling
problem, in which L  jobs are to be processed by M  machines. Each job will have a set of constraints on
the order in which machines can be used; moreover the processing time on each machine is specified
for each job. The job-shop scheduling problem consists in finding a sequence of jobs on each machine
in order to minimise a given objective function. In the case here considered, it is the minimization of
the makespan.
A crucial aspect of the research on the job-shop scheduling problem [4, 14, 16] is the method used to
encode schedules. Evolutionary algorithms, when applied to scheduling, visualises schedules (the
solution of a JSSP) as individuals of a population.
A schedule could simply be a list specifying the order of the operations to be performed by each
machine. But simple crossover applied to such strings would nearly always result in illegal offspring
with some operations missing, others represented twice, etc. Hence more sophisticated crossover
operations are needed. Many other GA applications to scheduling problems were done by others, such
as, [10], [6] and [5].
From the representation perspective many evolutionary computation approaches to the general
scheduling problem exists. According to solution representation these methods can be roughly
categorised as NPORQ�NTSVUXWZY  and [�\T]V^X_Z`a]V^cb�]V^ede^ef7`hg7`P\Tijf  ([2, 1]).
In direct representation [3], the schedule produced is an individual of the evolving population.
Decoder procedure is not necessary. The only method that performs the search is the evolutionary
algorithm because the represented information comprises the whole search space. The problem arising
with this kind of representation is to design specific genetic operators.
In the case of indirect representation of solutions a transition from chromosome representation to a
legal production schedule has to be performed. A schedule builder, who guarantees the feasibility of a
solution, carries out this transformation and its work depends on the amount of information included in
the representation. In this case the algorithm works on a population of encoded solutions.
Until this moment, we have been concentrated in the use of four different representations: job based
representation (JBR) [12], operation based representation (OBR) [9], priority dispatching rules (PDR)
[5] and decoders (Dec). The first two are direct representations while the later ones are indirect
representation.
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If those indirect representations are considered, conventional genetic operators can be applied creating
valid offspring after each recombination operation. Repair algorithms or penalty functions are no
needed, as under other evolutionary approaches.  For example, for PDR and JBR the conventional
one-point crossover can be applied. Instead with JBR the use of PMX [11] is advisable, because
chromosomes are permutations; generally, permutations will yield to invalid offspring by using two
point or multipoint crossover in the sense that some jobs may be missed while some other jobs may be
duplicated in the offspring. A repairing procedure is embedded in this approach to resolve the
illegitimacy of offspring. Something similar occurs with OBR, when a partial schedule exchange
crossover (PSX) [9, 8] is used.
For mutation big creep and swapping is applied when it corresponds.
In [1] a comparative study of different crossovers operators suitable for Dec and JBR were analysed.
PMX, CX and OX were applied to JBR and were compared. PMX works well for this kind of
problem. One-point, two-point and uniform crossovers were used for JBR, where the first one
outperforms the remaining representations.
When priority-rule-based representation is used, the well-known Giffler and Thompson algorithm [7,
15] was incorporated into the evolutionary algorithm. Here, the evolutionary algorithm is used to
evolve a sequence of priority dispatching rules and the Giffler and Thompson algorithm is used to
deduce a schedule from the encoding of priority dispatching rules.
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Some evolutionary algorithms using different chromosome representations and associated operators to
solve selected instances of the JSSP [13] were implemented. From the experiments we can say that
incorporating more domain knowledge inside the chromosome enhance the behaviour of the algorithm
when good solutions are looked for. From all the considered representations, OBR is the best one.
When good results are waited for, an order on goodness of representations can be established. OBR is
in the first place, followed by PDR, JBR and finally Dec.
Future work will be oriented to consider another representations available in the literature for the JSS
problems, besides testing the behaviour with another genetic operators.
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