
Clustering gene expression datawith the PKNNG metri.Ariel E. Bayá, Pablo M. GranittoCIFASIS, CONICET-UNR-UPC/MarselleBv 27 de Febrero 210 BisRosario, 2000 (Repúblia Argentina)
{baya,granitto}@cifasis-conicet.gov.arAbstratIn this work we use the reently introdued PKNNG metri, assoiated with a simpleHierarhial Clustering (HC) method, to �nd aurate an stable solution for the lusteringof gene expression datasets. On real world problems it is important to evaluate the qualityof the lustering proess. Aording to this, we use a suitable framework to analyze thestability of the lustering solution obtained by HC+PKNNG. Using an arti�ial problemand two gene expression datasets, we show that the PKNNG metri gives better solutionsthan the Eulidean method, and that those solutions are stable. Our results show the po-tential of the assoiation of the PKNNG metri based lustering with the stability analysisfor the lass disovery proess in high�throughput data.1 IntrodutionClustering is a fundamental topi in mahine learning and pattern reognition. Its �nal aim isto �nd any arbitrary struture hidden in a set of data, whih is ritial in biologial appliationslike miroarrays data analysis [3℄. In those ases, when researhers evaluate thousends of genesat one, it is important to provide them with analysis tools that an help to understand thedata [1, 3℄.In a previous work we introdued the Penalized K�Nearest�Neighbor�Graph based metri(PKNNG)[16℄, a new method apable of �nding lusters loated on non-linear manifolds (non-linear low dimensional surfaes embedded in high dimensional spaes). PKNNG follows the ideabehind ISOMAP [8℄, Loally Linear Embedding [9℄ or Laplaian Eigenmaps [11℄, looking for loalneighborhood relations that an be used to produe low dimensional projetions of the data athand. The new metri naturally extends the appliation of most previously introdued lusteringmethods [4℄ to these ases. The PKNNG algorithm has two stages. Following ISOMAP, it �rstsearhes for loally uniform manifolds (whih ould be disjoint) and then a onnetion algorithmis used to group the disjoint manifolds found in the �rst stage. Using three arti�ial problemswe showed that the method an easily �nd luster with arbitrary shapes in high dimensionaldatasets. 1



The main drawbak of lustering methods is that they always �nd a data grouping, evenwhen there is none. We need methods that an �nd natural groupings, the strutures thatan be truly inferred from the data and not obtained as an artifat of the lustering algorithm.Unfortunately, there is no general onsensus yet of the de�nition of natural groupings, butseveral relevant works [12, 7, 13℄ relate the onept with lustering solutions that are highlystable under small perturbations. Ben-Hur & Guyon [12℄ introdued a method for assessingstability, based on lustering perturbed versions of the dataset under analysis and evaluatingthe stability of the solutions. Using arti�ial and real world examples, the authors showedthat their algorithm is a valid method for deteting stable strutures, also deteting the lak ofstruture in the data. Monti et. al. [13℄ used a similar onept, also showing good results, buttheir method was developed as a visual tool.Inherently hierarhial algorithms (HC) [5℄ are more stable than partitional algorithms. Di-visive HC methods have a "bottom-up" approah to onstrut a dendrogram, where eah levelof the dendrogram represents a partiular lustering of the data. Thus, onseutive levels of thedendrogram are related. Partitional algorithms [6℄, on the other side, determine a �xed numberof lusters, all at one starting from k random lusters, searhing iteratively for a loally optimalsolution of the lustering problem. As a result, solutions with onseutive k are not related asin dendrogram.In this work we evaluate the possibility of using the new PKNNG metri to �nd naturalgroupings in gene expression datasets. We ouple the new metri with a hierarhial lusteringmethod, in order to �nd more stable solutions. We evaluate the stability of our lusteringsolutions using the proedure introdued by Ben-Hur & Guyon. We show the potential of thissetup with an arti�ial dataset, and then we apply it to �nd natural groupings in two geneexpression datasets.The rest of this paper is organized as follows. In Setion 2 we review the Isomap-basedmethod to onstrut a fully onneted non-linear manyfold, the PKNNG metri, and we disussin detail the stability analysis developed by Ben-Hur & Guyon. In Setion 3 we apply this setupto luster the three datasets and evaluate their stability, and also we ompare our results tothose previously obtained with other methods. Finally we draw some onlusions and disussfuture lines of researh.2 Methods2.1 The PKNNG MetriIn previous works [15, 16℄ we introdued an ISOMAP based metri that is useful to opewith lusters of arbitrary shape. The method follows the idea behind Isomap [8℄, whih statesthat in a urved manifold the geodesi distane between neighbouring points an be orretlyapproximated by the Eulidean input spae distane, but for faraway points geodesi distanesare better approximated by adding a series of short hops between neighbouring points.In Table 1 we show the PKNNG algorithm. PKNNG takes as inputs a dataset, a givenonnetion method and the value of k, the number of neighbours to be used, and outputs adistane matrix, whih is onstruted measuring distanes in a spei�ally reated graph.



Input: a Dataset {Data}, {k} the number of neighbours and {method} a onnetion methodOutput: {D} the distane matrix.Proedure:1. Obtain the k�nearest�neighbours�graph using K neighbours: KnnGraph = Knng(Data, k)2. Remove outlayers and symmetrize: KnnGraph =Clean(KnnGraph)3. Connet the graph with the seleted method: GraphPKNNG = connect(KnnGraph, method).4. Calulate all pairs distanes using the graph: D = Distances(GraphPKNNG)Table 1: The PKNNG algorithmAs a �rst step, the method searhes for loally dense strutures. The goal of this stage is toobtain several disjoint strutures, where eah struture gather highly similar points. To this end,PKNNG onstruts the k�nearest�neighbours�graph of the data, i.e. the graph with one vertexper observed example, and ars between eah vertex and its k near neighbours with weightsequal to the Eulidean distane between them1. Then, using an appropriate strategy [16℄, weadd edges with a penalized metri, in order to onnet all strutures, giving as result a singleonneted graph. Using this graph we an now ompute geodesi distanes between farawaypoints using omputational e�ient algorithms like Floyd or Dijkstra [10℄.As we mentioned before, after step 2 in Table 1 we an have several disjoints subgraphs.The number of strutures and their onnetion degree are diretly related to the number ofneighbours k used to onstrut the knn�graph. In all our previous simulations [16℄ we veri�edthat this method aptures the true topology of the data for a wide range of values of k. We alsoveri�ed that the key fator of the method is the use a penalized metri for the edges added inthe step 3 of Table 1:
w = d ed/µ, (1)where w is the graph weight orresponding to the added edge between strutures, d is theEulidean distane between the verties being onneted by that edge and µ is the mean Eu-lidean distane between nearest neighbours in the graph. For the purpose of this work we usethe AllSubGraphs onnetion method [16℄, whih onnets eah struture to all the remainingstrutures through their nearest pair of points, of ourse using the penalized metri.2.2 StabilityIn this setion we present the stability analysis introdued by Ben-Hur & Guyon [12℄. Themethod is based on a simple idea: If a problem has a natural grouping, we should be able toarrive to that solution starting from perturbed versions of the dataset. Or, equivalently, if wefound the same solution starting from slightly diverse datasets, that solution should not be anartifat introdued by the lustering method. They propose to reate perturbed datasets bysub-sampling the original data, luster eah one of them, and measure how similar the diverse1After this proess we eliminate outliers from the graphs. We onsider that an ar is an outlier if it is notreiproal (i.e. one of the vertex is not a k-nn of the other) and the length of the ar is an outlier of its distribution(i.e. if it is bigger than the 3rd quartile plus 1.5 times the inter-quartile distane of its distribution).



lustering solutions are. The authors suggest to evaluate solutions with a growing number oflusters and to selet the stable solution with the biggest number of lusters.In Table 2, we present a high level pseudo-ode of the stability algorithm. The inputs of thealgorithm are Data, whih is the Dataset to be lustered, Kmax, the maximum number lusterto onsider and Rep, the number of resamplings of the dataset to use for eah k. The proeduresoutputs S(i, k), whih is a list that for every k ontains Rep similarities sores. The methoditself starts at line 1 by de�ning f whih is the size of the sub-samples of Data that will beusing. Line 2 sweeps all values of k from 2 to Kmax, then line 3 repeats Rep times the operationsmade for eah k of line 2. This operations onsist of taking two sub-samples of data: sub1 and
sub2, lustering them and then obtaining labels L1 and L2 respetively. From sub1 and sub2 wean alulate the intersetion points and then we an measure their similarity using s(a, b).Assume that is given a dataset X = {x1, x2, x3, ..., xn}, where xi ∈ R

d. The labeling L de�nes
k partitions in X (for example, L an be a lustering method that produes k non-overlappingpartitions S1, S2, ..., Sk of the dataset). Then we de�ne a matrix C (n × n) where:

Ci,j =

{1 if xi and xj belongs to the same luster0 otherwise (2)Two labellings L1 and L2 have a orresponding pair of matries C(1) and C(2). The dotprodut of this pair of labellings would be:
〈L1,L2〉 = 〈C(1), C(2)〉 =

∑

i,j

C
(1)
i,j · C

(2)
i,j (3)This dot produt represents the ommon edges in a graph represented by C(1) and C(2), whihalso tells as whih pairs of points are lustered together. As a dot produt 〈L1,L2〉 satis�es thefollowing inequality: 〈L1,L2〉 6

√

〈L1,L1〉 · 〈L2,L2〉 and so we an derive a normalized form:
cor(L1,L2) =

〈L1,L2〉
√

〈L1,L1〉 · 〈L2,L2〉
(4)where equation 4 is a orrelation similarity measure.The only problem remaining is that the same luster an be assigned a di�erent arbitrarynumber by two di�erent labellings. Altough we follow the framework presented by Ben-Hur &Guyon in [12℄ to this point, they used an aproximated method to solve this problem. Instead,we hoose to use the exat value, whih only requires more omputation [12℄.Also following Ben-Hur & Guyon [12℄, we present the results (the sores orresponding to theset of Rep similarities for eah possible value of k) as plots of umulative distribution funtions(CDF). Stable solutions are funtions loated near the right�bottom orner of CDF plots (withhigh similarities in almost all runs), and unstable solutions lies near the top�left of the plots.The idea is that it should be a notieable gap between the set of CDF urves orresponding tostable solution and the set orresponding to inorret solutions.



Input: a Dataset {Data}, {Kmax} the maximum number of lusters and {Rep} the number of repetitions ofthe sampling proedure.Output: {S(i, k)} a list of {Rep} similarities for eah k, where i = 1, 2, ..., Rep and k = 1, 2, ..., KmaxProedure: cluster(X, k) is a lustering algorithm that takes as input parameters a Dataset X and k a numberof lusters. s(Set1, Set2(Intersect)) a similarity measure between two sets1. f = 0.82. for k in 1 to Kmax3. for i in 1 to Rep4. sub1 = sample fration f of Data5. sub2 = sample fration f of Data6. L1 = cluster(sub1, k). Cluster solution on subsample 1 using k lusters.7. L2 = cluster(sub2, k)8. Intersect = sub1 ∩ sub29. S(i, k) = s(L1(Intersect), L2(Intersect)). Computation of similarity on the intersetion of sub1and sub2.10. end for11. end for Table 2: Stability algorithm.3 Results and DisussionIn this setion we report the results of applying our method to three di�erent datasets, onearti�ial and two real. In all three ases we know the true lasses of the data and we suppose thatthe natural grouping is represented by these lasses. We always ompare the struture foundby the lustering algorithm with the original lasses using onfusion matries. Also, we analyzethe stability of the solutions using the proedure desribed in Table 2. In all experiments we set
f = 0.8 and Rep = 100. As lustering algorithm we use HC with average linkage [5℄. HC has anunwanted e�et, it sometimes produes singleton lusters. To solve this problem we stablished athreshold of 3 points as the minimum numbers of elements that is onsidered to form a luster.3.1 Three�RingsThis is an arti�ial two dimensional dataset omposed by 1200 points. As an be seen onFigure 1, this dataset has �ve true lases, eah one represented by a di�erent olour.We lustered the dataset using the PKNNG metri and the lasial Eulidean metri. In �gure2 we show the stability analysis for PKNNG (left panel) and Eulidean metri (right panel).For PKNNG there are stable strutures for k = {2, 3, 5}. For k = 2 the algorithm separatesthe blak luster at the enter from the other 4 lusters, for k = 3 the lusters orrespond to



Figure 1: The Three�Rings dataset.
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(a) PKNNG 0.4 0.5 0.6 0.7 0.8 0.9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

similarity

cu
m

ul
at

iv
e

(b) EulideanFigure 2: Stability analysis for the Three�Rings Dataset. Left panel: PKNNG metri. Rightpanel: Eulidean metri.the three rings and, �nally, for k = 5 HC with PKNNG metri �nds the right �ve lusters. Asit is stated on Ben-Hur & Guyon [12℄ k is hosen as the bigest value that shows good stability.In this example k = 5 is the right solution. Bigger values of k (k ≥ 5) are onsiderably lessstable. For the Eulidean metri (right panel) we an see that CDF urves for all values of kare tangled. There is no stable solution in that ase.In Table 3 we show the orresponding onfusion matries for �ve lusters, whih is the stablesolution for HC+PKNNG-metri and also the true number of lusters. It is lear from the tablesthat the stable solution found by HC+PKNNG-metri is the right solution, and that HC annot�nd an appropriate lustering using the Eulidean metri.3.2 YeastThe Yeast DNA dataset was introdued by Eisen et. al. [1℄, where they noted that this datasetlustered well. Subsequently, Brown et. al. [2℄ used MYGD funtional annotations to selet themost learnable examples by SVM aording to 5 funtional lasses. As a result they obtained a�ve lass dataset with 208 genes and 79 features (eah feature orrespond to an experiment, and



(a) Eulidean1 2 3 4 55 128 24 0 23 1253 0 126 0 0 742 65 0 28 107 01 0 0 200 0 04 0 141 61 98 0
(b) PKNNG1 2 3 4 55 300 0 0 0 03 0 200 0 0 02 0 0 200 0 01 0 0 0 200 04 0 0 0 0 300Table 3: Confusion matries for the Three�Rings dataset. Rows orrespond to the true lasses,olumns to the resulting lusters.
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(b) PCA - 3 omponentsFigure 3: Stability analysis for the Yeast Dataset. Left panel: PKNNG metri. Right panel:Eulidean metri using the �rst 3 omponents of the PCA projetion.the goal is to luster the genes). The �ve lasses orrespond to Triarboxyli Aid Cyle (TCA,14 genes, lass 0), Respiration hain omplexes (27 genes, lass 1), Cytoplasmatiribosomalproteins (121 genes, lass 2), proteasomes (35 genes, lass 3), and histones (11 genes, lass 4).In this ase we ompared HC+PKNNG-metri in the original 79�dimensional spae withusing HC with the Eulidean metri on the �rst three omponents of the PCA projetion of thedataset. This last setting was found to be optimal in previos works on the yeast dataset [12℄.Figure 3 shows the stability of both approahes. Analizing Panel a (PKNNG), we found a gapbetween the CDF for k = 4 and k = 5. Aording to this, there are stable lustering solutionsfor k = {2, 3, 4} and we should hoose k = 4 as the solution with PKNNG. Analizing panel b(Eulidean on PCA projetion), we found the same kind of gap between CDFs at k = 4 and
k = 5, so for this setting the problem solution is also k = 4. Table 4 presents the onfusionmatries for both settings using four lusters. Both approahes show omparable performaes,though there are small di�erenes. PCA Confusion matrix shows that this method misslasifytwo more patterns, one of lass 3 and one of lass 4, while PKNNG solutions presents twooutlayers (in olumns 5 and 6) that an not be onsidered as lusters, as we stated before.3.3 LeukemiaThis dataset, introdued by Golub et. al. [3℄, is a set of bone marrow samples preparedat the time of diagnosis: 11 samples of Aute Myeloid Leukemia (AML lass), 8 of Aute



(a) PCA - 3 omponents1 2 3 43 8 0 3 02 0 121 0 04 0 0 32 31 0 0 0 270 0 0 2 12(b) PKNNG1 2 3 4 5 63 9 0 2 0 0 02 0 121 0 0 0 04 0 0 33 2 0 01 0 0 0 27 0 00 0 0 0 12 1 1Table 4: Confusion matries for the Yeast dataset.
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(b) EulideanFigure 4: Stability analysis for the AML-ALL Dataset. Left panel: PKNNG metri. Rightpanel: Eulidean metri.Lymphoblasti Leukimia T-linage (T�ALL lass) and 19 of the B-linage (B�ALL lass). RNAprepared from bone marrow ells was hybridized to a Human Genome HU6800 A�ymetryxmiroarray. From the 6817 genes present in the miroarray we seleted 1000 using the methoddesribed by Monti et. al. [13℄. We entered the data (substrating the mean expression of eahgene). The resulting dataset omprises 1000 genes measured on 38 patients, and the goal is touse the genomi expresion information to luster the patients by their desease.In �gure 4 we present the stability analysis for this problem. In the left panel we showthe results of HC+PKNNG-metri and in the right panel of HC with the Eulidean metri.PKNNG shows stable lustering solutions for k = {2, 3}, being k = 3 the atual solution. ForEulidean metri (the original method used by Golub et. al. [3℄) we observe stable struturesfor k = {2, 3, 4, 5} and the solution for this ase is k = 5. This last result agrees to the onepresented by Monti et. al. [13℄, although we applied a di�erent normalization proedure.



(a) Eulidean1 2 3 4 5 6 70 17 1 1 0 0 0 01 0 0 0 8 0 0 02 1 0 0 0 6 2 2
(b) PKNNG1 2 30 18 1 01 0 8 02 1 0 10Table 5: Confusion matries for the AML-ALL dataset.In Table 5 we ompare the onfusion matries for both metris. As we explained before,gropus with two or less samples are not onsidered as lusters, as for example olumns 3 and 4from the left Table. The results for PKNNG (right Table) represent a very aurate solution,whih is very similar to the one obtained by Golub et. al. [3℄. Both solutions (our and Golub's)inorretly assoiates a B-ALL to a T-ALL luster and an AML to a B-ALL luster.4 ConlusionsIn this paper we applied the new PKNNG metri, oupled with a hierarhial lusteringmethod, to �nd aurate and stable lustering solutions for two genomi expression dataset. Af-ter reviewing our metri and desribing a simple method to evaluate the stability of a lusteringsolution (developed by Ben-Hur and Guyon), we used an arti�ial dataset to show the potentialof these methods to �nd stable lustering solutions for problems where lasial Eulidean�metri�based solutions fail.The results on the two dataset under analysis are enouraging. In the ase of the yeastdataset, the PKNNG method found the same stable solution as the Eulidean metri evaluatedon a PCA projetion, and overall returns a slightly better lustering solution. The PKNNGmethod worked diretly over the original spae, avoiding the possible information loss assoiatedwith the linear PCA projetion. For the AML-ALL dataset we obtained the right number oflusters as stable solution, where the original method (Eulidean metri) found more lusters.Evaluating the auray of both methods, again PKNNG produed a better lustering solutionin this dataset.Overall, these results show the potential of the assoiation of the PKNNG metri basedlustering with the stability analysis for the lass disovery proess in high�throughput data.As future work we plan to evaluate other datasets, and to use the full method (PKNNG metriplus stability analysis) in the searh for redued sets of genes that behaves in a oherent way(sometimes alled metagenes).AknowledgementsWe aknowledge partial support for this projet from ANPCyT grants PICT 643 and 2226(2006).Referenes[1℄ Mihael B. Eisen, Paul T. Spellman, Patrik O. Brown, and David Botstein, "Cluster analysisand display of genome-wide expression patterns", PNAS, pp:14863-14868, 1998.
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