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{ahumada,grinblat,uzal,ceccatto,granitto}@cifasis-conicet.gov.arAbstratIn many ritial real world lassi�ation problems one of the lasses has muh lesssamples than the others (lass imbalane). In a previous work we introdued the REPMACalgorithm to solve imbalaned problems. Using a lustering method, REPMAC reursivelysplits the majority lass in several subsets, reating a deision tree, until the resultingsub-problems are balaned or easy to solve. In this work we evaluate the use of threedi�erent lassi�ers oupled with REPMAC. We ompare the performane of those methodsusing 7 datasets from the UCI repository spanning a wide range of number of features andimbalane degree. We �nd that the good performane of REPMAC is almost independentof the lassi�er oupled to it, whih suggest that it suess is mostly related to the use ofan appropriate strategy to ope with imbalaned problems.1 IntrodutionIn many real world lassi�ation problems one of the lasses is represented by a muh lowernumber of instanes than the other lasses, usually know as �lass imbalane� problem. Thissetting is of great importane sine it usually orresponds to ritial appliations, suh as fraudand fault detetion or medial diagnosis [13, 8℄. Typial mahine learning methods are basiallydesigned to learn fairly balaned datasets. When dealing with the lass imbalane problem,those approahes fous mostly on the majority lasses, prediting poorly the minority lassexamples [20℄. This problem has been the subjet of an inreasing number of publiations overthe last years. Also, several international workshops were dediated spei�ally to the imbalanedata problem [1, 12, 16℄.In a previous work [2℄ we introdued the REPMAC (REursive Partitioning of the MAjorityClass) method, a new method to solve the imbalane problem, that ombines unsupervised andsupervised learning. We adopted a �divide and onquer strategy�, as is usually done to solvemultilass problems using a ombination of binary lassi�ers. Using a lustering algorithm, themethod reursively splits the data of the majority lass in two, until the resulting datasets arebalaned or an be easily disriminated. The result of the proess is a deision tree, whih driveseah example to an appropriate balaned lassi�er at a given leaf. We showed in that work thatREPMAC has potential advantages over other strategies, onstruting small trees that are verye�ient lassi�ers. 1



In that previous series of experiments we hose to use linear SVMs [10℄ as lassi�ers. Thateletion introdued potential limitations to the performane of REPMAC. For example, welost the potential bene�ts of using non�linear lassi�ers assoiated with REPMAC. Also, SVMuses an approximation to estimate lass posterior probabilities, whih we need to onstrutROC urves. In this work we evaluate the performane of REPMAC oupled with FlexibleDisriminant Analysis (FDA) lassi�ers [14℄. As SVMs, FDA an produe diverse disriminantfuntions, from high margin linear lassi�ers to very �exible disriminants, also giving aurateestimations of posterior lass probabilities in all ases.The rest of the paper is organized as follows. In the next setion we review previous works onimbalaned datasets. In setion 3 we review the REPMAC method in detail and FDA lassi�ers.Then, in setion 4 we evaluate the ombination of REPMAC with diverse FDA lassi�ers onseveral datasets. Finally, in setion 5 we disuss the results and future lines of researh.2 Related WorkSeveral works introdued solutions to the lass imbalane problem assoiated to partiular learn-ing methods. Chawla et al. [9℄ and Drummond et al. [11℄ desribed spei� methods for deisiontree learning. Zhang et al. [24℄ addressed the problem using k-nn lassi�ers, showing also aninteresting appliation involving information extration from the biomedial literature. A num-ber of papers introdued variants of SVMs [10℄ appropriate for imbalaned problems, followingdi�erent strategies [17, 6, 3, 21℄.The most used strategy to ope with imbalaned datasets, however, is to equalize the om-position of the dataset, either by subsampling the numerous lasses or by oversampling theminority one. A lear advantage of those methods is that they an be used with any lassi�er.The two most simple shemes are random minority oversampling (ROS), where instanes of theminority lass are randomly dupliated, and random majority undersampling (RUS), where in-stanes of the majority lasses are randomly disarded from the dataset. More elaborated (subor over) sampling methods were also developed. For example, Chawla et al. [8℄ introdued anintelligent oversampling method alled Syntheti Minority Oversampling Tehnique (SMOTE).SMOTE adds new, arti�ial minority examples by extrapolating between preexisting minorityinstanes rather than simply dupliating original examples. Batista et al. [5℄ evaluated 10 dif-ferent (sub and over) sampling strategies �nding that the simple ROS oversampling is usuallythe best hoie. They also introdued the use of the area under the ROC urve (AUC fromnow) as a more powerful metri to ompare strategies in these settings. In a reent work, VanHulse et al. [19℄ produed a deep experimental omparison inluding 35 datasets, several overand under sampling strategies and di�erent lassi�ers. Again, they found that the simple RUSand ROS strategies are di�ult to improve on and that the results of di�erent strategies arelassi�er-dependent.Reently, Yen and Lee [22℄ introdued a new intelligent under-sampling tehnique basedon lustering the majority lass and then under-sampling it in a luster�balaned way. Asimilar strategy was proposed by Yu et al. [23℄, who under-sampled the majority lass usingthe prototypes of a Kohonen network, but they limited the appliation to SVM lassi�ers. Ina reent tehnial report [7℄, Y.C. Chang proposed to split the majority lass using k-meanslustering, in order to obtain a given number of lusters, eah one of them with a number ofsamples similar to the minority lass. A linear SVM was then �tted to eah balaned problem,and all lassi�ers were then joined using a logisti regression. Even if the method has potentialadvantages over ROS (it uses all the information in the dataset, for example), its results are



The REPMAC MethodInputs:
D+ : The majority lass dataset
D− : The minority lass dataset
Cl() : A lustering method
DF () : A deision funtion (i.e. a lassi�er)Funtion REPMAC(D+, D−, Cl, DF ):1. Apply Cl to D+ to reate D+

1 and D+

22. For i = 1 to 2:IF Stopping�Criteria(D+

i
, D−) is met THENBuild a lassi�er DF (D+

i
, D−)ELSECALL REPMAC(D+

i
, D−, Cl, DF ) :Figure 1: The REPMAC algorithm.usually no better than the simpler ROS.3 The REPMAC MethodREPMAC is based on a simple idea: To divide the majority lass intelligently into several lustersin order to transform the imbalaned problem into a set of balaned problems. In Figure 1 weshow a sheme of REPMAC. The method follows the typial lassi�ation tree strategy: First,it splits the majority lass in two lusters using any appropriate method (k-means lustering [18℄in this ase). Then it analyzes eah of the lusters to hek if they meet any of a set of stoppingriteria. If they do not, it goes bak to the �rst step (reating thus a reursive proess) andapplies again the lustering method. When one of the lusters meets the riteria, the method�ts a lassi�er to the resulting dataset (i.e. the luster plus the minority lass). The result ofthe proess is a deision tree, with a lustering solution at eah node and a lassi�er at eahleaf.One we have the full deision tree, a new example an be lassi�ed aording to the followingproedure: At eah level of the tree, starting from the root, the example is assigned to one ofthe branhes, aording to the rules of the lustering method (for example, for k-means, lookingfor the nearest entroid). The proedure is iterated until a leaf is reahed, where the exampleis lassi�ed using the disriminant funtion assoiated to that leaf.The seletion of an appropriate stopping riteria is one of the keys of the method. Thesimplest ontrol is to hek the degree of imbalane of the resulting sub�problems after thelustering proedure. If we de�ne the Imbalane Level (IL) of a potential leaf as the ratiobetween the number of samples of the majority and the minority lass, we an stop the reursivesplitting if IL ≤ SIL, for a given value of SIL. Of ourse, higher values of SIL will produe smallertrees, but also the resulting sub-problems will be more imbalaned.In our previous work [2℄ we also introdued a more elaborated stopping riteria based onthe Performane Level (PL) of eah sub-problem. To estimate PL we used an internal ross-validation (CV) proedure. We showed that this riteria produes smaller trees but with somederease in auray. We leave the evaluation of this riteria oupled with FDA methods to afuture work.



Table 1: Details of the 7 datasets used in this work. The �p� olumn shows the number ofinputs, �n� the total number of samples and �ratio� the fration of samples in the minority lass.Dataset p n ratio (%)nursery (3) 8 13460 2.53letter (A) 16 20000 3.95ar (3) 6 1728 3.99glass (3) 9 214 7.94pendigits (5) 16 10792 9.60satimage (4) 36 6435 9.73optdigits (8) 64 5620 9.863.1 Classi�ersIn our �rst study of REPMAC we used a linear SVM [10℄ to build the di�erent lassi�ers. Inthis work we will also use Flexible Disriminant Analysis for that task. FDA was introduedby Hastie et al. [14℄ as an improved version of lassial Fisher's LDA [15℄. LDA is a standardtool for lassi�ation and dimension redution. Roughly, it seeks a linear ombination of thefeatures, whih maximizes the ratio of its between-lass variane to its within-lass variane.After that, lasses are typially assigned aording to Mahalanobis distanes to lass entroidsin this transformed spae. FDA is a regularized version of LDA, more appropriate for noisy,high�dimensional situations. The method is based on reasting the LDA problem as a regularizedlinear regression one, and then to apply any of the many well-known tehniques available forthis task. We seleted here two versions of FDA. First, we use standard Ridge Regression(GenRidge) [15℄, whih has only one free parameter, the ridge onstant λ that penalizes highvalues of the �tted variables. λ plays a similar role to the C parameter in SVMs, regulating themargin of the solutions. We also use regression splines (MARS) [15℄ as regression method forFDA. Mars allows FDA to produe e�ient non�linear lassi�ers (equivalent to using kernelswith SVMs). In both ases, GenRidge and Mars, the method produes aurate estimations ofthe lass posterior probabilities.4 Experiments4.1 DatasetsWe used 7 di�erent datasets to perform our experiments, all obtained from the UCI repository[4℄. In Table 1 we show their main harateristis. All 7 are multilass problems, whih weonverted to highly imbalaned binary problems by seleting a given lass as the minorityone and ombining all other lasses to form the majority lass. In Table 1 we show betweenparenthesis the lass seleted as minority. To have a fair omparison, the seleted datasets spana large variety of situations, from small to very large datasets, from imbalane ratios of 1/40 to1/10 or from 6 to 64 variables.
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Figure 2: Error levels (1-AUC) for REPMAC with FDA�GenRidge using di�erent values of
λ. Units are relative to the Plain method (whih is set to 100). We inlude ROS results asreferene.4.2 Experimental setupIn this work we evaluate the performane of REPMAC oupled with di�erent lassi�ers: linearSVM, FDA�GenRidge and FDA�Mars. We seleted for omparison 3 di�erent methods forimbalaned problems: as base (plain) method, we use diretly eah of the lassi�ers with theoriginal datasets. We also seleted standard ROS (with the right oversampling rate as to balanethe dataset) and the REPMAC method. In all ases (when it is not explained otherwise) weoptimized free parameters, like C or λ, using internal ross-validation over the training set.In all experiments we used a 5�fold Cross�Validation setting, whih was repeated 4 times asto average 20 runs of eah method. In all ases the same splits in train and test sets were usedfor all methods and lassi�ers.As performane measure we used the AUC, as suggested by Batista et al.[5℄. The AUC isappropriate for imbalaned problems, evaluating at the same time the behavior of the methodsat di�erent operating points. When we use �gures to show the results, we preferred to show anerror measure, (1 - AUC), for eah method. The di�erene between error levels are easier tovisualize. In all �gures we use units relative to the performane of a given base method (i.e., weplotted 100 × Error(method)/Error(base)).



Table 2: Area under the ROC urve (AUC) using linear SVM lassi�ers. The result orrespondto the 3 methods under omparison, evaluated over the 7 datasets used in this work.Dataset Plain ROS REPMACnursery 0.9862 0.9863 0.9955letter 0.9809 0.9876 0.9942ar 0.8923 0.9614 0.9920glass 0.6899 0.8748 0.7748pendigits 0.9723 0.9769 0.9982satimage 0.7137 0.7587 0.9338optdigits 0.9827 0.9821 0.99514.3 Comparative resultsAs a �rst experiment, we evaluated the in�uene of the regularization of the lassi�ers over theperformane of REPMAC. We used FDA�GenRidge in this ase, with three very di�erent valuesof λ. Figure 2 show the orresponding results. Only in 2 datasets (glass and ar) the resultsare highly dependent on λ. It is also interesting that in 6 out of the 7 datasets the best resultorresponds to the lowest regularization (λ = 1). This is probably related to a redution in therisk of over�tting when disriminating the small sub�problems produed by REPMAC.We then ompared all lassi�ers and methods. For REPMAC we used in this ase a simplestopping rule: IL ≤ 1.15. In Tables 2, 3 and 4 we show the AUC results for SVM, FDA�GenRidge and FDA�Mars, respetively. In eah Table we highlighted the best result for eahdataset. The SVM results were taken from our previous work [2℄. There are only minor di�er-enes among the three tables. In all ases ROS produes only a small improvement over thePlain method, exept for the Glass dataset, where it shows the best performane. In 6 out ofthe 7 evaluations REPMAC showed the best performane for linear SVMs (Table 2). A similarbehaviour an be observed for the two new lassi�ers, whih indiates that the good results ofREPMAC are almost independent of the lassi�er being used.The satimage dataset is an interesting example where there is a big di�erene between FDA�Mars and the two linear lassi�ers. This indiates that the problem has a non�linear deisionboundary between the lasses. For REPMAC, however, the di�erene is onsiderably redued,probably beause the method has divided the non�linear boundary into several almost linearpiees.In Figure 3 we show a more diret omparison among the three lassi�ers for the REPMACmethod. In two datasets SVM works best, in other two FDA�Mars is better, and both lassi�ershave the same error in other two datasets. In only one dataset FDA�GenRidge performs best,but in that ase REPMAC is worse than simple ROS. Overall, there is an equivalene betweenlinear SVM and FDA�Mars.



Table 3: Area under the ROC urve (AUC) using FDA-GenRidge lassi�ers. The result orre-spond to the 3 methods under omparison, evaluated over the 7 datasets used in this work.Dataset Plain ROS REPMACnursery 0.9824 0.9830 0.9923letter 0.9880 0.9821 0.9917ar 0.9614 0.9622 0.9900glass 0.8231 0.8575 0.8020pendigits 0.9617 0.9751 0.9965satimage 0.7519 0.7542 0.9306optdigits 0.9770 0.9823 0.9943Table 4: Area under the ROC urve (AUC) using FDA�MARS lassi�ers. The result orrespondto the 3 methods under omparison, evaluated over the 7 datasets used in this work.Dataset Plain ROS REPMACnursery 0.9840 0.9797 0.9912letter 0.9766 0.9886 0.9942ar 0.9635 0.7850 0.9887glass 0.7126 0.8470 0.7402pendigits 0.9879 0.9533 0.9985satimage 0.9221 0.9396 0.9396optdigits 0.9850 0.9745 0.99514.4 Stopping riteriaAs we showed in our previous work, the omplexity of REPMAC (the depth of the tree and thenumber of leaves produed) an be regulated by hanging the stopping riteria. The simplerontrol is to hek the degree of imbalane IL of the sub�problem under evaluation. For Tables2 to 4 we have used SIL = 1.15, i.e., we stopped the splitting when the ratio between majorityand minority lass is less than 1.15. To evaluate the in�uene of SIL in the performane ofREPMAC, we repeated the experiments desribed before using also SIL = 1.50 and SIL = 2.00for FDA�GenRidge. Figure 4, top panel, shows the orresponding error levels in units relativeto the performane of the ROS method with the same lassi�er. Figure 4, mid panel, shows theaverage number of nodes (over the 20 runs of the method) reated by REPMAC with di�erent
SIL values, and the bottom panel of Figure 4 shows the average depth of the reated trees. Aswe had observed in our previous work for SVM and a subset of these datasets, in most asesthere is a positive orrelation between error levels and SIL values. All the error levels show
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Figure 3: Diret omparison of REPMAC results for three di�erent lassi�ers. The �gure showserror levels (1-AUC) in units relative to the Plain�SVM method (whih is set to 100).an inrease, but in all ases (with the exeption of the anomalous Glass dataset) they remainlearly better than the ROS method (all values are learly lower than 100). The redution inomplexity produed by the use of higher SIL values is remarkable, in partiular in the numberof nodes.5 ConlusionsIn this work we evaluated the performane of REPMAC oupled with di�erent lassi�ers: linearSVM, FDA�GenRidge and FDA�Mars. When dealing with imbalaned problems, REPMACreursively split the majority lass in several subsets, using a lustering method, produingseparate balaned sub-problems that an be more easily disriminated. To evaluate the threelassi�ers we used 7 datasets (with di�erent harateristis) from the UCI repository.In several experiments we evaluated diverse aspets of the method, as the dependene withthe regularization of eah lassi�er, the non�linear quality of them, or the use of di�erentstopping riteria.The more important �nding of this work is that all those experiments showed that theperformane of REPMAC is similar in all ases, being only slightly lower when using FDA�GenRidge lassi�ers. This suggests that REPMAC's suess is independent of the lassi�erseletion, being more related to the use of an e�ient strategy to solve imbalaned problems.As future work we plan to evaluate the use of other lustering methods, appropriate forinteresting domains like genomis, proteomis or text mining, and the appliation of post�pruning tehniques to the trees developed by REPMAC. Also, we are evaluating the possibilityof using REPMAC in multilass imbalaned problems.
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