XIll Congreso Argentino de Ciencias de la Computacion

FPGA-Based Digital Filters Using Bit-Serial Arithmetic

Monica Arroyuelo
Jorge Arroyuelo
Alejandro Grosso
Departamento de Informatica
Universidad Nacional de San Luis
Republica Argentina
{mdarroyu,bjarroyu,agross@unsl.edu.ar

Abstract

This paper presents an efficient method for implementatfatigital filters targeted FPGA architectures. The
traditional approach is based on application of genergdqae multipliers. However, multipliers implemented
in FPGA architectures do not allow to construct economicitid-ilters. For this reason, multipliers are
replaced by Lookup Tables and Adder-Substractor, whichBis8erial Arithmetic. Lookup Tables can be
of considerable size in high order filters, thus intercotinactechniques will be used to construct high order
filters from a set of low order filters. The paper presents red\examples confirming that these techniques
allow a reduction in logic cells utilization of filters impteentation based on Bit-Serial Arithmetic concept.

Keywords: Digital Filter, FIR-Filter, FPGA, IIR-Filter, Lookup Tabk.

1 INTRODUCTION

A Digital Filter is a Linear Time Invariant (LTI) system, wé¢h performs numerical calculations on
sampled values of the signal. The analog input signal musthie sampled and digitized using an
Analog to Digital Converter (ADC). The resulting binary nhers, representing successive sampled
values of the input signal, are transferred to the filter,aitgarries out numerical calculations on
them. These calculations typically involve multiplyingetmput values by constants and adding the
products together. If necessary, the results of theselesilmos, which now represent sampled values
of the filtered signal, are output through a Digital to Anafognverter (DAC) to convert the signal
back to analog form. In the last years digital filters havenbeognized as primary digital signal
processing (DSP) operation.

There are two basic types of digital filters, Finite Impulsesponse (FIR) and Infinite Impulse
Response (lIR) filters. FIR and IIR filters are used in manytdigignal processing systems to per-
form a variety of signal filtering and conditioning functmnAn IIR filter is capable of emulating the
transfer functions of analog continuous-time filters, sashow-pass, band-pass, high-pass, and all-
pass (phase-shifting) types of filtering. IIR filters exh&milar phase characteristics as their analog
counterparts. For arbitrary transfer functions with linphase response, FIR filters are utilized and
have no equivalent in the analog domain.

Il Workshop de Arquitecturas, Redes y Sistemas Operativos 113

XIll Congreso Argentino de Ciencias de la Computacion

On the other hand, the advances in Field Programmable GaaégyA(FPGA) technology have
enabled these devices to be applied to a variety of apmitatraditionally reserved for Application
Specific Integrated Circuits (ASICs). The advantages ofRR&A approach to digital filter imple-
mentation include: higher samples rates than those that\aiéable form traditional DSP chips,
lower costs than an ASIC for moderate volume applicationd,aae more flexible than the alternate
approaches.

A filtering function is usually carried out by a number of niplication operations, which are
expensive in terms of time and space. Therefore, sevelfahitpees are used to minimize the hard-
ware needed to implement a filter. A technique widely used ieplace Bit-Parallel by Bit-Serial
structures.

Bit-Parallel structures process all the bits of input dawaustaneously at a significant hardware
cost. Bit-Serial, by comparison, process the input onetét tme. The advantage of the last one
is that all the bits pass through the same logic, resulting hhuge reduction in the required hard-
ware. Typically, the Bit-Serial approach requirgs:'" of the hardware required for the equivalent
n-bit parallel design. The price of this logic reduction iatlserial hardware take clock cycles to
execute, while the equivalent parallel structure execuatese clock cycle. Since for certain classes
of applications, FPGA utilization is high, performance Igoare achieved while using economically
attractive FPGA devices. For applications that requirésjgeed performance, Bit-Parallel structures
yields the highest performance.

This paper illustrates a new approach to the design of diifjiizrs using Bit-Serial Arithmetic,
which will reduce the logic cells utilization in an FPGA caaterably, it allow us to construct high or-
der filters (FIR-filters require a large number of coefficgett produce adequate frequency response,
so these filters can occupy all the FPGA), or have others@gins running on our FPGA simultane-
ously. Although this approach degrades the performancher&fithis degradation is not considerable
for the practical purposes since the most applications doaguire high speed performance. Others
approaches can be see in [1],[2],[3],[4] and [5], which kb&gh performance but do not reduce the
logic cells utilization significantly due to the fact thaese try a balance between time and space.

2 |IR-DIGITAL FILTERS

IIR-Digital Filters are widely used in digital signal pra&sng applications. They compute an output
from a set of input samples and a set of previous outputs,wdre multiplied by a set of coefficients
and then added together to produce the output. The digted BEhaviour is determined by the filter
coefficients. A general IIR-filter is characterized by thikdwing equation:

y" = apx" + a1$n71 + -+ apx"*p + blyr“l 4+t bpynfp 1)

wherep is the filter order, the,,’'s andb,’s are coefficientsy™ is the filter input at the time step
andy” is the filter output at the time step

Il Workshop de Arquitecturas, Redes y Sistemas Operativos 114

XIll Congreso Argentino de Ciencias de la Computacion

Expanding the equation 1 fgrf* in terms of the individual bits for the two-complements (2'C
operand&: = (37(0).3:‘(,1).%’(,2)....:L‘(,l))g andy = (y(o).y(,l)y(,g)....y(,l))Q we get [6]2

-1 -1
nfl j .n—1 n— i n—
y" —a0<—:1: —|—Z2J)—l—al(() —1—22%(].))+---+ap<—x(0)p+223x(j)p>

j=—1 j=—1 j=—1

+b (Yoy +ZQj?ﬂ)) '+bp(() +22jy<g>>

j=—l j=—I

(2)

Definef(s,t,...,u,v,...,w) = ays+ait+---+a,u+byv+---+b,w, wherest,. ..uuv,. .., andw
are single-bit variables. If the coefficients anebits constants, then each of t2@@*! possible values
for f is representable ifm + [log, (2p + 1)]) bits, as it is the sum dp + 1) m-bit operands. These
values can be precomputed and stored ([i(2&) x (m + [log, (2p + 1)]))-bit table.

Using the functionf, we can rewrite the expression fgt of the equation 2 as follows:

-1
_ j n n—1 n—p ~n—1 n—p n n—1 n—p ~n—1 n—p
= (Zij(fC(j)’f(j) e TG HYG)))> = F @y 2070 Yo Y0)

j=—1
(3)
Figure 1 shows the filter architecture (using Bit-Serialtimetic) to compute the equation 3,
where the mapping is presented as a Lookup Table (LUT) that includes all theiptslinear com-
binations of the filter coefficients, as was mentioned pnesiyn

¢ serial input r; \
x(n) f
¥ " > *
shitreg,] XD ROM
x(1) . (LUT) serial
{ ----- — . / e outpu}t
Snitreg] X("-P) A
(O - T+ ol | —
> 2 SK ¥
S Shift(rl)?)eg ol
y(n—p) - —|
y(n=1)

Figure 1: [IR-Digital Filter Architecture.

The architecture shown in Figure 1 has bit serial input anipdudtu The ROM memory is addressed
by the Least Significant Bits (LSB) of thés andy’s shift registers, and its output together with the
S register value are fed to treddersubstractor where are processed. Then tdder-substractor
result is accumulated in theregister again. Aftet + 1 cycles the obtained value is the filter output,
which is stored into the(1) shift register for future computations. Then, theegister is reset in 0
and a new accumulation cycle begins.

Il Workshop de Arquitecturas, Redes y Sistemas Operativos 115

XIll Congreso Argentino de Ciencias de la Computacion

We can construct high order filters by using the previouslgtio@ed method, but the size required
for the LUTs will grow exponentially with the number of filtepefficients. For this reason, a scheme
is shown to construct high order IIR-filters making use of gheperties of LTI systems such as
association and commutation. The associative property means that we may analyze a ocatgdi
LTI system by breaking it down into a number of simpler subsys. The commutative property of
LTI systems means that if subsystems are arranged in serieascade, then they can be rearranged
in any order without affecting overall performance [7]. Téiere, interconnecting low order sub-
filters appropriately we can make high order filters. Thifitegue permits us to use a set of smaller
LUTs instead one huge LUT, which reduces considerably theespccupied in an FPGA. Figure 2
shows the interconnection scheme, where the input, theibatyl the internal connections (between
the filters) are serials, and tl@-filter output is connect to th@ + 1)-filter input straight forward.

— > > — -~ —> > serial
[IIR IIR IIR IIR
ot | (@) @) (k-1)) | outpat

Figure 2: High Order lIR-Filter Interconnection Scheme.

For example, if we need to build a fifth-order lIR-filter we case two second-order IIR-filters
and one first-order IIR-filter. This allows us to use two 32rgmables and one 8-entry table instead
of one 2048-entry table.

3 FIR-DIGITAL FILTERS

In a FIR-Digital Filter the output depends only of presend gmevious input samples, which are
multiplied by a set of coefficients and then added togethpraduce the output. The filter behaviour
is determined by the filter coefficients. A general FIR-fileecharacterized by the following equation:

y" = apr" + a2t -+ aa" P 4)

Wherep is the filter order, the,’s are the filter coefficients;” is the input signal at the time step
n, andy™ is the output signal at the time step The major disadvantage of these filters is that usually
a large number of coefficients are required to control adetyitheir frequency response. Practical
FIR-Filters typically need between 10 and 150 coefficiefitss make them slower in operation than
most IIR-filter design.

Expanding the equation 4 fgf* in terms of the individual bits for the 2'C operangds= (z).z (-1
T(—9)..- ()2 @ANAY = (Y(0)-Y(-1)Y(-2)----Y(—1))2. like it was made for lIR-filter, we get:

—1
y" = (Z 27 f(xf)y, x’&;l, e x?j)p)> — (o), :c?o’l, s T’) (5)

j=—1
Figure 3 shows the filter architecture to compute the equé&tio

In the previous section was explained how to build high ottiifilters from a set of low order
filters making use of the properties of LTI systems and imenecting them appropriately. The same
technique will be used for FIR-filters. As we know, the FIR€lis have no feedback coefficients. Due

Il Workshop de Arquitecturas, Redes y Sistemas Operativos 116

XIll Congreso Argentino de Ciencias de la Computacion

? serial input >\ serial output
f ;——>
x(n) > + ﬂ 2
- — x
I(?OI\)/I 5
\ LUT
- Xx(n—-1)
Sh;(fElF)ieg. .; /
VShift Reg 1 *(n-p) 2’ S
x() |” -

Figure 3: FIR-Filter Architecture.

to this, afterl + 1 cycles, theadder-substractor output is only stored intg(n) register.

To construct high order FIR-filters we need to interconnezdscade low FIR sub-filters; in that
way the input pass through them serially and the sub-filtatpuds are added (by serial adders) to
produce the high order FIR-filter output. The interconr@tgcheme is shown in Figure 4.

- FIR FIR " FIR > FIR
|
ot | @ 2) (k-1) (k)
Log(k) --- --
serial
B output

Figure 4: High Order FIR-Filter Interconnection Scheme.

If we want to construct a high order FIR-filter making useko$ub-filters, its result will have
[log, (k)] additional bits due to the fact that the tree adder have dépgh(k)| and each level may
add one bit. Therefore, if the filter input halbits the filter will produce one result eath [log, (k)]
clock cycles.

Like it was said in the section 2, this technique reduces idensbly the space required in an
FPGA. For example, if we need to build a eighth-order FIRefillve can use one fourth-order and
one third-order FIR-filter. This allow us to use two smallles) a 32-entry table and a 16-entry table,

instead of one 512-entry table.

117

Il Workshop de Arquitecturas, Redes y Sistemas Operativos

XIll Congreso Argentino de Ciencias de la Computacion

Figure 5: Removing mains-frequency interference from aotebcardiogram.

4 EXPERIMENTAL RESULTS

For experiments, several examples of filters with differ@mter were implemented to analyze their
behaviour, performance and logic cells utilization in arGAR All filters implemented have 8-bit
input samples and their coefficients have 8-bit precisiba,RPGA selected was Actel ProAsic250
series, and the ACTEL LIBERO IDE v7.3 tool was used for thetlsgais. In addition, AD9102 and
DAC1654 chips were used to digitize input signals and cdriberoutput signals in analog form re-
spectively.

Il Workshop de Arquitecturas, Redes y Sistemas Operativos 118

XIll Congreso Argentino de Ciencias de la Computacion

Table 1: Synthesized Result.
| Filter Type | Filter Order| Logic Cell | Clock Frequency

IR 2 3.06 % (188)] 112.020 MHz
IR 4 6.28 % (386)| 102.281 MHz
FIR 4 3.22 % (198)| 110.156 MHz
FIR 8 6.62 % (407)| 96.330 MHz
FIR 18 13.07% (803) 94.295 MHz

To see the good behaviour of the architectures presentbé prévious sections we will show the
functioning of a digital filter. In particular, we will conger a digital filter for an electrocardiogram.
In medicine, the electrical activity of the heart can be rded using electrodes placed on the chest, a
filter can be used to reduces the fluctuations due to eleditiiaty in the resulting electrocardiogram
(60 Hz in the USA, 50 Hz in Europe). In this case the neededalifiiter is a band-stop IIR-filter,
because we must reject the mains supply frequency (60 Hz BizhOThis filter is characterized by
the following equation:

y" = 2" + (—1.9021)2" " + 2" % 4 (1.8523)y" 1 + (—0.94833)y" 2 (6)

If the interference is at 60 Hz, the filter is effective at séimgpfrequency of 1200 samples per
second (1.2 kHz); if it is at 50 Hz, the filter is effective al0D0samples per second (1 kHz) [7]. The
VHDL specification for this can be see in Appendix I. Figureah ghows a typical EKG waveform,
corresponding to several heartbeat. In part (b) of the figusebadly contaminated by sinusoidal in-
terference of 60 Hz frequency. Figure 5 (c) shows the drame#feect of this filter on the contaminated
signal of part (b). The interference has been greatly redjugghout distorting the signal waveform.

Now, we will show the FPGA resources utilization of filtersplamented with the techniques
described in this paper. Table 1 presents these results.aWweate that these techniques allow an
important reduction in the logic cells utilization, also wan see that the size of filters grows lineally
with the numbers of coefficients, degrading their perforogeslightly. We must have in mind that the
overall performance of each implementation is: its clo@qtrency divide by the number of bits of
its input signal (because this is processes serially). &fbez our implementations work at about 10
MHz, which is adequate for the most applications. Theserapoitant results, especially for FIR-
filters, since they usually require many coefficients to cargdequately their frequency response. In
fact, using these techniques, we could synthesize a huthdoeder filter with a performance of 10
MHz approximately, it is not possible using traditionaltia@mues with which we could synthesize
sixtieth-order filters only.

5 CONCLUSION

The presented results lead to the conclusion that the use-&Bal Arithmetic and Lookup Tables
allow us to construct economic IR and FIR digital filtersgdading slightly their performance. In ad-
dition, we could see that by the interconnection technigueesan construct efficient high order filters
without use huge Lookup Tables. The results produced byetteehniques can be straight forward
translated from their schematic representation into VHDHecand then synthesize it on an FPGA.
Finally, through all the examples, we could see that the\iebaof digital filters implementation is
correct.

Il Workshop de Arquitecturas, Redes y Sistemas Operativos 119

XIll Congreso Argentino de Ciencias de la Computacion

REFERENCES

[1] Rawski, Tomaszewicz, Selvaraj and Luba. “Efficient lexplentation of Digital Filters with Use
of Advanced Synthesis Methods Targeted FPGA Architectui2igital System Design, 2005.
Proceedings. 8Th Euromicro Conference on. 30 Aug. - 3 Sept. 2005. Pages 460-466.

[2] Knut Arne Vinger and Jim Torrensen. “Implementing Evaodn of FIR-Filters Efficiently in an
FPGA'. Evolvable Hardware, 2003. Proceedings. NASA/DoD Conference on. July 9-11, 2003.
Pages 26-29.

[3] Kalivas, Tsirikos, Bougas and Pekmestzi. “100% Opersl Efficient Bit-Serial Programmable
FIR Digital Filters”. EUSIPCO 2005 - 13Th European Sgnal Processing Conference. Septem-
ber 4-8, 2005. Antalya, Turkey.

[4] Chi-Jui Chou, Satish Mohanakrishnan and Joseph EvdfRGA Implementation of Digital
Filters”. International Conference on Signal Processing Applications and Technology. Berlin,
1993. Pages 251-255.

[5] Sang-Hun Yoon, Jong-wha Chong and Chi-Ho Lin. “An Areai@®yzation Method for Digital
Filter Design”.ETRI Journal, volume 26, Number 6. December 2004. Pages 545-553.

[6] behrooz Parhami. “Computer Arithmetic: Algorithms adfiardware Designs”. New York: Ox-
ford University Press, 2000.

[7] Paul a. Lynn and Wolfgang Fuerst. “Introductory Digiginal Processing with Computer Ap-
plications”. Revised Editionlohn Wiley & Sons. 1994,

Il Workshop de Arquitecturas, Redes y Sistemas Operativos 120

XIll Congreso Argentino de Ciencias de la Computacion

APPENDIX | (VHDL CODE)
l'ibrary |EEE;

use | EEE. std_| ogic_1164. al |
use | EEE. nuneric_std. all

entity dig filtrois port (

X : in unsigned(0 to 7);
clk : in std_logic;

rst . in std_|ogic;

y : out unsigned(0 to 7));

end;

architecture df of dig_filtrois

constant cBitsx . integer := 8;

const ant cCoef : integer :=5; -- nunber of coeficient
constant cLogNunCoef : integer := 3; -- ciel of cCoef logaritm
constant cBitsM : integer := 8; -- nunber of coeficient bits

type Tabl eCoef type 1is array(0 to 2xxcCoef-1) of
unsi gned(0 to cBitsM-cLogNuntCoef-1);
constant cTabl eCoef : Tabl eCoef type
s=(
" 00000000000",
"11110000110",
"00011101101",
"00001110011",
"00010000000",
"00000000110",
"00101101101",
"00011110011",
"11100001100",
"11010010011",
"11111111001",
"11110000000",
"11110001100",
"11100010011",
"00001111001",
" 00000000000",
"00010000000",
"00000000110",
"00101101101",
"00011110011",
"00100000000",
"00010000110",
"00111101101",
"00101110011",
"11110001100",
"11100010011",
"00001111001",
" 00000000000",
" 00000001100",
"11110010011",
"00011111001",
" 00010000000"

Il Workshop de Arquitecturas, Redes y Sistemas Operativos

121

XIll Congreso Argentino de Ciencias de la Computacion

signal x_n_reg unsi gned(0 to cBitsx-1);
signal x_n_input unsi gned(0 to cBitsx-1);
signal x_n_1 reg unsi gned(0 to cBitsx-1);
signal x_n_1_input unsi gned(0 to cBitsx-1);
signal x_n_2_reg unsi gned(0 to cBitsx-1);
signal x_n_2_input unsi gned(0 to cBitsx-1);
signal y n_1 reg unsi gned(0 to cBitsx-1);
signal y_n_1 input unsi gned(0 to cBitsx-1);
signal y_n_2 reg unsi gned(0 to cBitsx-1);
signal y_n_2_input unsi gned(0 to cBitsx-1);
signal y_input unsi gned(0 to cBitsx-1);
signal y_reg unsi gned(0 to chitsx-1);
signal counter_reg unsi gned(0 to cBitsx-1);
si gnal counter_input unsi gned(0 to cBitsx-1);
signal s _reg unsi gned(0 to cBitsMcLogNunCoef-1);

signal s_input unsi gned(0 to cBitsM-cLogNuntCoef-1);
signal f unsi gned(0 to cBitsMcLogNunCoef-1);
signal opndo_1 unsi gned(0 to cBitsMcLogNuntCoef -1+2);
si gnal opndo_2 unsi gned(0 to cBitsMcLogNuntCoef -1+2);
si gnal add unsi gned(0 to cBi t sMrcLogNunCoef - 1+2) ;
si gnal address unsi gned(0 to 4);

begin -- df

counter _input <= counter_reg(counter_reg’ high) &
counter _reg(0 to counter_reg’ high-1);

X_n_i nput
101

<= x when counter_reg(counter_reg high)="1
& x_n_reg(0 to x_n_reg’ high-1);

el se

input <= x_n_reg(x_n_reg high) &x n_1 reg(0 to x_n_reg’ high-1);

Xx_n_1_
X_Nn_2_i nput
y_n_1 input <=

<= x_n_1 reg(x_n_1 reg high) & x_n_2 reg(0 to x_n_1_reg’ high-1);
add(4 to 4+y_n_1 input’ hi gh) when

el se

y_n_2 input <=
y i

i nput <=

counter _reg(counter_reg high) =1
0" &y n_1reg(0toy n_1reg high-1);

add(4 to 4+y_n_1_input’ high) when
counter_reg(counter_reg high)="1 else

y_reg;
y <=y _reg;
opndo_1 <= '0" & s_reg(0) & s reg(0 to cBitsMcLogNunCoef-2) & '1’
opndo_2 <= "'0"&(f xor (0 to (cBitsMrcLogNumCoef-1) =>

y n_1 reg(y_n_1reg high) &y n 2 reg(0to y n_1 reg high-1);

counter _reg(counter_reg’ high)))& counter_reg(counter_reg’ high);

add <= opndo_1 + opndo_2;

s_input <= (others => '0") when counter_reg(counter _reg high) ="'1 else
add(1 to cBitsMrcLogNuntCoef);
address <= (x_n_reg(x_n_reg high), x n_1 reg(x_n_1 reg’ high),

X_n_2 reg(x_n_2 reg’ high),
y n 2 reg(y_n_2 reg’ high));

y n_1 reg(y_n_1 reg’ high),

with address select f <=

cTabl eCoef (0) when "00000",
cTabl eCoef (1) when "00001",
cTabl eCoef (2) when "00010",

Il Workshop de Arquitecturas, Redes y Sistemas Operativos

122

XIll Congreso Argentino de Ciencias de la Computacion

cTabl eCoef (3)
cTabl eCoef (4)
cTabl eCoef (5)
cTabl eCoef (6)
cTabl eCoef (7)
cTabl eCoef (8)
cTabl eCoef (9)
cTabl eCoef (10)
cTabl eCoef (11)
cTabl eCoef (12)
cTabl eCoef (13)
cTabl eCoef (14)
cTabl eCoef (15)
cTabl eCoef (16)
cTabl eCoef (17)
cTabl eCoef (18)
cTabl eCoef (19)
cTabl eCoef (20)
cTabl eCoef (21)
cTabl eCoef (22)
cTabl eCoef (23)
cTabl eCoef (24)
cTabl eCoef (25)
cTabl eCoef (26)
cTabl eCoef (27)
cTabl eCoef (28)
cTabl eCoef (29)
cTabl eCoef (30)
cTabl eCoef (31)

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

"00011",
"00100",
"00101",
"00110",
"00111",
"01000",
"01001",
"01010",
"01011",
"01100",
"01101",
"01110",
"01111",
"10000",
"10001",
"10010",
"10011",
"10100",
"10101",
"10110",
"10111",
"11000",
"11001",
"11010",
"11011",
"11100",
"11101",
"11110",
ot hers;

wite: proce
begi n
if rst=1

ss(clk, rst)

t hen

s reg <= (others => "0

X_n_reg <= (others => "0’

X_n_1 reg
X_Nn_2_reg
y_n_1 reg
y_n_2 reg
y_reg

counter _reg <= (0 to counter_reg' high-1 => "0
counter _reg’ high => "1");
1’ and clk’event then

elsif clk=

<= (others
<= (others
<= (others
<= (others
<= (others

=>
=>
=>
=>
=>

0);

counter_reg <= counter_input;

s reg <=

X_Nn_reg <= X_n_input;

Ss_i nput;

Xx_ n_1reg <= x_n_1 input;
X_Nn_2 reg <= x_n_2 input;
y n 1lreg <=y n_1 input;
y N 2 reg <=y _n_2 input;
y_reg <= vy _input;
end if;
end process;
end df;

Il Workshop de Arquitecturas, Redes y Sistemas Operativos

123

