
Using JOP to build a chip multiprocessor JVM for embedded realtime
systems

José Pablo A. Andreotti.
Dpto. de Arquitectura de Computadoras, Universidad Nacional de Córdoba.

Córdoba, 5000, Argentina.
albertoandreotti@gmail.com

Abstract

Programming embedded devices has been historically a difficult task, involving the learning of the features
of a specific device such as the assembly language of a processor. This led to the use of Java in embedded
system as a way to improve the development process in such systems.
The challenge of using Java in embedded systems was targeted in part, by the research effort of the JOP
(Java Optimized Processor) project carried out by Martin Schöeberl [1], at TU Vienna. JOP is a small
processor specifically designed for the execution of real-time Java programs.
This paper discusses the possibilities and the challenges that arise when I built a CMP (chip multiprocessor)
JVM (Java Virtual Machine) based on JOP as part of my thesis to obtain my degree in computer engineering.
It describes which hardware modules were necessary to be added in order to achieve shared memory access
and a proper synchronization of the processors. Then, the problem of scheduling multiple threads on multiple
processors and meeting the requirements imposed by the JMM (Java Memory Model) is discussed. All the
proposed solutions use a simplistic approach and serve as a baseline for further research.
Finally, a brief description of an implementation of the system in a FPGA (field programmable gate array) is
given.

Keywords: JVM, JOP, CMP, FPGA.

1. Introduction

Our intention is to explore the design space for a multiprocessor system that meets the following
characteristics:

a) Support for a scalable multiprocessor embedded JVM.
b) Support for multiple threads running on top of each processor.
c) The gain in performance is achieved with little impact on the programmer.
d) The sintaxis and semantics of the Java language remain unchanged.

. . .

Java Applicationsoftware

hardware

hardware/software

JOPCore1 JOPCoreNJOPCore2

JVM

memory

Figure 1.1 Organization of a system to meet the above mentioned requirements. The Java application lies on a JVM

which is implemented in both hardware and software. To provide its functionalities the JVM relies on several
processors that access a shared memory system.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

204

mailto:albertoandreotti@gmail.com

A layered diagram showing a configuration for the desired system can be seen in figure 1.1.
In order to obtain a system like this the following problems need to be addressed:

a) Provide a way for the processors to share a common memory system.
b) Find a way to make communication available among the processors, so they can cooperate

in performing tasks such as initialization and synchronization.
c) Provide a scheduler capable of assigning threads to several processors for their execution.
d) Verify that the system does not violate the restrictions imposed by the Java Memory Model.

The rest of this paper explains how to tackle these four topics.

2. Provide a way for the processors to share a common memory system

In order to implement a shared memory architecture, we need to provide shared access to a single
memory interface. In JOP, the interconnection between the processor, the memory interface and the
I/O devices is achieved using a standard interface called SimpCon [2].
SimpCon provides a way of accessing different kind of devices in a seamless manner. The SimpCon
standard makes a division between slave and master devices. It also contemplates the possibility of
multiple access to a single slave device through an arbiter device.
The arbiter performs two basic tasks:

1. Performs transactions on the shared memory system on behalf of the masters(i.e., the JOP
cores).

2. Implements the resource sharing policy.

The resultant memory architecture is depicted in figure 2.1.

Jop Core 1 Jop Core 2 Jop Core n. . .

Memory arbiter

Shared Memory System

Private
Cache

Private
Cache

Private
Cache

Introduced in this project Existent before this project

SimpCon

SimpCon

SimpConSimpCon

Figure 2.1 Resulting memory architecture after introducing the memory arbiter. The JOP cores are master devices and

the shared memory interface is a slave device.

In this configuration, the memory arbiter acts as a master device to the memory interface and as a
slave to the JOP cores. It reproduces the transactions started by the masters on the memory
interface. The arbiter is transparent to the JOP cores, the only effect noticed by the cores is an
eventual increase in memory latency cycles due to the time sharing mechanism.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

205

The resource sharing policy implemented in this project is the simple round robbin. Further research
might include a comparison of performance achieved with different resource sharing policies
against different benchmark applications.

3. Find a way to make communication available among the processors, so
they can cooperate in performing tasks such as initialization and
synchronization.

To achieve proper initialization of the CMP JVM and to give support to Java monitors we need a
means of communication among the processors. The proposed solution consists in introducing an
extra I/O device which implements a common shared control bus. The resulting configuration is
shown in figure 3.1.

Jop Core 1 Jop Core 2

bus
controller

Jop Core n

bus
controller

. . .

. . .

Control Bus

I/O I/O I/O

bus
controller

SimpCon SimpConSimpCon

Figure 3.1 The control bus. The bus controller I/O device is used to provide access to a common control bus shared

among all the procesors.
The control bus provides two functions:

Initialization: To properly initialize internal structures of the JVM such as internal memory
addresses and the GC(Garbage Collector) we need a means of communication between processors.
The alternative chosen in this project was to let one processor be the Master1 and perform all the
initializations. When the initialization is done, the master processor signals the other slave
processors using a dedicated signal on the control bus. A sequence diagram showing the whole
process is shown in figure 3.2.

Synchronization: Synchronization among threads in Java is performed through monitors. As stated
in [3] to achieve mutual exclusion in O(1) time in a multiprocessor environment, we need to
perform some kind of atomic access to the memory subsystem.
In order to provide such an atomic access we introduced memory locks which are implemented
through the control bus as depicted in figure 3.3.

1 The word “Master” here is no used in the context of the SimpCon standard.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

206

JOP SlaveJVM JOP Master

Load Program

Store values

Startup.boot()

init()

clazzinit()

signal()

implemented
using the control

bus

Figure 3.2 Initialization of the system. The master processor performs initializations such as loading the program into

main memory, storing values, initializing the GC, etc. When all initialization is done, the master signals the other
processor(s).

Jop Core 1 Jop Core 2 Jop Core n. . .

Memory arbiter

Private
Cache

Private
Cache

Private
Cache

SimpCon SimpConSimpCon

I/O I/OI/O

bus
controller

bus
controller

Control Bus

bus
controller

SimpCon SimpConSimpCon

. . .Control lines Control linesControl lines

Figura 3.3 Interconnection of the bus controller to the Memory Arbiter. The lines labelled “Control lines” are used to
negotiate atomic access to memory through a simple protocol. The responsible of granting atomic access to memory is

the memory arbiter.

Using memory locks, the time for a thread to enter its critical section is constant. We only use
memory locks inside the code of the JVM. We use them both to impose and order on the accesses to
certain internal structures of the JVM and in the implementation of Java monitors.
For example, we have the following pseudocode1 for the implementation of monitorenter and
monitorexit2,

monitorenter:

1. Request atomic memory access.
2. Read the owner_id field (identity of the owner of

the object).

monitorexit:
1. Load the cnt field.
2. Decrease the cnt field.
3. Store it back to memory.

1 Bytecodes can be implemented in hardware, in Java or in the microcode native to JOP.
2 Monitorenter and monitorexit are the bytecodes used to implement synchronized blocks in Java.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

207

3. If the owner is that thread, release memory and
jump to 6.

4. If the owner is other thread, release memory and
jump back to 1.

5. If the object is not owned by any thread, put this
thread id as the new owner, release memory.

6. Increase cnt (a counter which represents the
number of times the monitor was entered)

7. Fetch the next bytecode.

4. If cnt=0, release the monitor. This is
accomplished by setting owner_id to zero.

5. Fetch the next bytecode.

Further research might contemplate the relative performance of different algorithms and the
potential advantage of using lock avoidance mechanisms like the ones described in [4].

4. Provide a scheduler capable of assigning threads to several processors for
their execution.

4.1 Introduction

The problem of handling multiple flows of instructions in Java is contemplated at the language
level. As we can find in The Java™ Language Specification Third Edition [5], Java threads are the
means by which Java give support to concurrent programs. The specification also makes no
difference on whether Java threads are implemented on one or several multiprogrammed
processors.
A task switch in a real-time system consists of two parts: scheduling and dispatching. Scheduling
involves the selection of the next task to be executed and dispatching involves the actual context
switch of the processor. So, given a set of threads, the design space is determined by the decision of
how to distribute these tasks among the processors.

4.2 Single centralized Scheduler vs several Schedulers

As we stated above for each thread we can:

1. Let just one processor perform its scheduling and dispatching (i.e., “tie” the thread to a
processor).

2. Let any processor perform the scheduling and dispatching of a thread.

The second option above is an attractive alternative because it allows the inclusion of interesting
features in the scheduler such as allowing one thread to switch among processors. Implementing a
centralized scheduler involves some modifications in the way JOP handles interrupts. That’s
because the JOP scheduler is very dependent on the interrupt subsystem of each processor. So, in
order to implement a centralized scheduler we need a centralized interrupt subsystem shared among
all the processors.
On the other hand, the first option is simpler and involves no modification of the scheduler or the
interrupt subsystem. This is the one that was implemented for that project. We spend the rest of this
section describing how this option was implemented.
The overall architecture for a dualcore JVM is depicted in figure 4.1. In this configuration, the user

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

208

thread2thread1
software

hardware

hardware/software

Core1 Core2

Scheduler1

JVM

thread4thread3

Scheduler2

Application level System level Hardware
Figure 4.1 Overall architecture of a dual core JVM with two independent schedulers. Each application is written as a

set of threads. Each thread is then “tied” to a specific scheduler which runs on one processor. JVM code is accessed by
scheduler 1 and scheduler 2 and is thus executed on both cores.

chooses the processor each thread will run on at the time of the creation of the thread objects. This
object creation process is shown on figure 4.2.

core1

t1:Two1

t4:Two2

t3:Two2

t2:Two1

core2

signal()

new()

new()

new()

new()

startMission() startMission()

Figure 4.2 Creation of thread objects. Objects of the classes Two1 and Two2 represent threads that will be scheduled
on the first and second cores respectively. In this application Core 1 creates the objects and then “signals” the other

core. Core 2 starts scheduling its threads with the call to startMission().

An obvious disadvantage of this approach is that the user must be aware of the existence of
different processors. On the other hand, it might result attractive in some real-time applications
where it is necessary to ensure the availability of certain resources for a specific task. In such a case
we just need to “tie” the thread representing the task to the processor that has access to the
resources. This is accomplished by creating an appropriate thread object for that task.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

209

5. Verify that the system does not violate the restrictions imposed by the Java
Memory Model

As stated in [6], the access to memory in a multiprocessor system is ordered by a shared memory
consistency model. The JMM is an abstract model that defines the allowed behaviours of a
multithreaded program.
In a regular system, we have two memory models: the memory model of the underlying architecture
and the JMM. This is shown is figure 5.1. The JMM defines which are the valid transformations
when a compiler produces bytecode, when the JVM produces native code and when the hardware
applies optimizations on the native code.

Java program

Native Code

Bytecode

Compiler

JVM

Hardware

Used to show a part of the system which performs transformations on the code

Used to show an intermediate representation of the program

Figura 5.1 Different transformations and intermediate representations for a Java program. In a typical Java system a
program is first compiled to a standard bytecode representation, then the JVM generates object code native to the

underlying processor. Finally the hardware might perform some transformations on the resulting instruction flow such
as instruction scheduling.

Many restrictions of the JMM arise when running a multithreaded program on processors that
perform instruction reordering. Instruction reordering is a technique used to increase the instruction
throughput in a processor pipeline. The idea is to rearrange instructions to get rid of data
dependences among them and reduce the number of stalls in the processor pipeline. These data
dependences are known as data hazards1.
As demonstrated in chapter 5 of JOP: A Java Optimized Processor for Embedded Real-Time
Systems, [1] data hazards are not present in the processor pipeline of JOP. So, when building a
CMP JVM using JOP it is not necessary to consider JMM issues related with instruction reordering.
Another issue commonly found in multiprocessors is cache coherence2. Due to the memory
hierarchy in JOP, no problems arise related to cache coherence when interconnecting several

1 For an in depth study of data hazards, see Patterson & Henessy, Computer Architecture a quantitative approach, [7].
2 See Parallel Computer Architecture, David E. Culler and Jaswinder Pal Singh, [8].

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

210

processors together. In JOP, only data local to a thread is cached1. This data is never shared among
threads, so no coherence problems are possible . Class variables are stored in main memory. At any
moment only a single copy of these variables exists. As there is no data duplication data coherence
problems are not possible.

6. Description of an implementation of the system in a FPGA

Both JOP and all the hardware devices introduced in this project are implemented using the
VHDL(VHSIC hardware description language)hardware description language. Devices described in
VHDL can be implemented in a FPGA. In this section a description of an implementation of the
system in a FPGA is provided.
The current implementation consists of a dual core JVM in an FPGA provided by Altera. Devices
found in a typical JOP configuration such as the serial interface and external I/O ports were
distributed among the processors. Each processor has its own timer and bus controller modules.
A resource utilization comparison of the system against a single core JVM is provided in table 6.1.

 Logic Cells Memory Utilization
Single Core JVM 2661 35840 bits 100%

Core 1094 41.11%
Extension 205 7.70%

Scio 316 11.87%
Mem 968 36.37%

Rest of the system 78 2.93%
Dual Core JVM 5409 71680 bits 100 %
Memory arbiter 420 7.76 %
Bus controller 15 0.27 %

Rest of the system 4974 91.97 %
Table 6.1 FGPA utilization for both the single core and dual core versions of the JVM using JOP. The single core

version has a 4Kb cache while the dual core version has a 2Kb cache for each core

.
We can see that the device utilization for the bus controller and memory arbiter is 8.3%. So that, we
can conclude that little amount of resources are necessary to perform the interconnection of a dual
core JOP based JVM.

References

[1] Martin Schöberl. JOP: A Java Optimized Processor for Embedded Real-Time Systems.
[2] Martin Schöberl. SimpCon – a Simple SoC Interconnect.
[3] Michael L. Scott. Programming Language Pragmatics.
[4] Kiyokuni Kawachiya, Akira Koseki, Tamiya Onodera. Lock Reservation: Java locks can
mostly do without atomic operations.
[5] Tim Lindholm, Frank Yellin. The JavaTM Virtual Machine Specification 2nd Edition.
[6] Sarita V. Adve, Kourosh Gharachorloo. Shared Memory Consistency Models: A Tutorial.

1 The local data cache in JOP is called the stack cache, see [5].

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

211

[7] John Hennessy and David Patterson. Computer Architecture: A quantitative approach 3rd
edition.
[8] David E. Culler y Jaswinder Pal Singh, Parallel Computer Architecture.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

II Workshop de Arquitecturas, Redes y Sistemas Operativos

212

