
Integration of Web-based Forms with Ontologies in
the Semantic Web

Sergio A. Gómez†, Carlos I. Chesñevar†,‡, Guillermo R. Simari†

†Laboratorio de Investigación y Desarrollo en Inteligencia Artificial (LIDIA)∗

Depto. Cs. e Ing. de la Computación – Universidad Nacional del Sur
Alem 1253 (8000) Bahı́a Blanca - ARGENTINA –

Tel/Fax: (+54) 291-459 5135/5136 – E-mail: {sag, cic, grs}@cs.uns.edu.ar
‡CONICET (Consejo Nacional de Investigaciones Cientı́ficas y Técnicas), Argentina

Abstract

The notion of forms as a way of organizing and presenting data has been used since the beginning
of the World Wide Web. Web-based forms have evolved together with the development of new
markup languages, in which it is possible to provide validation scripts as part of the form code to
test whether the intended meaning of the form is correct. However, for the form designer, part of
this intended meaning frequently involves other features which are not constraints by themselves,
but rather attributes emerging from the form, which provide plausible conclusions in the context
of incomplete and potentially inconsistent information. As the value of such attributes may change
in presence of new knowledge, we call them defeasible attributes. In previous works, we extended
traditional web-based forms to incorporate defeasible attributes as part of the knowledge that can
be encoded by the form designer. In this article, we recast that approach to make it suitable for
the Semantic Web initiative; we then propose the specification of defeasible attributes by means
of possibly inconsistent Description Logics ontologies known as δ-ontologies. Thus the value of a
defeasible attribute will be associated to the membership of an individual to a certain concept. As
the ontologies involved in the definition of defeasible attributes may be inconsistent, a dialectical
analysis will be performed to take into account all the reasons in favor and against the value of
such defeasible attributes.

Keywords: Description Logics, Defeasible Logic Programming, web forms, defeasible argumenta-
tion, ontologies, Semantic Web

Resumen

La noción de formularios como una manera de organizar y presentar datos ha sido usada desde el
comienzo de la World Wide Web. Los formularios web han evolucionado junto con el desarrollo
de nuevos lenguajes de marcado, en los cuales es posible proveer guiones de validacin como parte
del código del formulario para verificar si el significado pretendido del formulario es correcto.
Sin embargo, para el diseñador del formulario, parte de este significado pretendido involucra

∗LIDIA is a member of IICyTI (Instituto de Investigación en Ciencia y Tecnologı́a Informática).

otros atributos que no son restricciones por si mismas, sino más bien atributos emergentes del
formulario, los cuales brindan conclusiones plausibles en el contexto de información incompleta
y potencialmente contradictoria. Como el valor de tales atributos puede cambiar en presencia de
nuevo conocimiento, los llamamos atributos rebatibles. En trabajos previos, extendimos los for-
mularios web tradicionales para incorporar atributos rebatibles como parte del conocimiento que
puede ser codificado por el diseador del formulario. En este artı́culo, adaptamos tal acercamiento
para hacerlo adecuado para la iniciativa de la Web Semántica; entonces proponemos la especi-
ficacin de atributos rebatibles por medio de ontologas expresadas en Lgicas para la Descripcin
posiblemente inconsistentes conocidas como δ-ontologı́as. El valor de tales atributos rebatibles
será asociado a la pertenencia de un individuo a un concepto particular. Como las ontologı́as in-
volucradas en la definición de atributos rebatibles pueden ser inconsistentes, un análisis dialéctico
será realizado para tomar en cuenta todas las razones a favor y en contra del valor del atributo
rebatible.

Palabras clave: Lógicas para la Descripción, Programación en Lógica Rebatible, formularios web,
argumentación rebatible, ontologı́as, Web Semántica

1 Introduction

The notion of form as a way of organizing and presenting data is a well-known structural abstraction
for data collection, storage, and information retrieval. Forms are an important means for designing
and developing user-oriented information systems, and have long been used since the very beginning
of the World Wide Web. Web-based forms have evolved together with the development of new markup
languages (e.g., XML), in which it is possible to provide validation scripts as part of the form code in
order to test whether the intensional meaning of the form is correct [14].

The Semantic Web [2] is a future vision of the web where stored information has exact meaning,
thus enabling computers to understand and reason on the basis of such information. Assigning seman-
tics to web resources is addressed by means of ontology definitions which are meant to be written in
an ontology description language. Fulfilling the goals of the Semantic Web program requires having
tools capable of dealing with the potential inconsistencies and incompleteness of web data sources.
One particularly important application domain is e-commerce technologies, which typically demand
validation of user data (e.g., credit card numbers) against a set of criteria for determining if a given
user is eligible for certain prospective transaction. Performing validations on field values allows to
determine whether the intended meaning of such fields is coherent according to some criteria estab-
lished by the form designer. Such validations usually consist of a number of hard-coded decision
criteria as a portion of imperative code in a script language. However, in many cases there are some
emerging features which can be inferred as part of the “intended meaning” of the form without being
field values themselves. Thus, in the case of a bank loan application, the notion of “reliable client”
may be inferred as plausible from knowing the annual income and banking records of a particular
customer. Such features (or attributes) of the form are difficult to model in terms of pieces of im-
perative code, particularly in presence of incomplete and potentially contradictory information. The
associated conclusions turn out to be defeasible, as they may change in the light of new information.

Standard ontology description languages such as OWL-DL are based on Description Logics (DL) [1].
Although ontology definitions expressed in DLs can be processed with existing DL reasoners, such
DL reasoners are incapable of dealing with inconsistent ontology definitions. This situation is partic-
ularly important in the Semantic Web setting, where ontologies are complex entities prone to suffer
inconsistencies [10]. A particular source of inconsistency is related to the use of imported ontologies

when the knowledge engineer has no authority to correct them. As these imported ontologies are usu-
ally developed independently, their combination could also result in inconsistencies. The problem of
combining two or more different ontologies in order to obtain a unified, consistent ontology is known
as ontology merging [11].

There are two main ways to deal with inconsistency in ontologies [10]: one is to diagnose and
repair it when it is encountered; another is to avoid the inconsistency and to apply a non-standard
inference relation to obtain meaningful answers. In previous works [6, 7] we proposed to use de-
feasible argumentation [3] to focus on the latter by means of using δ-ontologies, a particular kind
of DL ontologies amenable for its treatment into Defeasible Logic Programming (DeLP) [5]. DeLP
is an argumentative framework based on logic programming that is capable of dealing with possibly
inconsistent knowledge bases codified as a set of Horn-like clauses called DeLP programs. When
presented with a query, DeLP performs a dialectical process in which all arguments in favor and
against a conclusion are considered; arguments regarded as ultimately undefeated will be considered
warranted.

In this paper we propose extending traditional web-based forms to incorporate defeasible attributes
as part of the knowledge that can be encoded by the form designer. The proposed extension allows
the specification of defeasible attributes by means of possibly inconsistent Description Logics ontolo-
gies known as δ-ontologies to make them suitable for the Semantic Web initiative. The value of a
defeasible attribute will be associated to the membership of an individual to a certain concept which
represents a defeasible attribute. As the ontologies involved in the definition of defeasible attributes
may be inconsistent, a dialectical analysis will be performed to take into account all the reasons sup-
porting and against the value of a defeasible attribute.

The rest of the article is structured as follows. Section 2 introduces the fundamentals of how
Description Logics ontologies are processed into Defeasible Logic Programming when the involved
ontologies are inconsistent. Section 3 presents the integration of web forms with DL ontologies.
Finally Section 4 concludes.

2 Reasoning with inconsistent Description Logics ontologies into Defeasible
Logic Programming

2.1 Description Logics

Description Logics (DL) are a well-known family of knowledge representation formalisms [1]. They
are based on the notions of concepts (unary predicates, classes) and roles (binary relations), and are
mainly characterized by constructors that allow complex concepts and roles to be built from atomic
ones. The expressive power of a DL system is determined by the constructs available for building
concept descriptions, and by the way these descriptions can be used in the terminological (Tbox) and
assertional (Abox) components of the system.

We now describe the basic language for building DL expressions. Let C and D stand for concepts
and R for a role name. Concept descriptions are built from concept names using the constructors
conjunction (C uD), disjunction (C tD), negation (¬C), existencial restriction (∃R.C), and value
restriction (∀R.C). To define the semantics of concept descriptions, concepts are interpreted as sub-
sets of a domain of interest, and roles as binary relations over this domain. An interpretation I consists
of a non-empty set ∆I (the domain of I) and a function ·I (the interpretation function of I) which maps
every concept name A to a subset AI of ∆I , and every role name to R to a subset RI of ∆I × ∆I .
The interpretation function is extended to arbitrary concept descriptions as follows: (¬C)I = ∆I\CI ;
(C t D)I = CI ∪ DI ; (C u D)I = CI ∩ DI ; (∃R.C)I = {x|∃y s.t. (x, y) ∈ RI and y ∈ CI}, and

(∀R.C)I = {x|∀y, (x, y) ∈ RI implies y ∈ CI}. Besides, the expressions > and ⊥ are shorthands
for C t ¬C and C u ¬C, resp. Further extensions to the basic DL are possible including inverse and
transitive roles noted as P− and P+, resp.

A traditional DL ontology consists of two finite and mutually disjoint sets: a Tbox which intro-
duces the terminology and an Abox which contains facts about particular objects in the application
domain. Tbox statements have the form C v D (inclusions) and C ≡ D (equalities), where C and
D are (possibly complex) concept descriptions. The semantics of Tbox statements is as follows. An
interpretation I satisfies C v D iff CI ⊆ DI , I satisfies C ≡ D iff CI = DI . Objects in the Abox are
referred to by a finite number of individual names and these names may be used in two types of asser-
tional statements: concept assertions of the type C(a) and role assertions of the type R(a, b), where
C is a concept description, R is a role name, and a and b are individual names. An interpretation I
satisfies the assertion C(a) iff aI ∈ CI , and it satisfies R(a, b) iff (aI , bI) ∈ RI . An interpretation
I is a model of a DL (Tbox or Abox) statement φ iff it satisfies the statement, and is a model of an
ontology Σ iff it satisfies every statement in Σ. A DL ontology Σ entails a DL statement φ, written as
Σ |= φ, iff every model of Σ is a model of φ.

2.2 Defeasible Logic Programming

Defeasible Logic Programming (DeLP) [5] provides a language for knowledge representation and
reasoning that uses defeasible argumentation [3, 13] to decide between contradictory conclusions
through a dialectical analysis. Codifying knowledge by means of a DeLP program provides a good
trade-off between expressivity and implementability for dealing with incomplete and potentially con-
tradictory information. In a defeasible logic program P = (Π,∆), a set ∆ of defeasible rules
P −≺ Q1, . . . , Qn, and a set Π of strict rules P ← Q1, . . . , Qn can be distinguished. An argument
〈A, H〉 is a minimal non-contradictory set of ground defeasible clausesA of ∆ that allows to derive a
ground literal H possibly using ground rules of Π. Since arguments may be in conflict (concept cap-
tured in terms of a logical contradiction), an attack relationship between arguments can be defined. A
criterion is usually defined to decide between two conflicting arguments. If the attacking argument is
strictly preferred over the attacked one, then it is called a proper defeater. If no comparison is pos-
sible, or both arguments are equi-preferred, the attacking argument is called a blocking defeater. In
order to determine whether a given argument A is ultimately undefeated (or warranted), a dialectical
process is recursively carried out, where defeaters for A, defeaters for these defeaters, and so on, are
taken into account. Given a DeLP program P and a queryH , the final answer to H w.r.t. P takes such
dialectical analysis into account. The answer to a query can be: yes, no, undecided, or unknown. For
an in-depth treatment of DeLP, see [5].

2.3 Interpreting DL ontologies into DeLP for solving inconsistencies

In the presence of inconsistent ontologies, traditional DL reasoners (such as RACER [9]) issue an
error message and stop further processing. Thus the burden of repairing the ontology (i.e., making it
consistent) is on the knowledge engineer. In previous works [6, 7], we showed that DeLP can be used
for coping with inconsistencies in ontologies such that the task of dealing with them is automatically
solved by the reasoning system. For doing this, the DL under consideration must respect certain
constraints; we extend the definition given in [7] for considering DLs with concrete domains [12]:

Definition 1 (Lh language/classes Lb language/classes. Lhb language/classes (adapted from [7]))
Let A be an atomic class name, C and D class expressions, R a property, and f a concrete attribute.
Let N be the set of natural numbers. Let n ∈ N, op ∈ {=, 6=, >,≥, <,≤}. In the Lh language,

C u D is a class, and ∀R.C is also a class. Class expressions in Lh are called Lh-classes. In the
Lb language, C uD, C tD, ∃R.C and ∃R.opn are classes. Class expressions in Lb are called Lb-
classes. The Lhb language is defined as the intersection of Lh and Lb. Class expressions in Lhb are
called Lhb-classes.

In [7], we presented a mapping from DL to DeLP used for translating DL ontologies into DeLP
programs. A function TΠ for translating DL ontologies into DeLP strict rules was presented along
with a function T∆ for translating DL ontologies into defeasible rules. The proposal for extending
forms presented in [8] requires the capability of representing concrete domains in ontologies; thus in
Figure 1, we now extend such mapping for dealing with the concrete domain of natural numbers.

Tb((∃f. =n) =def f = n

Tb((∃f. 6=n) =def f\ = n

Tb((∃f. >n) =def f > n

Tb((∃f. ≥n) =def f >= n

Tb((∃f. <n) =def f < n

Tb((∃f. ≤n) =def f <= n

Figure 1: Extension to mappings TΠ and T∆ for dealing with concrete domains

An ontology is defined as a set of classes and a set of individuals belonging to such classes. In [7],
we redefined the notion of DL ontology for making it suitable for its treatment within DeLP.

Definition 2 (δ-Ontology [7]) Let C be an Lb-class, D an Lh-class, A,B Lhb-classes, P,Q proper-
ties, a, b individuals. Let T be a set of inclusion and equality sentences in LDL of the form C v D,
A ≡ B, > v ∀P.D, > v ∀P−.D, P v Q, P ≡ Q, P ≡ Q−, or P+ v P such that T can be
partitioned into two disjoint sets TS and TD. Let A be a set of assertions disjoint with T of the form
D(a) or P (a, b). A δ-ontology Σ is a tuple (TS, TD, A). The set TS is called the strict terminology (or
Sbox), TD the defeasible terminology (or Dbox) and A the assertional box (or Abox).

Example 1 An international bank keeps track of its clients in order to determine whether to concede
loans. Consider an ontology Σcriteria = (T criteria

S , T criteria
D , ∅) defining criteria for granting loans

in a bank as presented in Figure 2. Sentence (1) in strict terminology T criteria
S expresses that all

millionaires are candidate to loans. Defeasible terminology T criteria
D is composed by sentences (2)

to (9). Sentence (2) establishes that usually a person with a right profile is candidate for receiving
a loan. Sentence (3) says that a customer with high income (greater or equal to $1000) and that
asked for a reasonable loan (less than $300) is usually a candidate for receiving a loan. Sentence (4)
expresses that a customer with a good income and coming from a reliable country typically have a
right profile. Sentence (5) says that customers with an income greater than 300 dollars are normally
considered as having a good income. Sentence (6) establishes that non-solvent people usually do not
have a good income. Sentence (7) says that a customer whose profession is university student usually
is insolvent unless (as expressed by sentence (8)) she comes from a wealthy family. Sentence (9) says
that if a customer is rich according to the bank’s records, then she is considered as coming from a
wealthy family.

Consider also the δ-ontology ΣHSO = (∅, THSO
D , AHSO) presented in Figure 3 providing risk

information about countries. The information defined in Dbox THSO
D says that usually democratic

countries are trustworthy (sentence (1)) unless they are at war (sentence (2)), and democratic gov-
ernments but with corrupt governments are not trustworthy (sentence (3)). Assertional box AHSO

establishes that Greece and Krakosia are countries (assertions (4) and (5)), Greece is a democracy
(assertion (6)), and Krakosia is democracy at war (assertions (7) and (8)).

Consider the δ-ontology Σbank = (∅, T bank
D , Abank) with bank provided client information pre-

sented in Figure 4. Dbox T bank
D expresses that medical doctors, professors, lawyers, engineers, MSc,

PhD and undergraduate students, and unemployed are professions (sentence (1)); rich, broken and
none are client’s family status (sentence (2)); rich is the status of a rich family (sentence (3)); MSc,
PhD and undergraduate students are university students (sentence (4)). Sentence (5)) says that univer-
sity student is a profession. Besides, attribute family record has family status as range and a customer
as domain (sentences (6) and (7)); attribute customer name has a name as range and a customer
as domain (sentences (8) and (9)); attribute customer has a profession as range and a customer as
domain (sentences (10) and (11)); attribute customer country has a country as range and a customer
as domain (sentences (12) and (13)); attribute required loan has a number as range and a customer
as a domain. Sentence (18) says that Ajax, Danae, John and Peter are names. The assertional box
Abank says that individual c1 is rich, family records about individuals c2 and c3 say that the bank has
no information about them, and that c4 is a millionaire (sentences (19)–(22)).

In Figure 5, the assertional box Auser says that there are four customers c1, c2, c3 and c4 whose
names are John, Ajax, Danae, and Peter, resp.; their incomes are $400, $350 and $1000 (notice that
there is no income information for Peter); their countries are Krakosia and Greece; John and Ajax’s
profession is PhDStudent, Danae’s is none and there is no information about Peter’s profession; John
requested a loan of $2000, Ajax $4500, Danae $1000 and Peter $1000.

Strict terminology (Sbox) T criteria
S :

(1) millionaire v candidate

Defeasible terminology (Dbox) T criteria
D :

(2) profile ok v candidate
(3) ∃cstmr income. ≥1000 u ∃req loan. <300 v candidate
(4) good income u ∃cstmr country .credible v profile ok
(5) ∃cstmr income. >300v good income
(6) ¬solvent v ¬good income
(7) customer u ∃cstmr profession.univ student v ¬solvent
(8) customer u ∃cstmr profession.univ student u rich family v solvent
(9) ∃family record .rich status v rich family

Figure 2: Ontology Σcriteria = (T criteria
S , T criteria

D , ∅) with a set of criteria for granting loans to cus-
tomers

As DLs are a subset of first-order logic (FOL), entailment has an explosive effect in the presence of
inconsistent ontologies. In [7], we proposed an argumentative approach to reasoning with inconsistent
ontologies. Thus a δ-ontology is interpreted as a DeLP program; intuitively, the Sbox is expressed as
a set of strict rules, the Dbox is expressed as a set of defeasible rules, and the Abox is expressed as a
set of facts.

Definition 3 (Interpretation of a δ-ontology [7]) Let Σ = (TS, TD, A) be a δ-ontology. If TS ∪ A
has a model, the interpretation of Σ is a DeLP program P = (TΠ(TS) ∪ TΠ(A), T∆(TD)).

Defeasible terminology (Dbox) THSO
D :

(1) country u democracy v credible
(2) country u democracy u atwar v ¬credible
(3) country u democracy u corruptgovt v ¬credible

Assertional box (Abox) AHSO:
(4) country(krakosia)
(5) country(greece)
(6) democracy(greece)
(7) democracy(krakosia)
(8) atwar(krakosia)

Figure 3: Ontology ΣHSO = (∅, THSO
D , AHSO) provided by the HSO with risk information of coun-

tries

Defeasible terminolgy (Dbox) T bank
D :

(1) {medical doctor , professor , lawyer , engineer ,msc student , phd student ,
undergrad student ,none} v profession

(2) {rich, broke, unknown} v family status
(3) {rich} v rich status
(4) {msc student , phd student , undergrad student} v univ student
(5) univ student v profession
(6) > v ∀family record .family status (7) > v ∀family record−.customer
(8) > v ∀cstmr name.name (9) > v ∀cstmr name−.customer
(10) > v ∀cstmr profession.profession (11) > v ∀cstmr profession−.customer
(12) > v ∀cstmr country .country (13) > v ∀cstmr country−.customer
(14) > v ∀cstmr income.number (15) > v ∀cstmr income−.customer
(16) > v ∀req loan.number (17) > v ∀req loan−.customer
(18) {ajax , danae, john, peter} v name

Assertional box (Abox) Abank:
(19) family record(c1, rich)
(20) family record(c2, unknown)

(21) family record(c3, unknown)
(22) millionaire(c4)

Figure 4: Ontology Σbank = (∅, T bank
D , Abank) with bank provided client information

In the traditional DL setting, instance checking refers to determining whether the assertions in the
Abox entail that a particular individual is an instance of a given concept description [1]. In [7], we
proposed a set of definitions to capture this notion in the context of δ-ontologies.

Definition 4 (Potential, justified and strict membership of an individual to a class [7]) Let Σ =
(TS, TD, A) be a δ-ontology. LetC be a class name, a an individual, letP = (TΠ(TS)∪TΠ(A), T∆(TD)).
(i) The individual a potentially belongs to class C iff there exists an argument 〈A, C(a)〉 w.r.t. P; (ii)
the individual a justifiedly belongs to class C iff there exists a warranted argument 〈A, C(a)〉 w.r.t.
P , and, (iii) the individual a strictly belongs to class C iff there exists an argument 〈∅, C(a)〉 w.r.t. P .

Example 2 (Continues Ex. 1) The interpretation as DeLP programs of ontologies Σcriteria = (T criteria
S ,

T criteria
D , ∅), Σbank = (∅, T bank

D , Abank) and ΣHSO = (∅, THSO
D , AHSO) are shown in Figures 6,

7, and 8, resp. as the DeLP programs Pcriteria = (Πcriteria,∆criteria), Pbank = (Πbank,∆bank),
PHSO = (ΠHSO,∆HSO). The Abox Abank is interpreted as the same DeLP program. When we con-
sider the δ-ontology obtained from the union of all the δ-ontologies involved, we obtain the ontology:

Σmerge =
(
T criteria

S , T criteria
D ∪ T bank

D ∪ THSO
D , Abank ∪ AHSO ∪ Auser

)
,

The following dialectical analysis arises from the interpretation of Σmerge. For instance, for checking
if John is a candidate to a loan (i.e., checking for the value of the attribute “candidate”), we find

Assertional box Auser:

(1) customer(c1) (12) cstmr income(c2, 350)
(2) customer(c2) (13) cstmr name(c3, danae)
(3) customer(c3) (14) cstmr profession(c3,none)
(4) customer(c4) (15) cstmr country(c3, greece)
(5) cstmr name(c1, john) (16) cstmr income(c3, 1000)
(6) cstmr profession(c1, phd student) (17) cstmr name(c4, peter)
(7) cstmr country(c1, krakosia) (18) req loan(c1, 2000)
(8) cstmr income(c1, 400) (19) req loan(c2, 4500)
(9) cstmr name(c2, ajax) (20) req loan(c3, 1000)
(10) cstmr profession(c2, phd student) (21) req loan(c4, 1000)
(11) cstmr country(c2, greece)

Figure 5: User provided assertional information Auser

that c1 potentially belongs to the concept candidate as there exists an argument 〈A1, candidate(c1)〉
where:

A1 =


candidate(c1) −≺ profile ok(c1)
profile ok(c1) −≺ good income(c1), cstmr country(c1, krakosia), credible(krakosia)
credible(krakosia) −≺ country(krakosia), democracy(krakosia)
good income(c1) −≺ cstmr income(c1, 400), 400 >= 300


but this is defeated by another argument 〈A2,∼ credible(krakosia)〉 saying that Krakosia is not

trustworthy because it is a country at war:

A2 =
{
∼credible(krakosia) −≺ country(krakosia), democracy(krakosia), atwar(krakosia)

}
In the case of Ajax, the value of the attribute “candidate” is undecided as we cannot determine that

the individual c2 justifiedly belongs to the concept “candidate”. There is an argument 〈B1, candidate(c2)〉
(so c2 potentially belongs to the concept “candidate”), with

B1 =


candidate(c2) −≺ profile ok(c2)
profile ok(c2) −≺ good income(c2), cstmr country(c2, greece), credible(greece)
credible(greece) −≺ country(greece), democracy(greece)
good income(c1) −≺ cstmr income(c1, 350), 350 >= 300


but this is defeated by another argument 〈B2,∼good income(c2)〉 with:

B2 =

 ∼good income(c2) −≺ ∼solvent(c2)
∼solvent(c2) −≺ customer(c2), cstmr profession(c2, phd student), univ student(phd student)
univ student(phd student) −≺ phd student = phd student


But in the case of Danae, the attribute “candidate” takes the value true as the individual c3 justifiedly
belongs to the concept “candidate” because there is an undefeated (and thus warranted) argument
〈C1, candidate(c3)〉 where:

B1 =


candidate(c3) −≺ profile ok(c3)
profile ok(c3) −≺ good income(c3), cstmr country(c3, greece), credible(greece)
credible(greece) −≺ country(greece), democracy(greece)
good income(c3) −≺ cstmr income(c3, 1000), 1000 >= 300


On the other hand, Peter is also a candidate as he is a millionaire and there are no defeaters for that
argument, so individual c4 strictly belongs to the concept “candidate”.

Strict rules Πcriteria:

(1) candidate(X)← millionaire(X).
(1’) ∼millionaire(X)←∼candidate(X).

Defeasible rules ∆criteria:

(2) candidate(X) −≺ profile ok(X).
(3) candidate(X) −≺ cstmr income(X,Y), Y >= 1000, req loan(X,Z), Z < 300.
(4) profile ok(X) −≺ good income(X), cstmr country(X,Y), credible(Y).
(5) good income(X) −≺ cstmr income(X,Y), Y >= 300.
(6) ∼good income(X) −≺ ∼solvent(X).
(7) ∼solvent(X) −≺ customer(X), cstmr profession(X,Y), univ student(Y).
(8) solvent(X) −≺ customer(X), cstmr profession(X,Y), univ student(Y), rich family(X).
(9) rich family(X) −≺ family record(X,Y), rich status(Y).

Figure 6: Ontology Σcriteria expressed as a DeLP program Pcriteria = (Πcriteria,∆criteria)

3 Integrating web forms with δ-ontologies

The notion of form is a central structural abstraction for data collection, storage, and retrieval in infor-
mation management systems. From the beginning of the World Wide Web, HTML standards included
the possibility of form design along with a number of ways for allowing interactive behavior by means
of control techniques. Forms provide a standard way of allowing the user to send information back
to the server by means of different technologies to verify and validate data (e.g., CGI scripting). A
number of programming technologies were later developed, enabling the creation of interactive web
applications which outperformed static web pages. The growing popularity of e-commerce tech-
nologies as well as the envisioning of the Semantic Web motivated the specification of sophisticated
standards for web-based forms, notably XForms [4].

In spite of the evolution of web-based form technologies, most form designers perform validation
of form fields by enforcing constraints (e.g., numeric ranges) encoded as pieces of imperative code
in a scripting language (e.g., JavaScript). Thus, validation of data is done client-side, and the form
data is finally processed by a program located in a remote server. However, in many cases there are
some emerging features which can be inferred as part of the “intended meaning” of the form without
being field values themselves. Thus, in the case of a bank loan application such as the one discussed
in the previous sections, a concept like reliable client, modeled on the basis of the field values for
a particular customer, could prove useful for the form designer in order to codify decision making
issues associated with form processing. To identify every relevant attributes needed to infer a concept
like “reliable customer” using only imperative code may be a difficult task, as in complex situations
such conclusions are defeasible (particularly in presence of incomplete and potentially inconsistent
information).

To address the above problem, the concept of form can be suitably extended to formalize such
complex scenarios on the basis of DeLP by means of defeasible attributes. In order to do this, we
will first provide a rather generic definition of the concept of form on the basis of the notions of form
schema and form instance based on a previous work of ours [8] but adapted to a DL setting.

Definition 5 (Form schema. Form instance) A form schema is a triple F = 〈F, T, C〉, where
F = [f1, . . . , fn] is a list of form fields, T = [T1, . . . , Tn] is a list of types or concepts, and C is
a concept including the individual filling the form. If V = [v1, . . . , vn] is a list of values such that
vi ∈ Ti, i = 1, . . . , n is the value for fi ∈ F for individual cj , a form instance based on F with value
V and individual identifier cj (noted as F cj

V) is a triple F cj

V = 〈F, V, cj〉.

Defeasible rules ∆bank:
(1.a) profession(X) −≺ X = medical doctor .
(1.b) profession(X) −≺ X = professor .
(1.c) profession(X) −≺ X = lawyer .
(1.d) profession(X) −≺ X = engineer .
(1.e) profession(X) −≺ X = msc student .
(1.f) profession(X) −≺ X = phd student .
(1.g) profession(X) −≺ X = undergrad student .
(1.h) profession(X) −≺ X = none .
(2.a) family status(X) −≺ X = rich .
(2.b) family status(X) −≺ X = broke.
(2.c) family status(X) −≺ X = unknown .
(3) rich status(X) −≺ X = rich .
(4.a) univ student(X) −≺ X = msc student .
(4.b) univ student(X) −≺ X = phd student .
(4.c) univ student(X) −≺ X = undergrad student .
(5) profession(X) −≺ univ student(X).
(6) family status(Y) −≺ family record(X,Y).
(7) customer(X) −≺ family record(X,Y).

(8) name(Y) −≺ cstmr name(X,Y).
(9) customer(X) −≺ cstmr name(X,Y).
(10) profession(Y) −≺ cstmr profession(X,Y).
(11) customer(X) −≺ cstmr profession(X,Y).
(12) country(Y) −≺ cstmr country(X,Y).
(13) customer(X) −≺ cstmr country(X,Y).
(14) number(Y) −≺ cstmr income(X,Y).
(15) customer(X) −≺ cstmr income(X,Y).
(16) number(Y) −≺ req loan(X,Y).
(17) customer(X) −≺ req loan(X,Y).
(18.a) name(X) −≺ X = ajax .
(18.b) name(X) −≺ X = danae .
(18.c) name(X) −≺ X = john .
(18.d) name(X) −≺ X = peter .
Facts Πbank:
(19) family record(c1, rich)
(20) family record(c2, unknown)
(21) family record(c3, unknown)
(22) millionaire(c4)

Figure 7: Ontology Σbank expressed as a DeLP program Pbank = (Πbank,∆bank)

Defeasible rules ∆HSO:
(1) credible(X) −≺ country(X), democracy(X).
(2) ∼credible(X) −≺ country(X), democracy(X), atwar(X).
(3) ∼credible(X) −≺ country(X), democracy(X), corruptgovt(X).

Facts ΠHSO:
(4) country(krakosia)
(5) country(greece)
(6) democracy(greece)
(7) democracy(krakosia)
(8) atwar(krakosia)

Figure 8: Ontology ΣHSO expressed as a DeLP program PHSO = (ΠHSO,∆HSO)

Example 3 Let F be a list of form fields and T a list of values such that:

F = [cstmr name, cstmr profession, cstmr income, req loan, cstmr country]
T = [name, profession,N,N, country],

then F = 〈F, T, customer〉 is a form schema. Let c1 be an individual identifier, let V be a list
of values such that: V = [john, phd student , 400, 2000, krakosia], then F c1

V = 〈F, V, c1〉 is a form
instance based on F .

Figure 9 shows the typical graphical appearance of a web-based form according to the form
schema given in Example 3. In [8] we showed how to extend traditional web-based forms to in-
corporate defeasible knowledge expressed in terms of a DeLP program, characterizing the notion of
forms with defeasible attributes or δ-forms. In this article, our goal is to provide a way to associate a
δ-ontology Σ with an arbitrary form schema (which will correspond to a number of different possible
form instances). The δ-ontology Σ is assumed to represent declarative knowledge associated with the
problem domain of the form schema. Thus, as discussed in the previous example, a form schema cor-
responding to a bank application could have an associated ontology which represents tentative (and
possibly conflicting) policies for granting loans.

Given a form schema F = 〈F, T, C〉 and a particular form instance F cj

V we will capture the
factual knowledge involved in F cj

V in terms of an Abox AF
cj
V . Such assertions will be obtained by

Name: John

Profession: PhDStudent

Income: 400

Amount requested: 2000

Country: Krakosia�
 �	Submit
�
 �	Validate

Figure 9: Form view for the loan application

introducing new concept names associated with those field names in a form F , and new constant
names corresponding to the values present in V . Formally:
Definition 6 (Form assertional box) Let F = 〈F, T, C〉 be a form schema, with F = [f1, . . . , fn],
and let F cj

V be a form instance. We define the form assertional box AF
cj
V as the set:

AF
cj

V =def

{
C(cj), f1(cj , v1), . . . , fn(cj , vn)

}
.

Example 4 (Continues Example 3) Given the form instance in Example 3, its assertional box is the
set:

AF
c1
V =

 customer(c1), cstmr name(c1, john),
cstmr profession(c1, phd student), cstmr income(c1, 400),
req loan(c1, 2000), cstmr country(c1, krakosia)

 .

Next we will show how field values can be integrated with an arbitrary δ-ontology Σ = (TS, TD, A),
adapting thus the concept of δ-forms presented in [8] to a DL setting. Formally:

Definition 7 (Form schema with defeasible attributes. δ-form instance) Let F = 〈F, T, C〉 be a
form schema, and Σ = (TS, TD, A) a δ-ontology. A form schema with defeasible attributes (or
δ-form schema) D is a pair 〈F ,Σ〉. If V is a set of values for the form F , a δ-form instance
DV is the pair 〈FV ,Σ〉. The set of defeasible attributes for DV is defined as the set of predicates
Pred((TΠ(TS) ∪ TΠ(A) ∪ TΠ(AF

cj

V), T∆(TD))).

Given a δ-form schema 〈F ,Σ〉, the above definition aims at identifying features or attributes in
the form F encoded by the form designer as distinguished predicates in the program P = (TΠ(TS) ∪
TΠ(A) ∪ TΠ(AF

cj

V), T∆(TD)). Such attributes are said to be defeasible, as their associated value will
be determined by DeLP queries solved w.r.t. the DeLP program P . Hence, changing the field val-
ues in the form F or changing the ontology Σ will result in changing the value for these attributes.
As stated before, defeasible attributes will represent relevant features for the form designer, whose
value depends on the ontology encoding relevant domain knowledge with the addition of particular
assertions which represent the field values for a given form instance.

Example 5 If individual c1 named John (as presented in Figure 5) fills in the form (as in Figure 9), a
form instance as the one presented in Example 3 is obtained. When a dialectical process is carried out
on the DeLP program obtained from Σjohn = (T criteria

S , T criteria
D ∪T bank

D ∪THSO
D , Abank∪AHSO∪AFcj

V)
the membership of the individual c1 would not be determined to the concept candidate w.r.t. to the
form 〈F ,Σjohn〉 and no loan will be granted to John. When Danae fills in the form, she will be granted
a loan because the membership of the individual c3 to the concept candidate will be determined
w.r.t. to the form 〈F ,Σdanae〉 where Σdanae = (T criteria

S , T criteria
D ∪ T bank

D ∪ THSO
D , Abank ∪ AHSO ∪

{(3), (13)-(16), (20)}). 1

1In the case of the ontology Σdanae, the set {(3), (13)–(16), (20)} is considered w.r.t. the Abox Auser in Fig. 5.

4 Conclusions
We have presented a novel argument-based approach for enriching traditional forms for web-based
environments, which can be suitably adapted to existing technologies in the context of the Seman-
tic Web initiative. Our proposal involves providing the possibility of modeling inferences based on
concepts which are part of the intended meaning of a form, which we have formalized as defeasible
attributes. These defeasible attributes are in turn specified by a form designer by means of a DL on-
tology. As this DL ontology can be inconsistent, an argumentative process has to be carried out for
determining the ultimate value of such defeasible attributes.

Acknowledgments

This research was funded by Agencia Nacional de Promoción Cientı́fica y Tecnológica (PICT 2002 No. 13.096, PICT
2003 No. 15.043, PAV 2004 076), by CONICET (Argentina), by Project TIN2006-15662-C02-01 (MEC, Spain), Project
24/ZN10 (SGCyT, UNS).

References
[1] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors. The

Description Logic Handbook – Theory, Implementation and Applications. Cambridge University Press, 2003.

[2] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American, 284(5):34–43, 2001.

[3] Carlos Iván Chesñevar, Ana Maguitman, and Ronald Loui. Logical Models of Argument. ACM Computing Surveys,
32(4):337–383, December 2000.

[4] M. Dubinko, L. Klotz, R. Merrick, and T.V. Raman. XForms 1.0 - W3C Recommendation. 14 Oct. 2003, 2003.

[5] Alejandro J. Garcı́a and Guillermo R. Simari. Defeasible Logic Programming: An Argumentative Approach. Theory
and Practice of Logic Programming, 4(1):95–138, 2004.

[6] Sergio Alejandro Gómez, Carlos Iván Chesñevar, and Guillermo Ricardo Simari. Inconsistent Ontology Handling
by Translating Description Logics into Defeasible Logic Programming. Revista Iberoamericana de Inteligencia
Artificial, 11(35):11–22, 2007.

[7] Sergio Alejandro Gómez, Carlos Iván Chesñevar, and Guillermo Ricardo Simari. An Argumentative Approach to
Reasoning with Inconsistent Ontologies. In Proc. of the Knowledge Representation in Ontologies Workshop (KROW
2008), volume CPRIT 90, pages 11–20, Sydney, Australia, 2008.

[8] Sergio Alejandro Gómez, Carlos Iván Chesñevar, and Guillermo Ricardo Simari. Defeasible Reasoning in Web
Forms Through Argumentation. International Journal of Information Technology & Decision Making, 7:71–101,
2008.

[9] Volker Haarslev and Ralf Möller. RACER System Description. Technical report, University of Hamburg, Computer
Science Department, 2001.

[10] Zhisheng Huang, Frank van Harmelen, and Annette ten Teije. Reasoning with inconsistent ontologies. In Leslie Pack
Kaelbling and Alessandro Saffiotti, editors, Proceedings of the Nineteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI’05), pages 454–459, Edinburgh, Scotland, Aug 2005.

[11] Michel Klein. Combining and relating ontologies: an analysis of problems and solutions. In Asuncion Gomez-
Perez, Michael Gruninger, Heiner Stuckenschmidt, and Michael Uschold, editors, Workshop on Ontologies and
Information Sharing, IJCAI’01, Seattle, USA, August 4–5, 2001.

[12] Carsten Lutz. Description Logics with Concrete Domains—A Survey. Advances in Modal Logic, 4:265–296, 2003.

[13] Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of Defeasible Reasoning and its Implementa-
tion. Artificial Intelligence, 53:125–157, 1992.

[14] Jen-Her Wu, Her-Sen Doong, Ching-Chang Lee, Tse-Chih Hsia, and Ting-Peng Liang. A methodology for designing
form-based decision support systems. Decision Support Systems, (36):313–335, 2004.

