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Abstract. The purpose of Functional Magnetic Resonance Imaging (fMRI) is to map
areas of increased neuronal activity of the human brain. fMRI has been applied to inves-
tigate a variety of neuronal processes from activities in the primary sensory and motor
cortices to cognitive functions such as perception or learning. Robust anisotropic diffu-
sion of statistical parametric maps (RADSPM) is a new technique to improve functional
Magnetic Resonance Imaging. RADSPM attempts to improve voxel classification based
on robust anisotropic diffusion (RAD) to include the spatial relationship between active
voxels. This paper compares two fMRI postprocessing techniques used to identify areas
of increased neuronal activity, a widely used method, correlation analysis, and RADSPM.
In recent years, the use of ROC analysis has been extended from its original use in com-
munication systems to machine learning, pattern classification and fMRI. We proposed
to use ROC curves and the area under the curve (AUC) not only as a final performance
evaluation and visualizing technique but as a gauging parameter procedure in RADSPM.
We give a brief review of the main methods and conclude presenting experimental results
and suggesting further research alternatives.
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1 Introduction
A Receiver Operating Characteristic (ROC) analysis is a technique for evaluating and visualizing the
performance of different classifiers. ROC analysis of functional Magnetic Resonance Imaging (fMRI)
was introduced by Constable [1] in 1995. The purpose of Functional Magnetic Resonance Imaging
(fMRI) is to map areas of increased neuronal activity of the human brain. The hemoglobin in the
blood is a natural contrast agent, because it has different magnetic properties depending on its state
of oxygenation [2]. These differences affect the voxel intensity in the magnetic resonance image.
In a typical fMRI experiment, baseline images are scanned periodically while the subject is at rest
(or in other baseline condition) and activation images are acquired when the subject is performing a
specific task or receiving a stimulus. A classical method for identifying activated brain regions from
noisy fMRI 4-D image is the correlation analysis [3]. A correlation coefficient measures the degree of
matching between the time series of a particular voxel and the expected activation of the experiment
design. For each correlation coefficient, a t-statistics is computed and spatially disposed, forming a
Statistical Parametric Map (SPM). The classification of voxels as active or non-active is performed
by thresholding the SPM at a particular significance level, without taking into account any spatial
relationship between voxels.
RADSPM [4] is a technique based on Robust Anisotropic Diffusion (RAD) and classic correlation
coefficient analysis that includes the spatial relationship and improves the detection of active voxels.
We use ROC curves to show that the proposed technique is superior to the conventional correlation
method and introduce the use of ROC analysis as a gauging method for adjusting the diffusion pa-
rameter in RADSPM.
This paper is divided in two parts, sections 2 to 5 cover the fundamental ideas behind RADSPM
and ROC analysis. Sections 6 and 7 show experimental results and propose future research work,
involving extensive tests on fMRI images and parallel fMRI processing, based on the present results.

2 fMRI Correlation Analysis
Correlation analysis is a simple method widely used to detect active voxels in fMRI images [5]. Each
voxel s has an associated time series Xs = {x1, x2, ...xN}, where N is the number of volumes of
the 4-D functional image. Y = {y1, y2, ..., yN} is the reference time series, expected to represent the
oxygenation changes in the blood due to the experiment stimulation. The reference time series can be
a simple square waveform representing the stimulation protocol, a delayed square waveform, or the
convolution of a square waveform with the Hemodynamic Response Function (HRF) of the brain [6].
The sample correlation coefficient

ρs =

∑
(xi − x)(yi − y)√∑

(xi − x)2
∑

(yi − y)2
(1)

describes the matching between the observation and the expectation.
In order to classify the voxel s as active or non-active, we transform the correlation coefficient ρs into
the random variable τs that follows Student´s t-distribution with N − 2 degrees of freedom:

τs =
ρs
√
N − 2√

1− ρ2
s

(2)

The image obtained by spatially disposing τs, for every voxel s, is called statistical parametric map
SPM(τ ).



3 Robust Anisotropic Diffusion
Perona and Malik [7] defined the anisotropic diffusion as

∂I(x, y, t)

∂t
= div [g (‖∇I(x, y, t)‖)∇I(x, y, t)] , (3)

using the original image I(x, y, 0) : R2 → R+ as the initial condition, where t is an artificial time
parameter and g is an “edge-stopping” function. The right choice of g can greatly affect the ex-
tent to which discontinuities are preserved. Perona and Malik suggested two possible edge-stopping
functions in their paper [7]. Black et al. [8] used the robust estimation theory to choose a better
edge-stopping function, called Tukey’s biweight:

g(x) =

{ [
1− x2

5σ2

]2
, x2

5
≤ σ2

0, otherwise
(4)

The function g above is the dilated and scaled version of the original Tukey’s function, where g(0) = 1
and the local maxima of its “influence function” ψ(x) = xg(x) is situated at x = σ. The diffusion that
uses the Tukey’s function is called robust anisotropic diffusion (RAD) and this is the edge-stopping
function adopted in this paper.
Perona and Malik [7] discretized spatio-temporally their anisotropic diffusion equation (3) as:

I(s, t+ 1) = I(s, t) +
λ

|ηs|
∑
p∈ηs

g(|∇Is,p(t)|)∇Is,p(t), (5)

where I(s, t) is a discretely sampled image, s denotes the pixel position in a discrete 2-D or 3-D grid,
t ≥ 0 now denotes discrete time steps, the constant λ determines the rate of diffusion (usually, λ = 1),
and ηs represents the set of spatial neighbors of pixel s. For 2-D images, usually four neighbors
are considered: north, south, west and east, except at the image boundaries. For 3-D images, six
voxels are usually considered: the above-mentioned four plus “up” and “down” voxels. The gradient
magnitude of a voxel in a particular direction at iteration t is approximated by:

∇Is,p(t) = I(p, t)− I(s, t), p ∈ ηs. (6)

Black et al. [8] suggested to use the “robust scale” defined by:

σe = 1.4826 MAD(~∇I) = 1.4826 medianI

[∣∣∣‖~∇I‖ −medianI(‖~∇I‖)
∣∣∣] , (7)

where MAD is the Median Absolute Deviation.

4 Anisotropic Diffusion of fMRI
SPM obtained with correlation analysis does not take into account any spatial relationship between
voxels. Some papers have proposed to use the anisotropic diffusion to exploit the spatial correlation
between activated voxels. Neoh and Sapiro [9] have applied the anisotropic diffusion directly to the
SPM. However, it cannot substantially improve the quality of SPM because it does not take into ac-
count the originating fMRI data. Solé et al. [10] have proposed another technique named anisotropic



averaging. It computes an initial set of clearly activated voxels. This set is then used to construct a
complex “similarity measure” to calculate the averaging coefficients.
A new and different technique, directly related to the Robust Anisotropic Diffusion RAD, have been
proposed to overcame the former drawbacks. It has been named Robust Anisotropic Diffusion of
Statistical Parametric Maps (RADSPM) [11, 4].
RADSPM is simple and has yielded clear SPMs when applied to both simulated and real fMRI data.
This technique increases substantially the statistical significance of activated regions, what makes it
possible to decide with more confidence if a certain brain region is activated or not.

Let I ′ be an fMRI data. First of all, the mean value is removed from I ′, yielding the mean-removed
fMRI I:

I = I ′ − I ′ (8)

This pre-processing is very important, because structural and functional regions of the brain do not
necessarily match. No structural information should be diffused, but only the activation information.
Note that the activation information is not affected at all by the mean-correction.
Let us denote the fMRI data at iteration t ≥ 0 of the diffusion process as I(s, n, t), where I(s, n, 0)
is the initial mean-corrected fMRI at spatial voxel position s and volume n. RADSPM is described
below:

1. Let t← 0.

2. Calculate the SPM(τ ) T , using equations (1) and (2). Let us denote the value of the SPM(τ ) at
voxel s and iteration t as T (s, t).

3. Compute the diffusion coefficients. The diffusion coefficient between a voxel s and its neigh-
boring voxel p at instant t is:

g(|∇Ts,p(t)|), where ∇Ts,p(t) = T (p, t)− T (s, t). (9)

4. Use these coefficients to perform the diffusion in I(s, n, t), yielding the diffused fMRI
I(s, n, t+ 1) at iteration t+ 1:

I(s, n, t+ 1)← I(s, n, t) +
λ

|ηs|
∑
p∈ηs

g(|∇Ts,p(t)|)∇Is,p(t), (10)

where∇Is,p(n, t) = I(p, n, t)− I(s, n, t).

5. Let t ← t + 1 and repeat steps 2 to 5 some predefined number of times or until the average of
diffused values (second term of equation (10)) is below some predefined threshold.

The anisotropic diffusion is controlled by the number of iterations and the scale parameter of the edge
stopping function (4), σ. The latter is the principal parameter to determine, and is subject of actual
research [4, 12]. In our work we adjust the value of σ by plotting the ROC curve corresponding to the
“robust scale” defined by equation (7) as the initial value, and fitting σ to obtain the best performance
of the classifier according to ROC analysis.



5 ROC analysis
The result of postprocessing Magnetic Resonance images either with RADSPM or correlation analy-
sis is another image named SPM(τ ). Each voxel value represents the degree to which that particular
voxel is a member of a class. A binary classifier is obtained by applying a threshold to the corre-
sponding parametric map. In fact, for each different value of the threshold, a new binary classifier
is defined. We refer to N as the number of negative or non-activated voxels and P as the number of
positive or activated ones.
Given a binary classifier and the class membership of each voxel, that is, the ideal classification (gold
standard), or the true class obtained from an artificial image (phantom), there are four possible results
of the classification process:

True Positive (TP): positive voxels detected as positive.

True Negative (TN): negative voxels detected as negative.

False Positive (FP): negative voxels detected as positive.

False Negative (FN): positive voxels detected as negative.

The sum of TP, TN, FP and FN is the total number of voxels in the image. Usually this quantities can
be represented as a contingency table or confusion matrix as indicated in table 1.

True Class
P N

Predicted Class
P
N

TP FP
FN TN

Table 1: Confusion matrix for binary classifiers

The principal diagonal of the confusion matrix represents the correct classification. A perfect classi-
fication would only contain values different from zero in the main diagonal.
A number of common performance metrics can be derived from the the definitions of TP, TN, FP and
FN [13]. The True Positive Fraction (TPF) and the False Positive Fraction are defined as:

TPF =
TP

TP + FN
(11)

FPF =
FP

FP + TN
(12)

Receiver Operating Characteristics (ROC) analysis has long been used in signal detection theory,
medical diagnostic systems and functional neuroimaging analysis [1, 14, 15, 16]. ROC curves are
graphs in which the TPF is plotted on the Y axis and the FPF is plotted on the X axis when a parameter
of our detection method varies. Each binary classifier is defined by one point in the ROC space. The
terminology used in ROC analysis includes terms like the sensitivity, or recall, or the TPF, and the
specificity defined by equation (13).

specificity =
TN

TN + FP
= 1− FPF (13)



A common definition of a ROC curve is as a graph of the sensitivity versus one minus specificity.
A perfect classifier will have sensitivity and specificity equal to one, and a random one produces a
ROC point on the line y=x. As a particular parameter of our classification model varies, we obtain a
different binary classifier each one corresponding to a new point in the ROC space. The main impor-
tant metrics derived from the ROC curve are the area under the curve (AUC) and the distance from
the optimal operation point (OOP), where the latter is defined as the point of the curve more distant
from the principal diagonal. In this work we proposed to use ROC analysis to compare statistical
parameters maps obtained by correlation analysis and RADSPM for different activation thresholds.

6 Experimental Results
In order to test and develop classification models in fMRI we use an artificial image or a real image
and the corresponding gold standard. In the first case we know the expected result, the exact location
of activated and non-activated voxels, but it is difficult to simulate the noise distribution of noisy and
complicated fMRI signal. Using real fMRI images requirers multidisciplinary efforts to determine
the gold standard. The results presented in this section are based on the first approach, results of
RADSPM on real fMRI images are reported in [11, 4]. We generated a simple artificial 4-D fMRI,
with 10 × 10 × 3 voxels per volume and 84 volumes. Voxels values were 16000 corrupted by zero-
mean Gaussian noise with standard deviation σ = 4000. Active voxels had their values increased
by 1000 and 1500 for artificial images (A.I), that we also call phantom images I and II respectively.
The fMRI had alternating blocks of 6 non-active and 6 active volumes, beginning with non-active
volumes. Activated volumes had a 6 × 6 × 3 activated region in the center of the volume, with two
non-activated regions of 2× 2× 3 voxels each.
Figure 1 depicts RADSPM’s and correlation’s ROC curves. Each point of a ROC curve is obtained
by solving equations (11) and (12) for a specific threshold value.

(a) Phantom-I (b) Phantom-II

Figure 1: ROC curves

Table 2 presents performance metrics of the two ROC curves: (1) The area under RADSPM’s curve
is larger than that of correlation’s; (2) The distance doop from the principal diagonal to the optimal
operating point (OOP) is larger in RADSPM’s curve than in correlation’s; (3) At the OOP RADSPM



shows larger TPF, lower FPF and lower observed statistical significance level poop than the correlation
method for both phantom I and phantom II.

Method Area dpo ppo TPFpo FPFpo

Correlation-SPM 0.7863 0.3063 0.3 0.7619 0.3287
Phantom-I

RADSPMσ=1.8,t=10 0.9645 0.5687 0.0001 0.9524 0.1481
Correlation-SPM 0.8798 0.4373 0.2 0.8452 0.2269

Phantom-II
RADSPMσ=2,t=10 0.9958 0.6594 0.00001 0.9881 0.0556

Table 2: Performance metrics

Figure 2 presents ROC curves for three different values of σ. The ROC curves can be seen as a
gauging method to select the adequate diffusion parameter.

(a) Phantom-I (b) Phantom-II

Figure 2: (a) S1 = σe, S2 = 1.5σe, S3 = 1.86σe and (b) S1 = σe, S2 = 1.5σe, S3 = 1.73σe

Method TPpo TNpo FPpo FNpo

Correlation - SPM 64 145 71 20
Phantom-I

RADSPM(σ = 1.8, t = 10) 80 184 32 4
Correlation - SPM 71 167 49 13

Phantom-II
RADSPM(σ = 2, t = 10) 83 204 12 1

Table 3: TP, TN, FP, FN

Table 3 presents for the OOP the TP, TN, FP and FN for correlation and RADSPM methods.



Figure 3 depicts one activated volume of the phantom II, the SPM(τ ) generated by the correlation
method, the SPM(τ ) generated by RADSPM and the gold standard of the artificial image. Clearly,
RADSPM has produced an SPM(τ ) with better quality than the correlation map.

(a) Slice 1 (b) Slice 2 (c) Slice 3

(d) Slice 1 (e) Slice 2 (f) Slice 3

(g) Slice 1 (h) Slice 2 (i) Slice 3

(j) Slice 1 (k) Slice 2 (l) Slice 3

Figure 3: 1st row: Simulated fMRI. 2nd row: SPM(τ ) produced by correlation method. 3rd row:
SPM(τ ) produced by RADSPM (σ = 2, t = 10). 4th row: Reference image (gold standard).



7 Conclusions and Future Work

In this paper we have presented ROC performance evaluation of a new technique named RADSPM
and classical correlation analysis of fMRI time series. Experimental results using ROC curves have
shown promising results for RADSPM parametric maps of artificial images. We have successfully
used ROC analysis to adjust the diffusion parameter from an initial value of σ. Further research in-
volves improving the probabilistic model used to create the artificial images considering the noise
distribution and the signal to noise ratio in order to approximate the complex and noisy fMRI signal
structure. Extensive tests on real fMRI and artificial data must be done in order to extend our results to
different real experiment paradigms. Magnetic Resonance scanners place huge demands on comput-
ing and visualization capacity. Real time functional processing involves multidisciplinary efforts [17].
At the expense of an increase in computational complexity RADSPM includes contextual information
that improves the performance of the classification model, the processing time is the weak point for
practical use of RADSPM in real time. In order to reduce the postprocessing time further research
involves parallel fMRI processing [18] for image reconstruction, visualization and fundamentally for
post-processing techniques.
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