
Challenges of Streaming in the Visualization Process*

Sebastián Escarza1, 2 - Silvia M. Castro2 - Sergio R. Martig2
1Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

2VyGLab - Dpto. de Ciencias e Ingeniería de la Computación - Universidad Nacional del Sur
Av. Alem 1253 - 8000 Bahía Blanca - Buenos Aires - Argentina

{se,smc,srm}@cs.uns.edu.ar

Abstract

In visualization applications, the data has been increasing its size at very big rates. Processing of the
whole data in main memory becomes impossible due to size limitations. A way of dealing with this
constraint is to apply streaming to the visualization. The key idea is to exploit data locality in
relationships to produce constant and continuous streams of data flowing through the visualization
process. Issues like data dependencies, stream re-arranging, use of progressive algorithms, etc. have
to be taken in consideration. In this paper we outline the main issues derived from the application of
streaming in visualization. Our main objective is their identification as a previous step to define a
general streaming framework for visualization. Some of the results presented here arose during the
design and development of ad-hoc prototypes that we made as an initial approximation to the
problem.

Keywords: Visualization, Streaming, Streaming Data Visualization

* This work was partially founded by the PGI 24/N020 and PGI 24/ZN12, Secretaría General de Ciencia y Tecnología,
Universidad Nacional del Sur, Bahía Blanca, Argentina.

1 INTRODUCTION

An important issue in Visualization is the efficient processing of an ever increasing data volume.
The processing of the whole data in main memory becomes impossible due to size limitations and
new techniques have to be applied. A way of dealing with this constraint is the implementation of
secondary memory data structures. However, it is not always necessary to keep access to the entire
dataset to perform the processing. In Visualization, almost invariably, a localized portion of data is
used during data analysis, cleaning and filtering, attribute selection, layout calculations, visual
mapping, rendering, etc.

This locality can be exploited in order to avoid the storage of the entire dataset in each processing
stage. If each stage’s incoming dataflow is arranged in such a way that the processing can start
before the whole data is received, the processed data items could be transferred to the next stage and
then released when they are not longer needed. This strategy saves computational resources and
allows performing data processing in a streamed and potentially pipelined fashion.

Streaming has been widely used to deliver audio, video and multimedia. End-user constantly
receives the media while it is delivered by the provider, without download it completely before
playback begins. Multimedia streaming requires media formats and protocols specifically designed
to support it; time locality is exploited along subsequent video frames or audio fragments. Although
streaming on data sets is a relatively new matter, the same elements can be identified. However,
data streaming may lead to many issues. In general, the locality does not arise trivially from the data
and there is not a time scale that guides the communication between stages. Thus, other
relationships among data items have to be found to establish their transfer order and attain a
localized processing.

Structuring the visualization pipeline for streaming poses several challenges. It is necessary to
arrange the data in order to send it to the next stage. Data dependencies have to be analyzed and
solved in order to process related data items together. It is desirable to have the required data before
the stage’s processing begins to reduce the required amount of memory. Another important issue is
the requirement for progressive algorithms that could perform operations step by step over the
dataset. These algorithms should run when new data arrive and perform their activities without re-
execute previous computations that were done as consequence of previously received data items. In
this way, these received items would not be longer needed and could be deallocated.

This paper outlines the key aspects in applying streaming in visualization. Apart from theoretical
research, we have been done some preliminary design and implementation efforts as a first
approach to the problem. Visualization tool prototypes allowed us to get a more concrete view of
the problem and to draw some of the conclusions presented here.

Along this work, we analyze the most relevant aspects and the main problems that arise in
designing and developing streaming pipelined visualization tools. First, we discuss the streaming as
a technique to reduce computational resources and also the modifications in the visualization
pipeline to support streaming. Second, we analyze the data items processing and the requirements
for streaming. Third, we study data dependencies that could make difficult the usage of streaming
and how to deal with these issues. Then we cover progressive algorithms as a necessary topic to
compose intermediate results and build visual representations. After that, we discuss additional
related issues in streaming visualization such as the consistency problems when replicated data is
updated and the safe re-execution of the visualization pipeline in a streamed scenario as a

consequence of interactions. Finally, we address related work about streaming in visualization and
present our conclusions and future work.

2 STREAMING IN VISUALIZATION

A common practice in Visualization is structuring the process in pipeline or, more generally
speaking, in execution networks (we will use both terms interchangeably along this paper). We have
connected stages, where transformations and calculations are performed, and, between them, some
buffering mechanism to maintain entities until they be further processed (figure 1). By processing
data concurrently in several stages, this architecture leads to a greater flexibility and performance.
However, visualization stages usually transform the entire dataset in order to make available their
output to further stages instead of sending data items one by one through the pipeline. This
simplifies the design and implementation of the visualization because stages that receive those
outputs can presume complete access to datasets. The two major drawbacks of this approach are the
performance penalty that arises when the receiving stages have to wait for intermediate data to
proceed, and the fact that the whole output must be kept in memory while receiving stages process
it.

Figure 1: A traditional visualization network. After the processing at each stage, a dataset is generated as output. This
dataset is the input of the next stage and is maintained until the next stage process finishes. Only when these datasets are
completely built, next stages can proceed. Intermediate datasets can be stored to avoid their regeneration or released to
save memory when they are no longer needed. Anyway, enough storage for them is always required.

Streaming is a technique that allows a receiver to begin processing some data even though it is not
completely transferred by the sender. By using streaming between stages, data items can be
transferred to the next stage as soon as they are ready. The key aspect is not only dividing the
visualization process in stages, but also the dataset in basic elements to transfer them progressively.
In this way, introducing streaming overcomes the drawbacks above stated, and empowers the
concept of pipelining because data items are processed without interruptions as long as they flow
through the visualization (figure 2).

Figure 2: The streamed version of the previous visualization network. This figure shows an intermediate state in the
processing. In contrast with figure 1, data items are flowing through the visualization and there are no intermediate
buffered datasets in the process. Each data item is processed on the fly and routed to the correct stage. Reader should
notice how the visual representation is built as long as processed data items arrive.

Nevertheless, streaming imposes its own challenges. Items in a visualization pipeline could be
processed isolated or linked together. The former case occurs when the computation over some data
item does not require any others to be completed. For example, maximum, minimum or average
calculations, and non-topological filtering like attribute value based filtering can be solved by
taking each data item one at a time without any dependency from others. By contrast, a linked
process is the only alternative when there are dependencies between data items. For example,
calculating tree metrics such as tree depth or any graph based metric requires knowing in advance
the metric values from neighbor nodes and, consequently, the node and its neighbors must be
processed together.

In the presence of isolated items, the pipeline can progress without restrictions. Items can enter into
stages as soon as the stages are freed. However, when some items are involved in the processing of
some others, the processing cannot continue until all these items are available. This may lead to an
excessive accumulation of pending items inside stage buffers producing an increment in the overall
memory consumption. Also, performance bottlenecks may arise because stages have to wait the
required data in order to complete their processing. Therefore, if no measures are taken to avoid
these problems, performance gains because of streaming could not be obtained.

3 REQUIREMENTS FOR STREAMING

As was stated in the previous section, introducing streaming in visualization is not an easy task.
There are requirements that must be met to achieve higher performance and significant reductions
in resource consumption.

As a first requirement, it is necessary to have all related items available in order to start each stage
processing. Relationships among items have to be analyzed to identify subsets of information able
to be processed locally. Once data dependencies are identified, the dataflow between processing
stages has to be arranged in such a way that related items be transferred together from one stage to
the next. As was stated in the previous section, having all needed data items together allows the
beginning of their processing and the amount of storage for pending items can be consequently
reduced.

Another essential requirement is the modification to the visualization algorithms. Deal with data
streams instead of full accessible datasets stands new design challenges. Items have to be forwarded
as soon as they are processed. Little or no auxiliary storage has to be used. An algorithm cannot
simply collect the whole stream and rebuild the entire dataset to perform its calculations because
this would frustrate the entire streaming effort. Visualization algorithms have to make do with only
the tiny part of the total dataset that is available through the input stream. Also, they have to
contribute to the output stream as soon as possible to do not delay the process.

In the following sections we give a detailed discussion about these requirements and provide some
examples about the impact of the streaming in visualization.

4 DATA DEPENDENCIES

The visualization process involves many data calculations from its input up to the building of the
visual representation. Those calculations require some data items as input and produce other items
as output. The dependences established among data items constrain how they flow through the
visualization pipeline. The goal of data dependency analysis is the identification of locally related
sets of items to process together. As result of this analysis, a partial ordering of the pipeline flow of
items that exploit data locality is obtained (figure 3).

Figure 3: A schematized streamed visualization pipeline showing data dependencies. Raw dataset have 3 items: A, B
and C. In stage X, the calculation of D depends on A and B, and the calculation of E depends on B and C. In stage Y
something similar occurs. F depends on A, B and D; and G depends on B, C and E. These dependencies arise from each
stage processing. Between stages the ordered streams of items can be appreciated. Reader should also notice that C, D
and E are filtered and they are not present in the final visual representation.

Data dependences may vary in term of the performed operations. In some dataset, some items can
be related from the perspective of some calculation but can remain unrelated from the viewpoint of
another. For example, two graph nodes linked by an edge, should be processed together by a graph
traversal algorithm which calculates some path based metric. However, if the computation changes
some graphical attribute such as color to provide feedback to user about a node selection, the
processing order of these two graph nodes is negligible. These variations on data dependencies, as a
function of the processing, stand a key issue because some kind of coordination between stages
becomes necessary in order to agree about what data items transfer together.

At the beginning of the visualization process, the dataset in the user domain must be loaded or
accessed in some way. At this point, the first challenges arise. Datasets with unrelated pieces of
information are rather unusual. In almost every data set, there are inherent relationships between
elements. These relationships appear when a data item reference another, when two points in a set
present a topological link that allows interpolating attribute values between them, when two graph
nodes are linked together and so on. The purpose of visualization is showing these relationships in

some way. This causes these relationships had to be considered during visualization process. As a
result, the way in which data items are processed and transferred through the visualization pipeline
is constrained by the associations among them.

Another problem with dependencies embedded in raw datasets occurs during the reading or parsing
of the input data. No matter whether the data comes from a file or through the network, it cannot be
ensured that the order in which items are received was a function of existing dependencies in
dataset. Datasets that were not conceived for streaming do not ensure any order while are serialized
and complicate the visualization input. For that reason, avoiding complete dataset loading not
always is possible without reordering the dataset.

By contrast to dependencies embedded in raw datasets from scratch, some dependencies are
originated in the visualization process itself. This occurs when some stage in the visualization
process establishes links between data items and it is desirable to perform some further processing
following these links. Clustering algorithms define groups of similar entities and add new
dependencies to layout algorithms because cluster members have to be drawn close together.
Interpolating and approximating algorithms and, in general, every algorithm that derive new data
from the existing one, establish new data items and new relationships. These dependencies, despite
arising later in the visualization process, impose the same constraints and stand the same challenges
that those embedded in datasets from beginning.

Another aspect that has great impact in determining relationships among items is the structure of the
input dataset. In the presence of a heavily structured data set, for example a rectilinear grid, related
data items are implicitly stated. The ordering in which transfer these nodes can be directly obtained
from the underlying topology. However, if an unstructured dataset such as a graph is considered,
dependency analysis becomes cumbersome. In these cases, it is usual to have some basic or
“atomic” items that do not reference any other, and a family of items that reference the “atomic”
ones. After that, other items reference these last ones and so on. Thus, if these pseudo-layers of
dependencies are identified, it is possible to exploit them to decide the order in which send the
nodes. However, sometimes the structure does not have layers at all or contains loops making
difficult the design of general approaches to deal with the dependency problem.

Along this section we have examined the main issues that are involved in dependency discovering.
It is important to notice that dependencies, despite their existence, do not care until they are
considered for some stage processing. Dependencies neglected by visualization do not constrain the
streaming at all. By taking into account the dependencies involved in the visualization process and
reordering the dataflow accordingly, the data locality can be exploited to get more benefits from the
streaming.

5 ARRANGING THE DATAFLOW

The goal of the previous discussion on data dependencies was to identify the items that are related
and should be processed together. Once they are identified, actions should be taken in order to
arrange their flow through the pipeline. As was stated before, this arrangement must occur in such a
way that related items be transferred together from one stage to the next. If this does not occur,
stages have to wait for the necessary items leading to higher memory consumptions and
performance penalties (figure 4).

(a)

(b)

Figure 4: Flow ordering issues. Both sub-figures show four steps in the execution of the visualization pipeline of the
figure 3. In the figure 4(a) an improper item ordering is showed. Initially, A and C are transferred to Stage X and
nothing can be done there. When B arrives to X in step 2, both D and E can be calculated. However, the items sent to Y
are A, B and C and this stage can also do nothing. In the third step D and E arrive to Y and F and G can be computed.
Then, F, B and G are transferred to the visual representation stage where a partial view is built. Finally A is sent from Y
to the last stage and the process finishes. In the figure 4(b) the same transferences occur (the same overall bandwidth is
used between stages), but in a better order. Notice how each stage can compute values as soon as possible avoiding
assigning storage for idle items (in figure 4(a), A and C in step 1 in X and A, B and C in step 2 in Y are wasting
storage). Also, the computation is better spread in time because each stage performs one calculation in each step
(against the two from the other figure). Observe the communication between X and Y in figure 4(b). The stream
between these stages is A, B and D and is according to calculation dependencies. X needed some information about the
calculations of Y to decide sending DBA instead of other items. Another aspect to consider is the construction of the
visual representation. This construction occurs while items arrive. Here it is necessary a progressive algorithm that does
not have to restart when a new item arrive. In 4(b) could be seen that positions of items A, B and F are conserved when
G arrives. If this were not the case, the algorithm should recalculate the layout for all the four items instead of only for
G. However, in figure 4(a), despite this algorithm were progressive or not, B has to be re-laid out due to a bad ordering.

However, dependencies rely on further processing. Some indication of what processing will be
performed over data items is needed to correctly group items by locality. This implies that there
should be coordination between the sender and the receiver stages on the order in which items will
be transferred. Traditionally, sender stages own the control flow of information in visualization
streamed pipelines. Each stage generates output and next stages process it as a reflex mechanism
when their inputs are ready. In this scheme, that we call push pipeline, the control logic relies on
sender stages and it is necessary for these stages to know the ordering restrictions of further stages
in order to send the data accordingly. Otherwise, the opposite scheme called pull pipeline can be
adopted. In this case, each stage requests for needed items to previous stages. The control logic
relies on receiver stages and the problem with this approach is that knowledge about information
that has not arrived yet to the stage is needed in order to build the request. Intermediate solutions
can be applied in which the control is delegated to other components that act as mediators. In either
case, some agreeing mechanism to match constraints among stages is always required.

The major drawback with streaming is the relaxation of stage independence. If a streaming
approach is desired in presence of data dependences, each stage has to have some knowledge about
adjacent stages requirements (figure 5). Designing and implementing every stage independently
from others becomes a harder task. This goes against one of the major advantages of pipelining:
abstraction among stages. Let us consider as an example two connected stages of some visualization
pipeline that handle data from a computed tomography. The first stage performs voxel filtering

based on density values to suppress inner tissue, and the second does some interpolation among
contiguous voxels. Clearly, the first stage should know that second stage operates with contiguous
voxels in order to use some traversal mechanism that enforces the transference of neighbor voxels
together. Also, the second stage should know how many neighbors have each voxel in order to
begin the processing as soon as all the neighbors arrive and, after that, release completely the
processed voxels. This exchange of information between adjacent stages becomes a major issue in
designing modular streamed visualization networks.

Figure 5: Streaming coordination among stages in the presence of dependencies. Against the main data stream, there is
a backflow for coordinating ordering issues. The major drawback with this approach is that each stage must be aware of
their neighbor stages. For example, stage y must be designed to be after stage x. This kind of issues limits the design
modularization.

A way to mitigate the impact of streaming in pipeline modularization is building each stage over an
abstraction layer. This layer should provide a standard interface to recover and transfer data items
and should hide communication and streaming details to the processing stages (figure 6). However,
this is not an easy task. Although each stage recovers its independence from others, it needs to
communicate their constraints to the abstraction layer in some way. This requires that processing
constraints be explicitly represented in the interface between each stage and the abstraction layer.
With these constraints, the abstraction layer could enforce a correct data items distribution.
Unfortunately, design and implement a model for constraints (i.e. data dependencies) is not a trivial
task. Representing data dependencies in the interface is the price that has to be paid to get back the
modularization in visualization design.

Figure 6: Streaming coordination through an abstraction layer. This layer is a platform that encapsulates
communication and coordination details. Each stage can be developed over the interface without taking in consideration
requirements of neighbor stages.

6 PROGRESSIVE ALGORITHMS

Progressive algorithms are those who can operate in little steps. In each execution step some portion
of the overall calculation is performed. When they finish, the whole work is done. This feature
makes them suitable for being used in streaming. As was stated before, the key issue in streaming is
to avoid the complete reconstruction of datasets for processing data. Thus, this kind of algorithms
becomes essential to work with the data flow on the fly, without unnecessary dataset
reconstructions. Their ability of continue their work while items arrive and without restart the whole
process is their main advantage.

In visualization, we can identify two main applications of such algorithms. One is item processing
in middle of the dataflow. Items arrive, are processed and, as soon as possible, are transferred to the
next stages. In this case, the key issue is to keep a constant flow of items through the pipeline
avoiding unnecessary accumulation of data. For this kind of application, algorithms that can work
with little portions of the dataset are required. For example, attribute value based filtering
algorithms belong to this category. For each item, its attribute value is analyzed and a decision is
taken. The algorithm can perform its job getting one item at a time without additional storage.

The other application for progressive algorithms is item processing at the end of the dataflow (see
visual representation discussion in figure 4) or when intermediate results must be generated. In this
case, the functionality varies because these algorithms act collecting data items to compose them in
an intermediate result or a final representation. The key issue is resuming the process each time a
new item arrive without repeat any calculation previously done. This application of progressive
algorithms represents a dataflow endpoint, i.e. the finalization of a stream. This could be either an
intermediate dataset after whom the process continue in other stream or the end of the whole
visualization pipeline.

Some algorithms have not constraints about their input. They simply receive data items in arbitrary
order. In this context, we call them free algorithms. Force directed graph layouts, for example, only
adds new nodes to the force system and re-executes the simulation. The order in which nodes
arrives is negligible. Other algorithms impose restrictions over their input. We call them
constrained algorithms. For example, multi-resolution algorithms receive a low detailed
representation first to perform an approximated render well suited for overview purposes. After
that, more and more details are received and the visual representation progressively gains
resolution. In these cases, there are constraints in the order in which level of details are received.
Free algorithms are easier to design and implement because they are insensitive to dependencies. In
contrast, constrained algorithms present many more difficulties in their application.

7 DISTRIBUTION AND THE INTERACTION LOOPBACK

The focus of previous discussion about streaming was in terms of stages connected by data streams.
Nothing has been said about where each stage is executed. This occurs because the streamed model
is well suitable for both a centralized and a distributed visualization design. The medium by which
entities travel from stage to stage could be either the network or a local shared memory
implementation of some interface between stages; the implications in both cases are the same. The
main point is that a streamed visualization pipeline has a natural extension to achieve the
distribution of processing elements over a computer network because streaming was born as a way
of dealing with distribution of audio and video over the net.

In previous sections we discuss the aspects involved in streamed visualization pipelines but we only
have considered the transformation of the data in visual entities. However, visualization is an
inherently interactive process. Once the first visual representation is shown, user can interact with
visualization by triggering processes that re-execute several parts of the visualization execution
network. This feedback involves many implications from the streaming viewpoint.

Due to visualization interaction, some data items are usually updated. For example, a selection of
elements may change in response to user requests and, thus, the visual mapping for these elements
could be modified in order to provide selection feedback to user. The problem is that there is not a
centralized dataset in which apply such modifications. Items are spread over the whole execution
network and a minor change of some item attribute could involve the reinsertion of such item in the
data flow to be reprocessed. If this item were linked to others in order to solve data dependencies,
the others also should be reinserted. Something similar occurs in figure 7 where the re-calculation
of a value produces the reinsertion of related items. Updates that are solved without troubles in a
standard visualization pipeline, becomes really hard problems in streamed pipelines due to these
issues.

Figure 7: Interactions on streamed visualization. User modifies the calculation of D in stage X by some kind of
interaction. As a result, a new value D’ is obtained and propagated toward the end of the pipeline. However, because
streaming, items A and B needed for D’ calculation could not be present in X. Then, the interaction must re-insert these
items into the incoming stream of X. This reinsertion is originated by the dependency between A, B and D’.

Another problem with data updating is the data replication. Consider a scenario where two data
streams are derived from some stage because the resulting data has to suffer two different processes
(something similar to the visualization of figure 5). In such a case, items would be replicated and
their updates should be coordinated in order to ensure consistency. Other case when data replication
occurs is exemplified in figure 4. If step 2 in figures 4(a) and 4(b) is examined, it should be noticed
a replication of the item B due to the dynamic of the stream and the dependencies. If B were
modified in some way, all its instances should be updated accordingly. As a consequence of this
data replication, database theory related issues have direct impact in the design of a streamed
visualization pipeline.

8 RELATED WORK

Streaming in visualization is increasingly used as a natural response to an ever rising size in datasets
scales. Due to the inability of dealing with huge in-memory datasets, the processing of non-
completely accessible data arises as a need. However, nowadays we only have ad-hoc streamed
implementations. They cover particular cases and often deal with highly parallelizable data (i.e. data
with little dependencies or without dependencies at all). In particular, two main areas are being
addressed: point based data processing and polygonal meshes processing. Little work has been done
with streaming in information visualization or graph visualization where datasets have higher
linking rates.

Point based data related work includes stream based point processing frameworks such as in [6] and
surface reconstruction schemes like the approach presented in [3] which start from scanned points
and uses a multi-level streaming representation. Additionally, some work in progressive point
processing algorithms has been performed. In [8] a view-dependent progressive transmission
scheme is presented for splat volume rendering. In [7] a similar result is examined and two concrete
application cases are given: the progressive visualization of a scattered data set and a real time
visualization of dynamic streaming sensor data.

Geometric and topological mesh processing applications also have been moving to streaming with
novel mesh transmission techniques and new simplification and remeshing algorithms. In [4] and
[5] streaming representation formats for meshes and conversion algorithms to these formats are
presented. A progressive remeshing algorithm is proposed in [1] and a streamed simplification
method for unstructured tetrahedral meshes is presented in [9].

In our knowledge, only non interactive streaming in visualization is well addressed. Streaming is
covered as a way to deal with large data chunks of processing and not as a general resource
optimization method. Interactions in visualization are also not well covered yet, mainly because
when the user feedback loop is introduced, many problems arise.

Streaming in visualization is just emerging as a set of isolated applications. However, in all the
previously mentioned work, some kind of data rearranging, local processing or progressive
computation is always present. The existence of these concepts in specific but very different
scenarios validates them as general elements involved in the application of streaming in
visualization. This is a first and necessary step toward the application of streaming in a more
generalized fashion. Consequently, we think that introducing streaming as a general approach is a
very promising improvement in the development of visualization systems.

9 CONCLUSIONS AND FUTURE WORK

Along this work we presented the concept of streaming and its application in visualization. We have
summarized the main issues that arise in applying streaming in visualization. The key concept is
exploiting data locality in order to make the data stream to flow constantly and without bottlenecks.
In these sense, dependencies in data are an important aspect to be considered because they constrain
the order in which data can flow through the pipeline. For a successful communication between
stages, some coordination mechanism has to be applied. To do this, some alternatives were
discussed. Also, progressive algorithms have been demonstrated to be relevant pieces in this
scenario. They have to process data without full access to them and have to be able of transforming

data streams in either intermediate results or final representations. Finally, distributed visualization
topics, data replication aspects and interaction support issues were presented.

Like every new research topic, streaming in visualization is evolving from ad-hoc approaches to
more general techniques. In this work, we have advanced with minor ad-hoc implementations.
However, these initial efforts allowed us to get some of the interesting results presented here. Thus
far the results are very encouraging and we definitely will proceed along this way and develop
streaming in a more generalized way. We are interested in the inclusion of the abstraction layer
discussed in section 5 as a general framework for streaming visualizations.

We believe that streaming stands as a valid alternative to process huge amounts of data without
completely load them in memory. There is a tendency toward streaming in many areas. However, if
streaming either has limited applicability in visualization (i.e. there is some case when streaming
application is not possible) or can be applied in every application is a question that remains open.

REFERENCES

[1] Ahn M., Guskov I., and Lee S. Out-of-Core Remeshing of Large Polygonal Meshes. IEEE

Transactions on Visualization and Computer Graphics, September/October 2006 (Vol. 12, No.
5), pages 1221-1228.

[2] Ahrens J., Brislawn K., Martin K., Geveci B. Law C., and Papka M. Large-scale data
visualization using parallel data streaming. Computer Graphics and Applications, IEEE -
Jul/Aug 2001 - Volume: 21, Issue: 4 - Pages: 34-41.

[3] Bolitho M., Kazhdan M., Burns R. and Hoppe H. Multilevel Streaming for Out-of-Core Surface
Reconstruction. Eurographics Symposium on Geometry Processing (2007) - Alexander
Belyaev, Michael Garland (Editors).

[4] Hoppe H. Progressive meshes. In SIGGRAPH ’96: Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques, pages 99–108, New York, NY, USA, 1996.
ACM Press.

[5] Isenburg, M. and Lindstrom P. Streaming Meshes. IEEE Visualization 2005 Proceedings. Pages
231-238.

[6] Pajarola R. Stream Processing Points. IEEE Visualization 2005 Proceedings. Pages 239-246.

[7] Park S., Linsen L., Kreylos O., Owens J., and Hamann B. A framework for real-time volume
visualization of streaming scattered data. In Proceedings of Tenth International Fall Workshop
on Vision, Modeling, and Visualization 2005 (2005) Pages 225-232. Stamminger M., Hornegger
J., (Eds.), DFG Collaborative Research Center.

[8] Rusinkiewicz S. and Levoy M. Symposium on Interactive 3D Graphics - Proceedings of the
2001 symposium on Interactive 3D graphics - Pages: 63 – 68. 2001.

[9] Vo H., Callahan S., Lindstrom P., Pascucci V., and Silva C. Streaming Simplification of
Tetrahedral Meshes. IEEE Transactions on Visualization and Computer Graphics,
January/February 2007 (Vol. 13, No. 1). Pages 145-155.

