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Abstract 

 
In visualization applications, the data has been increasing its size at very big rates. Processing of the 
whole data in main memory becomes impossible due to size limitations. A way of dealing with this 
constraint is to apply streaming to the visualization. The key idea is to exploit data locality in 
relationships to produce constant and continuous streams of data flowing through the visualization 
process. Issues like data dependencies, stream re-arranging, use of progressive algorithms, etc. have 
to be taken in consideration. In this paper we outline the main issues derived from the application of 
streaming in visualization. Our main objective is their identification as a previous step to define a 
general streaming framework for visualization. Some of the results presented here arose during the 
design and development of ad-hoc prototypes that we made as an initial approximation to the 
problem. 
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1   INTRODUCTION 
 
An important issue in Visualization is the efficient processing of an ever increasing data volume. 
The processing of the whole data in main memory becomes impossible due to size limitations and 
new techniques have to be applied. A way of dealing with this constraint is the implementation of 
secondary memory data structures. However, it is not always necessary to keep access to the entire 
dataset to perform the processing. In Visualization, almost invariably, a localized portion of data is 
used during data analysis, cleaning and filtering, attribute selection, layout calculations, visual 
mapping, rendering, etc. 
 
This locality can be exploited in order to avoid the storage of the entire dataset in each processing 
stage. If each stage’s incoming dataflow is arranged in such a way that the processing can start 
before the whole data is received, the processed data items could be transferred to the next stage and 
then released when they are not longer needed. This strategy saves computational resources and 
allows performing data processing in a streamed and potentially pipelined fashion. 
 
Streaming has been widely used to deliver audio, video and multimedia. End-user constantly 
receives the media while it is delivered by the provider, without download it completely before 
playback begins. Multimedia streaming requires media formats and protocols specifically designed 
to support it; time locality is exploited along subsequent video frames or audio fragments. Although 
streaming on data sets is a relatively new matter, the same elements can be identified. However, 
data streaming may lead to many issues. In general, the locality does not arise trivially from the data 
and there is not a time scale that guides the communication between stages. Thus, other 
relationships among data items have to be found to establish their transfer order and attain a 
localized processing. 
  
Structuring the visualization pipeline for streaming poses several challenges. It is necessary to 
arrange the data in order to send it to the next stage. Data dependencies have to be analyzed and 
solved in order to process related data items together. It is desirable to have the required data before 
the stage’s processing begins to reduce the required amount of memory. Another important issue is 
the requirement for progressive algorithms that could perform operations step by step over the 
dataset. These algorithms should run when new data arrive and perform their activities without re-
execute previous computations that were done as consequence of previously received data items. In 
this way, these received items would not be longer needed and could be deallocated. 
 
This paper outlines the key aspects in applying streaming in visualization. Apart from theoretical 
research, we have been done some preliminary design and implementation efforts as a first 
approach to the problem. Visualization tool prototypes allowed us to get a more concrete view of 
the problem and to draw some of the conclusions presented here. 
 
Along this work, we analyze the most relevant aspects and the main problems that arise in 
designing and developing streaming pipelined visualization tools. First, we discuss the streaming as 
a technique to reduce computational resources and also the modifications in the visualization 
pipeline to support streaming. Second, we analyze the data items processing and the requirements 
for streaming. Third, we study data dependencies that could make difficult the usage of streaming 
and how to deal with these issues. Then we cover progressive algorithms as a necessary topic to 
compose intermediate results and build visual representations. After that, we discuss additional 
related issues in streaming visualization such as the consistency problems when replicated data is 
updated and the safe re-execution of the visualization pipeline in a streamed scenario as a 



consequence of interactions. Finally, we address related work about streaming in visualization and 
present our conclusions and future work. 
 
 
 
2   STREAMING IN VISUALIZATION 
 
A common practice in Visualization is structuring the process in pipeline or, more generally 
speaking, in execution networks (we will use both terms interchangeably along this paper). We have 
connected stages, where transformations and calculations are performed, and, between them, some 
buffering mechanism to maintain entities until they be further processed (figure 1). By processing 
data concurrently in several stages, this architecture leads to a greater flexibility and performance. 
However, visualization stages usually transform the entire dataset in order to make available their 
output to further stages instead of sending data items one by one through the pipeline. This 
simplifies the design and implementation of the visualization because stages that receive those 
outputs can presume complete access to datasets. The two major drawbacks of this approach are the 
performance penalty that arises when the receiving stages have to wait for intermediate data to 
proceed, and the fact that the whole output must be kept in memory while receiving stages process 
it. 
 
 

 
 

Figure 1: A traditional visualization network. After the processing at each stage, a dataset is generated as output. This 
dataset is the input of the next stage and is maintained until the next stage process finishes. Only when these datasets are 
completely built, next stages can proceed. Intermediate datasets can be stored to avoid their regeneration or released to 
save memory when they are no longer needed. Anyway, enough storage for them is always required. 
 
 
 
Streaming is a technique that allows a receiver to begin processing some data even though it is not 
completely transferred by the sender. By using streaming between stages, data items can be 
transferred to the next stage as soon as they are ready. The key aspect is not only dividing the 
visualization process in stages, but also the dataset in basic elements to transfer them progressively. 
In this way, introducing streaming overcomes the drawbacks above stated, and empowers the 
concept of pipelining because data items are processed without interruptions as long as they flow 
through the visualization (figure 2). 
 



 
 
Figure 2: The streamed version of the previous visualization network. This figure shows an intermediate state in the 
processing. In contrast with figure 1, data items are flowing through the visualization and there are no intermediate 
buffered datasets in the process. Each data item is processed on the fly and routed to the correct stage. Reader should 
notice how the visual representation is built as long as processed data items arrive. 
 
 
Nevertheless, streaming imposes its own challenges. Items in a visualization pipeline could be 
processed isolated or linked together. The former case occurs when the computation over some data 
item does not require any others to be completed. For example, maximum, minimum or average 
calculations, and non-topological filtering like attribute value based filtering can be solved by 
taking each data item one at a time without any dependency from others. By contrast, a linked 
process is the only alternative when there are dependencies between data items. For example, 
calculating tree metrics such as tree depth or any graph based metric requires knowing in advance 
the metric values from neighbor nodes and, consequently, the node and its neighbors must be 
processed together. 
 
In the presence of isolated items, the pipeline can progress without restrictions. Items can enter into 
stages as soon as the stages are freed. However, when some items are involved in the processing of 
some others, the processing cannot continue until all these items are available. This may lead to an 
excessive accumulation of pending items inside stage buffers producing an increment in the overall 
memory consumption. Also, performance bottlenecks may arise because stages have to wait the 
required data in order to complete their processing. Therefore, if no measures are taken to avoid 
these problems, performance gains because of streaming could not be obtained. 
 
 
3   REQUIREMENTS FOR STREAMING 
 
As was stated in the previous section, introducing streaming in visualization is not an easy task. 
There are requirements that must be met to achieve higher performance and significant reductions 
in resource consumption. 
 
As a first requirement, it is necessary to have all related items available in order to start each stage 
processing. Relationships among items have to be analyzed to identify subsets of information able 
to be processed locally. Once data dependencies are identified, the dataflow between processing 
stages has to be arranged in such a way that related items be transferred together from one stage to 
the next. As was stated in the previous section, having all needed data items together allows the 
beginning of their processing and the amount of storage for pending items can be consequently 
reduced. 
 



Another essential requirement is the modification to the visualization algorithms. Deal with data 
streams instead of full accessible datasets stands new design challenges. Items have to be forwarded 
as soon as they are processed. Little or no auxiliary storage has to be used. An algorithm cannot 
simply collect the whole stream and rebuild the entire dataset to perform its calculations because 
this would frustrate the entire streaming effort. Visualization algorithms have to make do with only 
the tiny part of the total dataset that is available through the input stream. Also, they have to 
contribute to the output stream as soon as possible to do not delay the process. 
 
In the following sections we give a detailed discussion about these requirements and provide some 
examples about the impact of the streaming in visualization. 
 
 
4   DATA DEPENDENCIES 
 
The visualization process involves many data calculations from its input up to the building of the 
visual representation. Those calculations require some data items as input and produce other items 
as output. The dependences established among data items constrain how they flow through the 
visualization pipeline. The goal of data dependency analysis is the identification of locally related 
sets of items to process together. As result of this analysis, a partial ordering of the pipeline flow of 
items that exploit data locality is obtained (figure 3). 
 
 

 
 

Figure 3: A schematized streamed visualization pipeline showing data dependencies. Raw dataset have 3 items: A, B 
and C. In stage X, the calculation of D depends on A and B, and the calculation of E depends on B and C. In stage Y 
something similar occurs. F depends on A, B and D; and G depends on B, C and E. These dependencies arise from each 
stage processing. Between stages the ordered streams of items can be appreciated. Reader should also notice that C, D 
and E are filtered and they are not present in the final visual representation. 
 
 
Data dependences may vary in term of the performed operations. In some dataset, some items can 
be related from the perspective of some calculation but can remain unrelated from the viewpoint of 
another. For example, two graph nodes linked by an edge, should be processed together by a graph 
traversal algorithm which calculates some path based metric. However, if the computation changes 
some graphical attribute such as color to provide feedback to user about a node selection, the 
processing order of these two graph nodes is negligible. These variations on data dependencies, as a 
function of the processing, stand a key issue because some kind of coordination between stages 
becomes necessary in order to agree about what data items transfer together. 
 
At the beginning of the visualization process, the dataset in the user domain must be loaded or 
accessed in some way. At this point, the first challenges arise. Datasets with unrelated pieces of 
information are rather unusual. In almost every data set, there are inherent relationships between 
elements. These relationships appear when a data item reference another, when two points in a set 
present a topological link that allows interpolating attribute values between them, when two graph 
nodes are linked together and so on. The purpose of visualization is showing these relationships in 



some way. This causes these relationships had to be considered during visualization process. As a 
result, the way in which data items are processed and transferred through the visualization pipeline 
is constrained by the associations among them. 
 
Another problem with dependencies embedded in raw datasets occurs during the reading or parsing 
of the input data. No matter whether the data comes from a file or through the network, it cannot be 
ensured that the order in which items are received was a function of existing dependencies in 
dataset. Datasets that were not conceived for streaming do not ensure any order while are serialized 
and complicate the visualization input. For that reason, avoiding complete dataset loading not 
always is possible without reordering the dataset. 
 
By contrast to dependencies embedded in raw datasets from scratch, some dependencies are 
originated in the visualization process itself. This occurs when some stage in the visualization 
process establishes links between data items and it is desirable to perform some further processing 
following these links. Clustering algorithms define groups of similar entities and add new 
dependencies to layout algorithms because cluster members have to be drawn close together. 
Interpolating and approximating algorithms and, in general, every algorithm that derive new data 
from the existing one, establish new data items and new relationships. These dependencies, despite 
arising later in the visualization process, impose the same constraints and stand the same challenges 
that those embedded in datasets from beginning. 
 
Another aspect that has great impact in determining relationships among items is the structure of the 
input dataset. In the presence of a heavily structured data set, for example a rectilinear grid, related 
data items are implicitly stated. The ordering in which transfer these nodes can be directly obtained 
from the underlying topology. However, if an unstructured dataset such as a graph is considered, 
dependency analysis becomes cumbersome. In these cases, it is usual to have some basic or 
“atomic” items that do not reference any other, and a family of items that reference the “atomic” 
ones. After that, other items reference these last ones and so on. Thus, if these pseudo-layers of 
dependencies are identified, it is possible to exploit them to decide the order in which send the 
nodes. However, sometimes the structure does not have layers at all or contains loops making 
difficult the design of general approaches to deal with the dependency problem. 
 
Along this section we have examined the main issues that are involved in dependency discovering. 
It is important to notice that dependencies, despite their existence, do not care until they are 
considered for some stage processing. Dependencies neglected by visualization do not constrain the 
streaming at all. By taking into account the dependencies involved in the visualization process and 
reordering the dataflow accordingly, the data locality can be exploited to get more benefits from the 
streaming. 
 
 
5   ARRANGING THE DATAFLOW 
 
The goal of the previous discussion on data dependencies was to identify the items that are related 
and should be processed together. Once they are identified, actions should be taken in order to 
arrange their flow through the pipeline. As was stated before, this arrangement must occur in such a 
way that related items be transferred together from one stage to the next. If this does not occur, 
stages have to wait for the necessary items leading to higher memory consumptions and 
performance penalties (figure 4). 



  
 

(a) 
 

(b) 
 

Figure 4: Flow ordering issues. Both sub-figures show four steps in the execution of the visualization pipeline of the 
figure 3. In the figure 4(a) an improper item ordering is showed. Initially, A and C are transferred to Stage X and 
nothing can be done there. When B arrives to X in step 2, both D and E can be calculated. However, the items sent to Y 
are A, B and C and this stage can also do nothing. In the third step D and E arrive to Y and F and G can be computed. 
Then, F, B and G are transferred to the visual representation stage where a partial view is built. Finally A is sent from Y 
to the last stage and the process finishes. In the figure 4(b) the same transferences occur (the same overall bandwidth is 
used between stages), but in a better order. Notice how each stage can compute values as soon as possible avoiding 
assigning storage for idle items (in figure 4(a), A and C in step 1 in X and A, B and C in step 2 in Y are wasting 
storage). Also, the computation is better spread in time because each stage performs one calculation in each step 
(against the two from the other figure). Observe the communication between X and Y in figure 4(b). The stream 
between these stages is A, B and D and is according to calculation dependencies. X needed some information about the 
calculations of Y to decide sending DBA instead of other items. Another aspect to consider is the construction of the 
visual representation. This construction occurs while items arrive. Here it is necessary a progressive algorithm that does 
not have to restart when a new item arrive. In 4(b) could be seen that positions of items A, B and F are conserved when 
G arrives. If this were not the case, the algorithm should recalculate the layout for all the four items instead of only for 
G. However, in figure 4(a), despite this algorithm were progressive or not, B has to be re-laid out due to a bad ordering. 
 
 
However, dependencies rely on further processing. Some indication of what processing will be 
performed over data items is needed to correctly group items by locality. This implies that there 
should be coordination between the sender and the receiver stages on the order in which items will 
be transferred. Traditionally, sender stages own the control flow of information in visualization 
streamed pipelines. Each stage generates output and next stages process it as a reflex mechanism 
when their inputs are ready. In this scheme, that we call push pipeline, the control logic relies on 
sender stages and it is necessary for these stages to know the ordering restrictions of further stages 
in order to send the data accordingly. Otherwise, the opposite scheme called pull pipeline can be 
adopted. In this case, each stage requests for needed items to previous stages. The control logic 
relies on receiver stages and the problem with this approach is that knowledge about information 
that has not arrived yet to the stage is needed in order to build the request. Intermediate solutions 
can be applied in which the control is delegated to other components that act as mediators. In either 
case, some agreeing mechanism to match constraints among stages is always required. 
 
The major drawback with streaming is the relaxation of stage independence. If a streaming 
approach is desired in presence of data dependences, each stage has to have some knowledge about 
adjacent stages requirements (figure 5). Designing and implementing every stage independently 
from others becomes a harder task. This goes against one of the major advantages of pipelining: 
abstraction among stages. Let us consider as an example two connected stages of some visualization 
pipeline that handle data from a computed tomography. The first stage performs voxel filtering 



based on density values to suppress inner tissue, and the second does some interpolation among 
contiguous voxels. Clearly, the first stage should know that second stage operates with contiguous 
voxels in order to use some traversal mechanism that enforces the transference of neighbor voxels 
together. Also, the second stage should know how many neighbors have each voxel in order to 
begin the processing as soon as all the neighbors arrive and, after that, release completely the 
processed voxels. This exchange of information between adjacent stages becomes a major issue in 
designing modular streamed visualization networks. 
 

 
 

Figure 5: Streaming coordination among stages in the presence of dependencies. Against the main data stream, there is 
a backflow for coordinating ordering issues. The major drawback with this approach is that each stage must be aware of 
their neighbor stages. For example, stage y must be designed to be after stage x. This kind of issues limits the design 
modularization. 
 
A way to mitigate the impact of streaming in pipeline modularization is building each stage over an 
abstraction layer. This layer should provide a standard interface to recover and transfer data items 
and should hide communication and streaming details to the processing stages (figure 6). However, 
this is not an easy task. Although each stage recovers its independence from others, it needs to 
communicate their constraints to the abstraction layer in some way. This requires that processing 
constraints be explicitly represented in the interface between each stage and the abstraction layer. 
With these constraints, the abstraction layer could enforce a correct data items distribution. 
Unfortunately, design and implement a model for constraints (i.e. data dependencies) is not a trivial 
task. Representing data dependencies in the interface is the price that has to be paid to get back the 
modularization in visualization design. 
 

 
 
Figure 6: Streaming coordination through an abstraction layer. This layer is a platform that encapsulates 
communication and coordination details. Each stage can be developed over the interface without taking in consideration 
requirements of neighbor stages. 



6   PROGRESSIVE ALGORITHMS 
 
Progressive algorithms are those who can operate in little steps. In each execution step some portion 
of the overall calculation is performed. When they finish, the whole work is done. This feature 
makes them suitable for being used in streaming. As was stated before, the key issue in streaming is 
to avoid the complete reconstruction of datasets for processing data. Thus, this kind of algorithms 
becomes essential to work with the data flow on the fly, without unnecessary dataset 
reconstructions. Their ability of continue their work while items arrive and without restart the whole 
process is their main advantage. 
 
In visualization, we can identify two main applications of such algorithms. One is item processing 
in middle of the dataflow. Items arrive, are processed and, as soon as possible, are transferred to the 
next stages. In this case, the key issue is to keep a constant flow of items through the pipeline 
avoiding unnecessary accumulation of data. For this kind of application, algorithms that can work 
with little portions of the dataset are required. For example, attribute value based filtering 
algorithms belong to this category. For each item, its attribute value is analyzed and a decision is 
taken. The algorithm can perform its job getting one item at a time without additional storage. 
 
The other application for progressive algorithms is item processing at the end of the dataflow (see 
visual representation discussion in figure 4) or when intermediate results must be generated. In this 
case, the functionality varies because these algorithms act collecting data items to compose them in 
an intermediate result or a final representation. The key issue is resuming the process each time a 
new item arrive without repeat any calculation previously done. This application of progressive 
algorithms represents a dataflow endpoint, i.e. the finalization of a stream. This could be either an 
intermediate dataset after whom the process continue in other stream or the end of the whole 
visualization pipeline. 
 
Some algorithms have not constraints about their input. They simply receive data items in arbitrary 
order. In this context, we call them free algorithms. Force directed graph layouts, for example, only 
adds new nodes to the force system and re-executes the simulation. The order in which nodes 
arrives is negligible. Other algorithms impose restrictions over their input. We call them 
constrained algorithms. For example, multi-resolution algorithms receive a low detailed 
representation first to perform an approximated render well suited for overview purposes. After 
that, more and more details are received and the visual representation progressively gains 
resolution. In these cases, there are constraints in the order in which level of details are received. 
Free algorithms are easier to design and implement because they are insensitive to dependencies. In 
contrast, constrained algorithms present many more difficulties in their application. 
 
 
7   DISTRIBUTION AND THE INTERACTION LOOPBACK 
 
The focus of previous discussion about streaming was in terms of stages connected by data streams. 
Nothing has been said about where each stage is executed. This occurs because the streamed model 
is well suitable for both a centralized and a distributed visualization design. The medium by which 
entities travel from stage to stage could be either the network or a local shared memory 
implementation of some interface between stages; the implications in both cases are the same. The 
main point is that a streamed visualization pipeline has a natural extension to achieve the 
distribution of processing elements over a computer network because streaming was born as a way 
of dealing with distribution of audio and video over the net. 



 
In previous sections we discuss the aspects involved in streamed visualization pipelines but we only 
have considered the transformation of the data in visual entities. However, visualization is an 
inherently interactive process. Once the first visual representation is shown, user can interact with 
visualization by triggering processes that re-execute several parts of the visualization execution 
network. This feedback involves many implications from the streaming viewpoint. 
 
Due to visualization interaction, some data items are usually updated. For example, a selection of 
elements may change in response to user requests and, thus, the visual mapping for these elements 
could be modified in order to provide selection feedback to user. The problem is that there is not a 
centralized dataset in which apply such modifications. Items are spread over the whole execution 
network and a minor change of some item attribute could involve the reinsertion of such item in the 
data flow to be reprocessed. If this item were linked to others in order to solve data dependencies, 
the others also should be reinserted. Something similar occurs in figure 7 where the re-calculation 
of a value produces the reinsertion of related items. Updates that are solved without troubles in a 
standard visualization pipeline, becomes really hard problems in streamed pipelines due to these 
issues. 
 
 

 
 

Figure 7: Interactions on streamed visualization. User modifies the calculation of D in stage X by some kind of 
interaction. As a result, a new value D’ is obtained and propagated toward the end of the pipeline. However, because 
streaming, items A and B needed for D’ calculation could not be present in X. Then, the interaction must re-insert these 
items into the incoming stream of X. This reinsertion is originated by the dependency between A, B and D’. 
 
 
Another problem with data updating is the data replication. Consider a scenario where two data 
streams are derived from some stage because the resulting data has to suffer two different processes 
(something similar to the visualization of figure 5). In such a case, items would be replicated and 
their updates should be coordinated in order to ensure consistency. Other case when data replication 
occurs is exemplified in figure 4. If step 2 in figures 4(a) and 4(b) is examined, it should be noticed 
a replication of the item B due to the dynamic of the stream and the dependencies. If B were 
modified in some way, all its instances should be updated accordingly. As a consequence of this 
data replication, database theory related issues have direct impact in the design of a streamed 
visualization pipeline. 
 



8   RELATED WORK 
 
Streaming in visualization is increasingly used as a natural response to an ever rising size in datasets 
scales. Due to the inability of dealing with huge in-memory datasets, the processing of non-
completely accessible data arises as a need. However, nowadays we only have ad-hoc streamed 
implementations. They cover particular cases and often deal with highly parallelizable data (i.e. data 
with little dependencies or without dependencies at all). In particular, two main areas are being 
addressed: point based data processing and polygonal meshes processing. Little work has been done 
with streaming in information visualization or graph visualization where datasets have higher 
linking rates. 
 
Point based data related work includes stream based point processing frameworks such as in [6] and 
surface reconstruction schemes like the approach presented in [3] which start from scanned points 
and uses a multi-level streaming representation. Additionally, some work in progressive point 
processing algorithms has been performed. In [8] a view-dependent progressive transmission 
scheme is presented for splat volume rendering. In [7] a similar result is examined and two concrete 
application cases are given: the progressive visualization of a scattered data set and a real time 
visualization of dynamic streaming sensor data. 
 
Geometric and topological mesh processing applications also have been moving to streaming with 
novel mesh transmission techniques and new simplification and remeshing algorithms. In [4] and 
[5] streaming representation formats for meshes and conversion algorithms to these formats are 
presented. A progressive remeshing algorithm is proposed in [1] and a streamed simplification 
method for unstructured tetrahedral meshes is presented in [9]. 
 
In our knowledge, only non interactive streaming in visualization is well addressed. Streaming is 
covered as a way to deal with large data chunks of processing and not as a general resource 
optimization method. Interactions in visualization are also not well covered yet, mainly because 
when the user feedback loop is introduced, many problems arise. 
 
Streaming in visualization is just emerging as a set of isolated applications. However, in all the 
previously mentioned work, some kind of data rearranging, local processing or progressive 
computation is always present. The existence of these concepts in specific but very different 
scenarios validates them as general elements involved in the application of streaming in 
visualization. This is a first and necessary step toward the application of streaming in a more 
generalized fashion. Consequently, we think that introducing streaming as a general approach is a 
very promising improvement in the development of visualization systems. 
 
 
9   CONCLUSIONS AND FUTURE WORK 
 
Along this work we presented the concept of streaming and its application in visualization. We have 
summarized the main issues that arise in applying streaming in visualization. The key concept is 
exploiting data locality in order to make the data stream to flow constantly and without bottlenecks. 
In these sense, dependencies in data are an important aspect to be considered because they constrain 
the order in which data can flow through the pipeline. For a successful communication between 
stages, some coordination mechanism has to be applied. To do this, some alternatives were 
discussed. Also, progressive algorithms have been demonstrated to be relevant pieces in this 
scenario. They have to process data without full access to them and have to be able of transforming 



data streams in either intermediate results or final representations. Finally, distributed visualization 
topics, data replication aspects and interaction support issues were presented. 
 
Like every new research topic, streaming in visualization is evolving from ad-hoc approaches to 
more general techniques. In this work, we have advanced with minor ad-hoc implementations. 
However, these initial efforts allowed us to get some of the interesting results presented here. Thus 
far the results are very encouraging and we definitely will proceed along this way and develop 
streaming in a more generalized way. We are interested in the inclusion of the abstraction layer 
discussed in section 5 as a general framework for streaming visualizations. 
 
We believe that streaming stands as a valid alternative to process huge amounts of data without 
completely load them in memory. There is a tendency toward streaming in many areas. However, if 
streaming either has limited applicability in visualization (i.e. there is some case when streaming 
application is not possible) or can be applied in every application is a question that remains open. 
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